
Schedulability analysis for real-time mobile systems

Cong Chen∗,Yangyang Chen∗, Jian-Min Jiang∗†, Shi Zhang∗, Zhong Hong∗, Hongping Shu†, and Qiong Zeng†
∗College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350007, China

†College of Software Engineering, ChengDu University of Information Technology, Chengdu 610103, China

Abstract—Autonomous driving systems are complex real-time
mobile systems. To guarantee their safety and security, the mobile
objects (agents) in these systems must be isolated from each
other so that they do not collide with each other. Since isolation
means two or more mobile objects cannot be located in the same
area at the same time, a scheduling policy is required to control
the movement of these mobile objects. However, traditional
scheduling theories are based on task scheduling which is coarse-
grained and cannot be directly used for fine-grained isolation
controls. In this paper, we first propose an event-based formal
model called a time dependency structure which is used to model
and analyze real-time mobile systems. Then, an event-based
schedule is defined. Finally, we analyze the schedulability of
isolation—that is, checking whether a given schedule ensures the
isolation relationship among mobile objects or not.

Index Terms—mobility, isolation, scheduling policy, ambient.

I. INTRODUCTION

Autonomous driving systems are complex mobile systems,
which are a prominent subcategory of cyber-physical systems.
In these complex mobile systems, safety and security, especial-
ly the isolation of mobile objects (agents), has become crucial
issues. Isolation means two or more mobile objects cannot be
located in the same area at the same time. The mobile objects
in real-time mobile systems must be isolated from each other
so that they do not collide with each other. Thus, we should
have an effective mechanism for checking whether a given
scheduling policy can ensure the isolation of mobile objects
or not.

Existing scheduling theories, e.g, [2], [7], [8], [10]–[12],
focus on task scheduling. Task scheduling mainly consider
how to generate the optimal scheduling policies while the
objective of the schedulability analysis is to verify that there
are no violations of constraint conditions. However, as for
the inherent complexity of scheduling, existing work is far
from enough to solve these problems. Specifically, in the
practical mobile systems, mobile objects and environments
interact with each other, it is very difficult to separate a mobile
system into independent tasks. We cannot directly use existing
methods and techniques to obtain the scheduling policies for
the isolation of mobile objects.

To solve the problem, it is necessary for a new scheduling
policy to control the whole mobile system [1], [4]. Jiang et

Corresponding author: Jian-Min Jiang (jjm@fjnu.edu.cn). This work is
supported by National Natural Science Foundation of China (No. 61772004)
and the NSF of Fujian province (No. 2018J01777).

al. [4] have proposed more fine-grained event-based schedul-
ing instead of task scheduling. An event is generally the
occurrence of an action or activity. A task, process or com-
plex activity may consist of multiple events [6]. A complex
scheduling problem cannot be decomposed into independent
tasks, but it can be divided into sub-problems of event-based
scheduling. Though Jiang et al. [4] have discussed event-based
scheduling, such event-based scheduling does not consider
real-time scheduling controls, especially the scheduling in real-
time mobile systems.

To investigate the scheduling in real-time mobile systems,
we must model real-time mobile systems. We extend the
dependency structure model [4], [5] and add the time modeling
power to it. Such a model is called a time dependency struc-
ture, which can conveniently specify the timing constraints
and mobility of real-time mobile systems.

In this paper, we first introduce a time dependency structure.
Then, an event-based schedule is defined. Finally, we investi-
gate the schedulability analysis of isolation—that is, checking
whether a given schedule ensures the isolation relationship
among mobile objects or not in a real-time mobile system.

II. NOTATION AND RUNNING EXAMPLE

We will adopt the concept similar to the ambient calcu-
lus [3], where computation happens in an ambient that is a
closed and bounded place and a mobile object (agent) can
enter or exit an ambient.

Here, we first give some notations. Given a set X , the
notations 2X and |X| denote the power set and the size of
X , respectively. Time = [0,∞), the set of non-negative reals,
denotes the domain of time. A and M denote the sets of
ambients and mobile objects, respectively. The event of a
mobile object M∈M for entering an ambient A(A ∈ A) is
denoted by enM

A and the event ofM for exiting A is done by
exM

A . In fact, it is enough for us to only use the two movement
events (entering and exiting events) for specifying the mobility
in a mobile system. For more information, please refer to our
previous work [4].

We present a running example, which is a simple yet typical
mobile system where a passenger John needs to take a bus in
a road intersection area. It is assumed that all the vehicles
are equipped with Navigation Satellite System (GPS or BDS)
devices and have access to a digital map database, which pro-
vide them with critical information such as position, heading,
speed, road and lane details. The road area is represented as a

DOI reference number: 10.18293/SEKE2019-090

Fig. 1. A simple mobile system

grid which is divided into small cells in Figure 1.(a). Each cell
in the grid is associated with a unique identifier. The buses A
and B pass the intersection cell c7. John is located in the cell
c2. The bus A moves along the cells c11, c7, c3 and the bus
B does along the cells c8, c7, c6, c5.

John may enter the cell c6 and take the bus B. For
simplification, we give some notations. John is denoted as
J , and the event of John for entering the bus B (resp. the
cell c6) is denoted as enJ

B (resp. enJ
c6). If a bus X enters

a cell cx, the entering event is enX
cx. To simplify modeling

specification, we only consider the entering events because the
event of exiting one cell in fact means the event of entering
the next adjacent cell. Thus, there exist the following events:
enJ

c6, en
J
B , enA

c11, en
A
c7, en

A
c3, en

B
c8, en

B
c7, en

B
c6, en

B
c5.

Note that if there exist two or more vehicles in the same
cell, they will collide. To avoid collision, when the buses A
and B enter the cell c7, they must be scheduled so that they
pass through the cell c7 in sequence. Additionally, John should
enter the bus B in the cell c6 before B leaves.

Since a time dependency structure can represent a real-
time mobile system, it is used to denote such a real-time
mobile system. A real-time mobile system T DS may contains
multiple mobile objects and ambients. For convenience, the
notation T DSx @ T DS is used to denote that T DSx is a
mobile object or ambient of a real-time mobile system T DS.

III. SYSTEM MODEL

An event is a core concept here, which means an occurrence
of an activity or action. If an event occurs, such an event
is said to be available; otherwise it is unavailable. The
dependency structure model [4], [5] uses an event set (a set
of events) as a basic element. If all the events in an event
set are available, such an event set is said to be available;
otherwise it is said to be unavailable. We equip events and the
relationship among events with time attributes, and introduce
the time dependency structure.

Definition III.1 A time dependency structure (T DS) is a tuple
〈E , I,T, S,C,W,F, Ti, Te, Tt〉 with
–E , a finite set of events,
–I ⊆ 2E , the set of initially available event sets,
–T ⊆ 2E \ {∅}× 2E \ {∅}, the (asymmetric) transformation relation,
–S ⊆ 2E , the synchronism relation such that ∀A ∈ S : |A| > 1,
–C ⊆ 2E , the choice relation such that ∀A ∈ C : |A| > 1,
–W : E → {1, 2, 3, ...}, the capacity function,
–F ⊆ 2E , the set of finally available event sets,

–Ti :
⋃

X∈ I
X → Time, the initial time function,

–Te : E → Time, the event delay function, and
–Tt : T→ Time, the transformation delay function.

Here, for all A,B ∈ 2E , (A,B) ∈ T is called a transformation
dependency, denoted as A→ B, all read as B depending on A, and
A, B are called the pre- and post-dependency set of the dependency
(A,B), respectively. The events in A, B are called the pre- and
post-events of (A,B), respectively.

Transformation is a binary relation between event sets
where a transformation dependency (A,B) ∈ T is that the
occurrences of all the events in B depends on the occurrences
of all the events in A. A set A ∈ S and a set B ∈ C are
called a synchronism set and a choice set, respectively. The
capacity function W restricts the available number of events,
that is, if an event e may cause the occurrence of n events,
then the capacity of such an event is n (W(e) = n). The
capacity function is similar to the token capacity function of
places in a Petri net [9], which is used to control a loop.

To support multiple clock modeling, the initial time function
is introduced. Ti(e) refers to the initial clock valuation of
the initial available event e. The occurrence of an event may
go on for some time. Te(e) specifies the timing constraint
of the event e. A transformation dependency expresses the
dependency relationship between the two event sets and may
have a time delay constraint. If a transformation dependency
(A,B) has time delay t′, Tt((A,B)) = t′.

In our running example (see Figure 1(b)), we can assume
that it takes 1 time unit to enter an ambient and takes 2 time
units to cross a ambient for vehicle A and B. we assume that
the initial time of the vehicles A, B and passenger John are 3,
0, and 2, respectively. Therefore, the running example can be
modeled as T DSrun = 〈E , I,T,S,C,W,F, Ti, Te, Tt〉 where
E = {enA

c11, en
A
c7, en

A
c3, en

B
c8, en

B
c7, en

B
c6, en

B
c5, en

J
c6, en

J
B},

I = {{enA
c11}, {enB

c8}, {enJ
c6}},

T = {({enA
c11}, {enA

c7}), ({enA
c7}, {enA

c3}), ({enB
c8}, {enB

c7}),
({enB

c7}, {enB
c6}), ({enB

c6, en
J
c6}, {enJ

B}), ({enJ
B}, {enB

c5})},
S = {{enB

c6, en
J
c6}}, C = ∅, ∀e ∈ E ,W(e) = ∞, F =

{{enA
c3}, {enB

c5}}, and the timing constraints are as follows:
Ti(enA

c11) = 3, Ti(enB
c8) = 0, Ti(enJ

c6) = 2,
Te(enA

c11) = Te(enA
c7) = Te(enA

c3) = Te(enB
c8) = Te(enB

c7) =
Te(enB

c6) = Te(enB
c5) = Te(enJ

c6) = Te(enJ
B) = 1,

Tt(({enA
c11}, {enA

c7})) = Tt(({enA
c7}, {enA

c3})) =
Tt(({enB

c8}, {enB
c7})) = Tt(({enB

c7}, {enB
c6})) =

Tt(({enB
c6, en

J
c6}, {enJ

B})) = Tt(({enJ
B}, {enB

c6})) = 2.
A system can just run along the path formed by its

transformation dependencies. Synchronism, choice and timing
constraints only control the execution of such a system. While
a system runs, each of transformation dependencies may
lead to the change of its states. With the passage of time, a
transformation dependency may be activated. Only activated
transformation dependencies will be possibly executed. Thus,
a state includes the current possibly available events, the
number of possibly activating transformation dependencies,
the “absolute” time of the occurrence of every possibly
available event, and currently activated transformation
dependencies.

Definition III.2 Let T DS = 〈E , I,T, S,C,W,F, Ti, Te, Tt〉
be a time dependency structure. A state of T DS is a tuple
S = 〈∆,z, ft,Γ〉 where ∆ ⊆ E is the set of possibly available
events, the availability function z : ∆ → Z∗ is a function
from ∆ to the set Z∗ of nonnegative integers, the time function
ft : ∆ → Time, and Γ ⊆ T is the set of activated transformation
dependencies satisfying for all dependencies (A,B) ∈ Γ⇒ A ⊆ ∆.
The initial state of T DS is defined as S0 = 〈∆0,z0, ft0,Γ0〉 such
that ∆0 =

⋃
X∈ I

X , ∀e ∈ ∆0 : z0(e) = |{(A,B) ∈ T | e ∈ A}|,

∀e ∈ ∆0 : ft0(e) = Ti(e) + Te(e), and Γ0 = {(A,B) | A ∈
I, (A,B) ∈ T}.

For example, the initial state of T DSrun is S0 =
〈∆0,z0, ft0,Γ0〉 where ∆0 = {{enA

c11}, {enB
c8}, {enJ

c6}},
z0(enA

c11) = z0(enB
c8) = z0(enJ

c6) = 1, ft0(enA
c11) =

4, ft0(enB
c8) = 1, ft0(enJ

c6) = 3 and Γ0 =
{(enA

c11, en
A
c7), (enB

c8, en
B
c7), ({enJ

c6, en
B
c6}, enJ

B)}.
For convenience, the state 〈∆,z, ft〉 is denoted as

{〈e,z(e), ft(e)〉 | e ∈ ∆}. The availability function z is
similar to the marking of Petri nets. Given an event e and
z(e) = n, n is called the availability value of e.

Given a synchronism set C, the latest available time
delay of the events in a synchronism set is denoted by
Max{ft(e) | e ∈ C}. Note that since the absolute time
of the occurrence of the events in a synchronism set is
computed from the initial state of a system, one cannot
directly determine which events occur in what order before
the system starts to run.

Definition III.3 Let T DS = 〈E , I,T, S,C,W,F, Ti, Te, Tt〉 be a
time dependency structure and S1 = 〈∆1,z1, ft1,Γ1〉, S2 =
〈∆2,z2, ft2,Γ2〉 be two of its states.
S1 can evolve into S2 by executing a transformation dependency

(A,B), denoted by S1
(A,B)−→ S2, if the following conditions hold:

(1) (A,B) ∈ Γ1,
(2) @(E,F) ∈ Γ1 : Max{ft1(e) | e ∈ E} + Tt((E,F)) <

Max{ft1(e) | e ∈ A}+ Tt((A,B)),
(3) ∆2 = {e ∈ ∆1 | e 6∈ A∨(z1(e)−(1+x) > 0∧e ∈ A)}∪B,
(4) ∀e ∈ ∆2 : z2(e) ≤ W(e) ∧ z2(e) =

z1(e)− (1 + x) : e ∈ A \B
z1(e) : e ∈ (∆1 \ (A ∪B))

z1(e)− (1 + x) + y : e ∈ A ∩B
z1(e) + y : e ∈ (∆1 \A) ∩B

y : e ∈ B \∆1

where y = |{(X,Y) ∈ T | X ∩ B 6= ∅}| and x = |{(A,X) ∈ T |
∃e ∈ X, ∃e′ ∈ B,∃C ∈ C : e 6= e′ ∧ {e, e′} ∈ C}|,

(5) Γ2 = (Γ1\({(A,B)}∪BC))∪BT∪BS where BT = {(B,X) |
(B,X) ∈ T}, BS = {(X,Y) ∈ T | X ∈ S, X ⊆ ∆1 ∪ B,B ⊆
X,Y ⊆ E} and BC = {(W,X) ∈ T | W ⊆ E , ∃e ∈ X, ∃e′ ∈
B,∃C ∈ C : e 6= e′ ∧ {e, e′} ∈ C}, and

(6) ∀e ∈ ∆2 : ft2(e) = if e ∈ B then Max{ft1(e′) | e′ ∈
A}+ Tt((A,B)) + Te(e) else ft1(e).

According to the condition (2) of the preceding definition,

we have S0
(enB

c8,en
B
c7)−→ S1 in the running example,

and then we have ∆1 = {{enA
c11}, {enB

c7}, {enJ
c6}}

(by the condition (3)), z1(enA
c11) = z1(enB

c7) =
z1(enJ

c6) = 1 (by the condition (4)), and
Γ1 = {(enA

c11, en
A
c7), (enB

c7, en
B
c6), ({enJ

c6, en
B
c6}, enJ

B)}
(by the condition (5)). Thus, S1 = 〈∆1,z1, ft1,Γ1〉 where

ft1(enA
c11) = 4, ft1(enB

c7) = 4, and ft1(enJ
c6) = 3 (by the

condition (6)).
A time dependency structure can be used to reason about

the behavior and properties of a real-time system. We define
some properties of a time dependency structure here.

Definition III.4 Let T DS = 〈E , I,T, S,C,W,F, Ti, Te, Tt〉 be a
time dependency structure and S0 be the initial state of T DS. Let
S,S ′ be two states of T DS. A state S is said to be reachable from
S ′, denoted as S ′ ∗→ S, if there exist the states S ′1, · · · ,S ′n−1 such

that S ′
d′1→ S ′1 · · · S ′n−1

d′n→ S (d′i ∈ T, i ∈ {1, · · · , n}). Sta(T DS)

denotes the set of all reachable states in T DS.

IV. SCHEDULING AND ISOLATION CONTROL

In the section, we will introduce the notion of a schedule
and analyze the isolation relationship of mobile objects in a
real-time mobile system in order to explore the isolation.

Definition IV.1 Let T DS = 〈E , I,T, S,C,W,F, Ti, Te, Tt〉 be a
time dependency structure.

A sequence f = S0X1S1 · · ·XnSn is called a
full sequence of T DS iff S0 = 〈∆,z, ft,Γ〉,S1 =
〈∆1,z1, ft1,Γ1〉, · · · ,Sn = 〈∆n,zn, ftn,Γn〉 are states in T DS
and ∀i ∈ {0, 1, · · · , n}, Xi ⊆ E such that S0

∗→ S1
∗→ · · · ∗→ Sn

and ∀i ∈ {1, · · · , n}, ∀e1, e2 ∈ Xi : (Xi∩∆i = Xi)∧(fti−1(e1) =
fti−1(e2)). Here, the sequence s = X1 · · ·Xn is called a schedule
of T DS or is said to be schedulable in T DS. Sches(T DS)
denotes the set of all the schedules in T DS.

As the Definition IV.1, frun =
S0{enB

c8}S1{enA
c11, en

B
c7}S2{enA

c7, en
B
c6, en

J
c6}S3{enJ

B}S4
is a full sequence of T DSrun, and srun =
{enB

c8}{enA
c11, en

B
c7}{enA

c7, en
B
c6, en

J
c6}{enJ

B} is a schedule
of T DSrun.

A schedule is an ordered event set sequence, where the
events in the front event set occur prior to those in the back
event set. The scheduler of a system in fact is a controller
that restricts the behaviour of such a system so that given
scheduling requirements are met [1].

Definition IV.2 Let T DS be a time dependency structure and
s ∈ Sches(T DS). The restriction of T DS to the schedule s is
denoted by T DScs.

In this definition, T DScs means the time dependency structure
T DS whose behavior is restricted to the schedule s or the time
dependency structure T DS runs in terms of the control of the
schedule s.

Proposition IV.1 Let T DS = 〈E , I,T, S,C,W,F, Ti, Te, Tt〉 be
a time dependency structure and let s be a schedule in T DS, then
Sta(T DScs) ⊆ Sta(T DS).

The proposition shows that the states of scheduled mobile
system are part of those of the original system, respectively.

Definition IV.3 Let T DS be a time dependency structure and
s = X1 · · ·Xn ∈ Sches(T DS). The restriction of A to the schedule
s is defined as A↑s= {A ∈ A | ∃M ∈M : enM

A ∈ X1∪· · ·∪Xn}.

In fact we use A ↑s to denote the set of all the ambients
that are involved in the schedule s.

Definition IV.4 Let T DS be a time dependency structure. Let Ms ⊆
M. Let A ∈ A, M1,M2 ∈Ms and A,M1,M2 @ T DS.

TABLE I
STATES OF THE TIME DEPENDENCY STRUCTURE OF THE RUNNING EXAMPLE SYSTEM

Source state 〈∆,z, ft〉 Γ ED Target state

S0
{< enA

c11, 1, 4 >,< enB
c8, 1, 1 >,

< enJ
c6, 1, 3 >}

{({enA
c11}, {enA

c7}), ({enB
c8}, {enB

c7})} ({enB
c8}, {enB

c7}) S1

S1
{< enA

c11, 1, 4 >,< enB
c7, 1, 4 >,

< enJ
c6, 1, 3 >}

{({enA
c11}, {enA

c7}), ({enB
c7}, {enB

c6})}
({enA

c11}, {enA
c7}),

({enB
c7}, {enB

c6})
S2

S2
{< enA

c7, 1, 7 >,< enB
c6, 1, 7 >,

< enJ
c6, 1, 3 >}

{({enA
c7}, {enA

c3}), ({enB
c6, en

J
c6}, {enJ

B})}
({enA

c7}, {enA
c3}),

({enB
c6, en

J
c6}, {enJ

B})
S3

S3 {< enA
c3, 0, 10 >,< enJ

B , 1, 10 > {({enJ
B}, {en

B
c5})} ({enJ

B}, {en
B
c5}) S4

S4 {< enA
c3, 0, 10 >,< enB

c5, 0, 13 >
Note that “ED” means currently executed transformation dependencies.

M1 is said to be isolated from M2 for A in T DS, denoted by
M1 ©AM2 in T DS, iff either ∀s ∈ Sches(T DS), A 6∈ A↑s,
or ∀s = B1 · · ·Bn ∈ Sches(T DS), (∃X ∈ A, @enM2

A ∈
B1 ∪ · · · ∪ Bn : enM1

A ∈ B1 ∧ enM1
X ∈ Bn) ∨ (∃Y ∈ A, @enM1

A ∈
B1 ∪ · · · ∪Bn : enM2

A ∈ B1 ∧ enM2
Y ∈ Bn).

Ms is the set of mobile objects which need to isolate in
order to avoid collision. For example, in the running example,
we let Ms = {A,B} because of vehicle A and B need to
isolate while John as a passenger and the vehicle B are not
isolated from each other in the ambient c6 so that John takes
the vehicle B.

This definition shows that if M1 is isolated from M2, this
means one of the following three cases holds: (1) M1 and
M2 do not enter A, (2) one of M1 and M2 enters A, and
(3) when the two mobile objects M1 and M2 both need to
enter A, one does not enter the ambient A until the other
exits A.

Theorem IV.1 Let T DS = 〈E , I,T, S,C,W,F, Ti, Te, Tt〉 be a time
dependency structure. Let Ms ⊆ M. Let A ∈ A, M1,M2 ∈
Ms, enM1

A , enM2
A ∈ E , and A,M1,M2 @ T DS. Let s =

X1X2 . . . Xn ∈ Sches(T DS).
If ∀s1 = XiXi+1 . . . Xj ∈ Sches(TDScs),∃x ∈ A:

x 6= A ∧ enM1
A ∈ Xi ∧ enM2

A ∈ Xj ∧ enM1
x ∈ Xi+1 ∪ · · · ∪Xj ,

then M1©AM2 in T DScs.

In the running example, because of srun = {enB
c8}{enA

c11,
enB

c7}{enA
c7, en

B
c6, en

J
c6}{enJ

B} ∈ Sches(TDS), we have
srun1 = {enA

c11, en
B
c7}{enA

c7, en
B
c6, en

J
c6} ∈ Sches(TDScsrun

).
Since enB

c7 ∈ {enA
c11, en

B
c7}, enA

c7 ∈ {enA
c7, en

B
c6, en

J
c6}, and

enB
c6 ∈ {enA

c11, en
B
c7, en

A
c7, en

B
c6, en

J
c6}, we have A©c7 B.

The theorem states that we can decide whether two mobile
objects are isolated from each other for a single ambient
under a given schedule.

Theorem IV.2 Let T DS be a time dependency structure. Let Ms ⊆
M.

If ∀M,N ∈ Ms,∀X ∈ A, ∀s ∈ Sches(T DS),
M is isolated from N for X in T DScs, then
∀M′,N ′ ∈Ms, ∀X ′ ∈ As :M′©X ′ N ′ in T DS.

Theorem IV.2 in fact shows that given the set of mobile
objects and the set of ambients, we can decide whether
multiple mobile objects are isolated from each other for
multiple ambients under a given schedule by checking the

available movement events of the states in a real-time mobile
system.

V. CONCLUSION

A time dependency structure has been introduced and
discussed. Based on the time dependency structure model,
we have presented an approach for modeling a real-time
mobile system. We have also defined a schedule for the
isolation of mobile objects and have investigated the isolation
schedulabilty analysis in a real-time mobile system. These
results may be used for intelligent transportation systems and
autonomous driving systems. In the future, we will further
explore the isolation control and scheduling policies of the
concurrent complex real-time mobile system. In practice, we
will develop the scheduling policy generation method and wish
it to be really used for autonomous driving.

REFERENCES

[1] Karine Altisen and et al. Scheduler modeling based on the controller
synthesis paradigm. Real-time Systems, 23(1):55–84, 2002.

[2] Neil C. Audsley and et al. Deadline monotonic scheduling theory and
application. Control Engineering Practice, 1(1):71–78, February 1993.

[3] Luca Cardelli and Andrew D Gordon. Mobile ambients. In FoSSaCS,
pages 140–155. Springer, 1998.

[4] Jian-Min Jiang and et al. Event-based mobility modeling and analysis.
TCPS, 1(2):9:1–9:32, February 2017.

[5] Jianmin Jiang and et al. Analyzing event-based scheduling in concurrent
reactive systems. ACM TECS, 14(4):86:1–86:27, 2015.

[6] Kyoung-Dae Kim and P. R. Kumar. Cyber-physical systems: A perspec-
tive at the centennial. Proceedings of the IEEE, 100(1):1287–1308, May
2012.

[7] Qiao Li and R. Negi. Maximal scheduling in wireless ad hoc networks
with hypergraph interference models. IEEE Trans. Vehicular Technology,
61(1):297–310, November 2012.

[8] Chung Laung Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the ACM,
20(1):46–61, November 1973.

[9] Tadao Murata. Petri nets: properties, analysis, and applications. Pro-
ceedings of the IEEE, 77(4):541–580, April 1989.

[10] John A. Stankovic and et al. Deadline scheduling for real-time systems-
EDF and related algorithms, volume 460. Springer, 1998.

[11] Qinghui Tang and et al. A unified methodology for scheduling in
distributed cyber-physical systems. ACM TECS, 11(S2), August 2012.

[12] Fumin Zhang and et al. Task scheduling for control oriented require-
ments for cyber-physical systems. In Proceedings of the RTSS, pages
47–56. IEEE, 2008.

	Introduction
	Notation and Running example
	System Model
	Scheduling and Isolation control
	Conclusion
	References

