
DOI reference number: 10.18293/SEKE2019-098

A Case Study of a Software Development Process

Model for SIS-ASTROS

Camila Hübner Brondani, Otávio da Cruz Mello, Lisandra Manzoni Fontoura
Departamento de Computação Aplicada – DCOM

Universidade Federal de Santa Maria – UFSM

Santa Maria, Brazil

{chbrondani, odmello, lisandra}@inf.ufsm.br

Abstract — Context: technological innovation projects,

developed in universities in partnership with companies and/or

the government need processes that can handle the

characteristics of the institutions involved. The academic

environment is often used to dynamic methods, but contracts

require plan-driven processes. Goal: the goal of this research is

to understand the needs of the parties involved (university and

government/enterprise) and provide an adapted software

process to satisfy those necessities. Method: a case study

considering a project between the Federal University of Santa

Maria (UFSM) and the Brazilian Army (BA) for the

development of an Integrated Simulation System was

conducted. Initially, problems in the development were

detected and a process was defined. It was then evaluated and

improved over the iterations, through team meetings. Results:

the experience acquired in the project was consolidated as

lessons that could be used to assist the process definition of

projects with similar characteristics. Conclusion: innovation

projects involving the collaboration of universities, government

and/or companies are successful if an adequate process is

established to treat specificities of the academy, not only in

relation to characteristics of the work but also the team.

Keywords—process, triple helix, ASTROS, case study.

I. INTRODUCTION

The university today, besides the academic activities and

the pure research, promotes the development of applied

research aiming to generate innovation solutions from issues

presented by governmental institutions and enterprises. The

triple helix thesis states that universities are distancing

themselves from having a secondary social role, although

important, of providing higher education and research, and

is taking a primary role equivalent to the industry and the

government, generating new industries and companies [1].

In this context, the Federal University of Santa Maria
(UFSM) started a project to develop an Integrated Simulation
System for the Brazilian Army (BA) in 2015. One of the
initial challenges of the project was defining an adequate
process model. Since there was an agreement between the
BA and the UFSM with predetermined goals and deadlines, a
plan-driven process model would be more satisfactory. On
the other hand, the research needed for the system
development could not be predictable, requiring
investigation, prototype development and evaluation. The set
of requirements was vague; the team was formed of high-
skilled workers with autonomy. Based on these aspects, agile
methodologies could be considered more proper.

Understanding the peculiarities of a project involving the
university and government is crucial to choose an adequate
process model that can satisfy the needs of both parties.

In this article, we will describe the lessons learned during
four years of a research project between the UFSM and the
BA and the process model that was used in this development,
adapted over the iterations. Our goal is that the lessons
learned and the process model can assist the definition and/or
adaptation of models that are used in projects involving
universities and governmental institutions or private
companies.

The project in question proposes the development of a
Tactical Virtual Simulator aiming the military training in
tactical operations related to the use of an ASTROS battery
(Artillery Saturation Rocket System).

Some important characteristics of the project are: need of
meeting semi-annual goals pre-defined at the start of the
project, difficulty of defining requirements due to the
system’s complexity, the unfamiliarity of the development
team with the area of application, high-skilled workers, and
constant need of innovative solutions research.

Those attributes led the definition of the software
process. An evolutionary and iterative life cycle was defined,
where intermediary versions of the software are generated
and evaluated constantly by the client, easing the definition
of new requirements for the next iteration. Besides that,
milestones were defined with the purpose to satisfy
contractual obligations. The process was evaluated and
improved over the course of the project and the experience
acquired was consolidated as learned lessons to be used in
the development of other similar software projects.

This article is organized as follows: in Section II,
important concepts to the comprehension of this work are
introduced. In Section III, related works are discussed. In
Section IV the context of the case study is described. In
Section V, we define the proposed process. In Section VI,
discussion and analysis are presented. At last, in Section VII
we discuss our final considerations and comment on future
works.

II. BACKGROUND

Modeling of software process has been a very
challenging problem and constantly debated in the software
development community in the past 30+ years, largely due to
the complex nature of the software development process that
involves not only the technical knowledge and skills but also

many other factors, such as human, management, quality
assessment, and cost [2]. The modeling of business processes
aids in the comprehension and optimization of existing
business processes, and also in the conception of new
business processes to make organizations more competitive
and efficient [3].

Software development strategies have gradually shifted
from the traditional waterfall model to more dynamic and
responsive iterative, multi-cycle strategies. The reason
usually cited is the need to minimize risk in the process [4].

Traditional iterative software development efforts such as
spiral development or iterative enhancement can be
considered adaptations of the waterfall software life cycle
[5]. This is because these methods generally assume that the
entire documentation required by the waterfall method will
still be produced, but will be rewritten and updated during
each cycle rather than once for the entire software process
[5].

Agile processes are different from traditional software
processes in that the time per cycle is very short and many
fewer formal methods are employed. They focused on
repeated lightweight practices for rapid and continuous
delivery of software in small chunks with close collaboration
from the customer as well as among members of the
development teams.

No rigid plan or requirement is determined in advance, as
these can change during the development process. Being
flexible and adaptive to changes are in the DNA of agile
methods while still achieve the ultimate goal of producing
customer satisfied software within the time and cost
framework [5]. Extreme Programming and Scrum are two
software development processes that fit this description [5].

Many software development methodologies fall in
between plan-driven development and agile development,
and exhibit several of the characteristics of agile
development. Examples include incremental development,
prototyping, and DSDM (Dynamic Systems Development
Method) [6].

To mitigate the impacts of abrupt paradigm changes and
support organizations that don’t want to stop following all
traditional practices some proposals were developed for
hybrid processes that incorporate principles of agile and
traditional paradigms [7].

III. RELATED WORK

The study from Cotugno and Messina [8] presents an
overview of the development process, focusing on the Scrum
methodology adopted by the Italian Army for the
development of software systems using open code
technologies.

Benedicenti et al. [9] relate the experience of an agile
application in the defense sector They describe the
experience of creating a control and command system for the
Italian Army. The delivery of the project happened after 13
sprints of five weeks, meeting all the needs of the users and
satisfying the regulatory requirements of the army. Acquiring
this positive result demanded collective effort to change the
development culture, since there was natural resistance to
change, and the need of highest possible support level to

guarantee the continuity of the selected process. The article
presents the positive results quantified.

As well as this article, the work from Cotugno and
Messina [8] and Benedicenti et al. [9] describe
methodologies and techniques used in the software
development in an military environment. The main
difference is that both are only focused on agile methods.

The work from Jenkis [10] describes the implementation
experience of PRO-SOFTWARE, a software quality project
involving the government, industry and academy (the triple
helix). The goal was strengthening the software industry in
Costa Rica, assisting organizations in improving their
software processes. Therefore, Jenkis [10] proposes a
methodology based on the quality improvement using the
Capability Maturity Model (CMM) as base.

IV. CASE STUDY DESIGN

In order to address the research objective, we designed an
exploratory case study, which involved a real-world software
project. We define a software process based on identified
process and analyze this process over several iterations. This
section describes the design of the case study.

A. Project Context

The SIS-ASTROS project started in 2015, and is
predicted to end in 2020. The main goal of the project is the
development of an integrated simulation system to support
the teaching of doctrines related to the use of a rocket
artillery battery. The development team is formed of 7 doctor
professors, 3 researchers, 4 developers, 7 master’s degree
students and 13 undergraduate students.

In addition, the requirement of the projects were
described in high level of abstraction, the UFSM’s team did
not have the knowledge of the domain and the project
required some innovative solutions, mainly related to the
simulator’s integrity, 3D scenarios generation and
autonomous navigation. It is predicted to transfer the
technology to the BA at the end of the project.

On the other side, the professors and researchers have
long experience in the research field, developing researches
to provide innovative solutions in different areas of computer
science.

B. Methodology

At the beginning of the development, there was not a
process model clearly defined in the project, so the artifacts
were not standardized and the flow of activities did not
follow a pre-defined roadmap. This scenario brought
difficulties in the project management and fomented the
definition and elaboration of a software process for the
project. Therefore, from this necessity, this research project
was initiated. The methodology used by the team to conduct
the case study was composed of the four phases described
below.

Diagnosis: identification of the problems happening on
the project and possible solutions. In this stage, many
problems related to the inexistence of a defined software
process were found. The discovery of the problems occurred
through meetings with the partied involved in the project.

Planning: from the problems identified in the last stage, a
process model to be used in the project was proposed, aiming
to solve these problems and satisfy the characteristics and
necessities of the project and the team at the same time.

Implementation and Evaluation: during the three
following years, the process was implemented and
improvements were incorporated to it, intending to adapt the
project to current needs.

Analysis: the results obtained over the course of the
project are presented and the acquired experience is
described as lessons learned.

C. Problems Diagnosis

The issues found during the Diagnosis phase can be
summarized as follows.

Unfamiliarity with the application domain

The UFSM team did not have knowledge about military
doctrines neither terminologies of the field. The manuals
were rich in details and very extensive, making it difficult for
the team to understand and learn.

Difficulties related to requirements definition

Being an innovative software, the set of requirements
was not defined. There were a lot of concerns and doubts
about how the simulation system would work and which
features would be necessary.

Complexity of solutions

Complex and innovative computational solutions were
required to solve the technical issues found during the
development.

Rework

The team project was composed of workers with different
skill levels, the professors and the researches were high
skilled, master’s degree students possessed an average level
of skill and undergraduate students were low skilled. Since
there was a large number of trainees, many problems in the
source code were found, like defects, lines that were hard to
comprehend and maintain, and issues related to class
structuring.

Communication difficulties

Due to the hierarchic communication structure with the
client, the information goes through several levels until the

decision taking. This communication flow causes problems
like developmental delay, when for example, the team needs
to wait for an answer to a doubt.

High team turnover

The students remain in the project while they are taking
their graduation or master’s degree course, on average two
years. Therefore, we have high turnover.

Requirements instability/Changing Requirements

Constant changes in requirements, mainly during the test
phases. Many changes occur because of divergent opinions,
often due to lack of vision of the whole.

V. PROPOSED PROCESS OVERVIEW

In the planning phase, a software process was developed
with intent of proposing solutions to the issues identified
during the diagnosis phase while meeting the needs and
peculiarities of the government and the academy. On one
side, we have a stakeholder that gives priority to software
documentation, rigid definition of iterations and deadlines,
while on the other side, we have a self-managing team that is
focused on development and coding.

The process initially defined was constantly evaluated
through the phases and iterations (Implementation and
Evaluation phase). The evaluations were performed during
meetings, when the parties involved would discuss which
practices gave positive results and which should be reviewed,
and with this feedback, the process was improved.

The current process is described in Figure 1 (life cycle
vision), Figure 2 (iteration activities) and Figure 3 (change
management sub-process activities).

Some considerations about the process are described in
the following section.

A. Process Life Cycle

Aiming to include the formal deliveries, foreseen in the
contract, the life cycle was organized in phases and
iterations, as depicted in Figure 1. Two phases are planned:
initiation and construction, finished with a major milestone.

The initiation phase only happens once and is responsible
for defining an overview (abstract) of the system in
development and giving a clear comprehension of the
business domain that is related to this system.

Fig. 1. Life Cycle Vision

The construction phase, on the other hand, is responsible
for the execution of the technical activities that will generate
a new version of the software. A project can have as many
construction phases as needed, and each one can have
multiple iterations. Both phases must respect contractual
obligations, for this reason, they are finished with a major
milestone that indicates a formal delivery to the client.

Since the phases usually refer to bigger time spans
(semesters, years), it was chosen to break them in many
iterations with the purpose of speeding up the process. Each
iteration has its complete development cycle, from
requirements definition to version evaluation (Figure 2). The
software versions developed in the iteration are always
delivered when the phase ends (major milestone). The
number of phases and the amount of iterations in each of
these phases depend on the project and can be adjusted.

Fig. 2. Iteration Activities

At the end of the iteration, meetings with the client are
held to present the intermediary version of the software, in
which possible improvements, changes and evolutions are
discussed. These meetings are important to track the current
progress of the development team.

B. Activities and Artifacts

The initiation phase is composed of four main tasks that
happen at the same time: define business rules, model

business diagrams, define business glossary and develop
vision. These tasks generate the artifacts business rules,
business diagrams, business glossary and vision document,
which are formally evaluated by the client. Before the
construction phase starts, it is extremely important that the
artifacts generated during the initiation phase have been
approved by all the stakeholders (task validate documents).
When the respective documents are finished and approved,
successive iterations start in each phase. Each one has a set
of tasks that generate an intermediary version of the
software. In the first task, the stakeholders meet to define the
requirements that must be implemented in the cycle.

After the requirements of that iteration are defined and
prioritized, the specification and detailing tasks start.
Diagrams and requirements specification documents are
created to assist the team members during the development
and the technology transfer process. All the artifacts created
in this phase are managed in a requirements management
tool.

The tasks identify research-related problems and perform
additional research are executed simultaneously, due to
constant innovative solutions research. These are
incorporated in the simulator in the next iteration.

Once the modeling ends, the team can finally start
implementing and testing. If there are issues with a feature
that cannot be fixed during the defined cycle, or the
programmers are late in the development, an artifact is
generated reporting the features that could not be finished, so
they can be implemented in the next cycle. As soon as the
iteration finishes, the client validates the intermediary
version of the software, defining additions or changes that
should take place. These are documented and serve as input
for the next iteration’s requirements definition.

Change requests can be submitted at any time, either to
include or modify a requirement that was previously defined.
In the main process, the procedure of submitting a change
request is seen as a sub-process (Figure 3).

Fig. 3. Change Management Sub-process Activities

This sub-process is basically a flow of activities to
manage the changes in the project. First, a stakeholder
submits a change request, which is reviewed by a committee
and, if the request is relevant, the change is incorporated in
the version of the software. However, there are times when
no requests are submitted in an iteration, so the change
management process will not necessarily occur in the flow,
therefore, being optional.

C. Roles

The project team was organized in levels: researcher
professors (part time), professionals and researchers (full
time), master’s degree students and trainees (part time). The
researcher professors guide the students in solving research
problems and developing their academic works.

Professors are also responsible for the project
management. Professionals and researchers are in charge of
planning the tasks to be assigned to each member of the
team, communicating obstacles to the management and
organizing the daily routine of the team. Master’s degree
students are responsible for guiding the undergraduate
students in their activities, helping solving issues regarding
tasks assigned to them. The product owner is responsible for
the communication between the development team and the
client; all the requests from the team are centered on this
person, which will track them until they are complete.

The team is collaborative, all the workers are assigned to
close workrooms and there is constant exchange of
knowledge between the team members.

VI. DISCUSSION AND ANALYSIS

The plan-driven approach served as foundation to the
process definition. Using the basic principles: analysis,
design, construction and verification, we have the basis for
the flow of activities, supporting development of specific
documents related to each phase of the project. The
contractual aspect of the project, that demands deliveries on
a timeframe, is contemplated with milestones at the end of
each phase. The documents submitted are important for the
requirement of technologic transference at the end of the
project.

Allied to traditional models, we’ve decided to apply
some characteristics of agile methodologies to the process as
well, in order to emphasize the collaborative and
communicative principles of the team and the final user,
allowing incremental deliveries and also supporting the
constant change requests without affecting or causing time
and/or financial damage to the project [11].

Therefore, the method used in the creation of the process
was defined as a hybrid between plan-driven and agile
models, using the most advantageous characteristics, aligned
with the goals of the project. In addition, for each issue
found, actions were taken in the software process, aiming to
solve or minimize them. They are described below.

Unfamiliarity with the application domain

The solution found was including some tasks at the start
of the process with the purpose of comprehending the
application domain. Diagrams that represented the domain
were elaborated in collaboration with the stakeholders.
Besides that, glossaries were also created, that are being

maintained through the course of the project. The BA team
has been formally validating these documents.

Difficulties related to requirements definition

It was decided to work on intermediary versions of the
software that were evaluated periodically by the BA team.
When all the parties approved the prototype, a new set of
requirements for the next iteration would be defined.

Complexity of solutions

It required applied research and development of master’s
essays and final papers exploring necessary solutions for the
development of the simulator guided by a researcher in the
field.

Rework

The solution was the constant refactoring of the source
code, especially at the beginning of the project. Before the
formal deliveries, there were periods intended for the code
refactoring, with the purpose of improving legibility and
documentation, as well as removing unnecessary code lines.
We now focus on continuous source-code reviewing.
Additionally, there is an internal hierarchy where
experienced members assist new ones, helping them
developing high-quality artifacts.

Communication difficulties

A formal communication flow was defined so that the
parties involved track the information requests.

High team turnover

Some experienced professionals (researchers and
programmers) were hired full time. Teamwork is encouraged
and constant experience exchange between trainees and
experienced members happen, thus, the team shares the
knowledge of the system.

Requirements instability/Changing Requirements

Usage of incremental and iterative development, focused
on periodic presentations of the intermediary version of the
software. A formal change request process was also created.

Based on the results obtained by the execution of the
process and the continuous monitoring of the team and the
client since the beginning of the project up until now, it was
possible to define some of the best practices and adopted
decisions that reflected positively on the quality and progress
of the project. It is believed that these practices can be
applied in software development projects that involve
academy and government and/or industry.

Client’s periodic homologation

Iterative development allows the team to deliver a
functional product to the client at the end of each iteration or
cycle. The client can use this prototype over a period of time
and provide feedback for the developers in terms of
definition of new requirements, change requests and issue
reporting. Usually, changes are incorporated into the
requirements baseline to be implemented in the next
iteration.

Use of diagrams to represent the business domain

Business diagrams helped the team to comprehend the
business domain, making future communications more fluid.
These diagrams were also used by the client to communicate

with other parties involved in the project. It was possible to
represent the BA doctrines fully and clearly, preventing the
team from reading manuals that are complex and difficult to
understand.

Cooperative work

Team members can learn from each other. The more
experienced guide the less experienced. Additionally, each
team member knows what the others are developing, and can
exchange information. The development of a particular
activity becomes priority of the group as a whole, and not
property of a certain team member only. The master’s degree
students mentor undergraduate students in research, that way,
team members develop a common sense of responsibility
that brings them closer.

Effective communication

The agile processes support the idea of face-to-face
communication as the most effective and efficient method of
transmitting information in the development team. The
UFSM team is allocated in a sole environment. However,
since the client team is located in another state, face-to-face
communication is not possible. Therefore, to build an
efficient communication method, it was necessary to center
the communication on the Product Owner. This person is
responsible for bringing the military vision to the project and
evaluating, along with the team, the enhancements or
changes that should take place to ensure that the software
fulfill the needs of the BA. Bimestrial face-to-face meetings
are scheduled.

Definition of a change management process

The change management process helped to monitor
change requests and limited the number of unnecessary
requests without the global comprehension of the system.

In the SIS-ASTROS project, we have defined one
initiation phase and five construction phases, with duration
of six months each. In each construction phase, three
bimestrial iterations were established, since there are many
part-time workers in the project that need to conciliate their
work in the project with their academic obligations, teaching,
in the case of professors, and classes and university
assignments, in the case of students.

During this time, we managed to meet the goals defined
in the project within the time and budget. The BA is satisfied
with the results obtained and future projects are being
discussed. The formal change request process reduced
rework, and the amount of defects in the software has been
dropping over time at the same pace performance (response
time) has been increasing.

VII. CONCLUDING REMARKS

Projects involving the collaboration between universities
and government and/or industry are successful if suitable
procedures to handle the needs and peculiarities of the parties
involved are established. In the described case study, hybrid
process types proved to be satisfactory because they explore
plan-driven characteristics – based in contracts, at the same
time agile methods are suitable for innovative projects,
which involve high-skilled professionals.

It was possible to experience practices from both
investigated process in this project, reflecting positively in
the developmental quality and progress, solving issues
previously detected and establishing a set of learned lessons
that can be used in other similar software development
projects.

As future work, the main idea is to review the process
periodically along with the team, continuously verifying the
relevance of the activities and artifacts. As the process is
thoroughly used, it may be possible to optimize some
activities, thereby making the process less bureaucratic.

The fact that this approach was only applied in one
project, even if in successive iterations during three years,
was a limitation associated with this article.

ACKNOWLEDGMENT

We thank the Brazilian Army for the financial support
through the SIS-ASTROS Project (813782/2014), developed
in the context of the PEE-ASTROS 2020.

REFERENCES

[1] H. Etzkowitz and C. Zhou, “Hélice Tríplice: inovação e

empreendedorismo universidade-indústria-governo,” Estudos

Avançados, vol. 31, no. 90, pp. 23–48, 2017.

[2] R. A. Haraty and G. Hu, “Software Process Models: A Review and

Analysis,” International Journal of Engineering & Technology, vol.

7, pp. 325–331, 2018.

[3] K. C. Laudon and C. G. Traver, Management Information Systems,

12th ed. Sao Paulo: Prentice Hall, 2011.

[4] H. M. Olague, L. H. Etzkorn, W. Li, and G. Cox, “Assessing Design

Instability in Iterative (agile) Object-Oriented Projects,” Journal of

Software Maintenance and Evolution: Research and Practice, pp.

237–266, 2006.

[5] B. Ramesh, L. Cao, and R. Baskerville, “Agile Requirements

Engineering Practices and Challenges: An Empirical Study,”

Information Systems Journal, vol. 20, no. 5, pp. 449–480, 2010.

[6] G. Van Waardenburg and H. Van Vliet, “When agile meets the

enterprise,” Information and Software Technology, vol. 55, no. 12,

pp. 2154–2171, 2013.

[7] W. Chaves, D. S. Carvalho, P. F. Rosa, S. Soares, M. Antonio, and

L. C. Buiatte, “A comparative Analysis of the Agile and Traditional

Software Development Processes Productivity,” 30th International

Conference of the Chilean Computer Science Society, IEEE, pp. 74–

82, 2012.

[8] F. Cotugno and A. Messina, “Adapting SCRUM to the Italian

Army : Methods and (Open) Tools,” IFIP International Federation

for Information Processing, 2016.

[9] L. Benedicenti, A. Messina, and A. Sillitti, “iAgile: Mission Critical

Military Software Development,” International Conference on High

Performance Computing & Simulation iAgile:, pp. 545–552, 2017.

[10] M. Jenkins, “PRO-SOFTWARE: A Government-Industry-Academia

Partnership that Worked,” 17th Conference on Software Engineering

Education and Training (CSEET’04), 2004.

[11] I. Sommerville, Engenharia de Software, 9th ed. São Paulo: Pearson

Prentice Hall, 2011.

