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Abstract— The software development workflow typically involves 
developers executing tasks and manipulating artifacts. 
When developers receive a new task they typically 
envision a task context with the artifacts they intend to 
manipulate based on their past experiences. Given 
software projects may last several months, accumulating 
a vast amount of tasks, artifacts and developers, 
envisioning this initial task context may be difficult and 
error-prone. Developers have to walk-through months of 
past experiences or examine the experience of other 
developers, select similar tasks and then define the initial 
context. This paper introduces a method that helps 
developers defining the initial task context by combining 
interaction information over artifacts with text 
information of tasks. First, the Method uses the 
Clustering technique to organize project tasks into 
similar groups by interaction in artifacts. Then, the 
Method uses the Natural Language Processing technique 
to associate a new task with groups of similar tasks by 
interaction. The evaluation shows that the clustering of 
similar tasks by interaction produces similar tasks 
assigned with artifacts that will be edited by new tasks. 
The association of new tasks with similar groups by 
interaction indicates correlation between textual 
similarity and interaction similarity. 
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I. INTRODUCTION 
Software development projects last for months or years, 

where developers interact with each other and manipulate many 
artifacts. A typical task context in software development is 
formed by a set of artifacts that the developer uses to perform a 
task [1], [2]. Another widely explored context variable is the 
identification of task experts [3], as well as by experts in similar 
tasks to the new task [4]. 

When the developer receives a task to correct an error or add 
new functionality to the software, the developer usually starts by 
searching for artifacts that he needs to change to accomplish the 
task. This search is based on the developer's experience and the 
human capacity to remember of the artifacts already used in 
previous similar tasks [5]. In addition, the search is time-
consuming, even when using the traditional navigation and 

textual search tools available in development environments, e.g., 
Eclipse Project Explorer. 

In this scenario, recommending an initial task context can 
help developers in performing new tasks. The recommendation 
tools in Software Engineering aim to reduce the uncertainties of 
the future through the analysis of project history, and in a more 
specific way, according to Robillard et al. [6], these tools are 
software applications that provides information items estimated 
as valuable to a software engineering task in a given context. 

Aiming at inferring new task context, some works focus on 
the recommendation of artifacts, i.e., source code, files, classes, 
packages [1], [7]–[11], others in the recommendation of artifact 
experts [12], [13]. Proposals [14], [15] and [16] recommend 
experts to new tasks. Malheiros et al. [17] and Ashok et al. [18] 
recommend similar tasks to new task, while Wang et al. [4] and 
Ashok et al. [18] also recommend experts on similar tasks to new 
task. 

This paper presents part of the Tacin method (Task Context 
based on Interactions) to recommend a new task context in 
software development projects. First, we defined that two tasks 
are similar by interaction if the developers edited at least one 
common artifact while performing the tasks. The weight of 
similarity is equal to the number of artifacts in common. After, 
the Method uses the Clustering technique to organize project 
tasks into similar groups by interaction in artifacts [19]. Then, 
the Method uses the Natural Language Processing technique to 
associate a new task with groups of similar tasks by interaction 
[20]. In this article, the edit interaction values are captured by 
Mylyn, an interaction model [28]. 

In the evaluation, the clustering of similar tasks by 
interaction indicated the production of task groups that had only 
6% of the artifacts available in the project, but containing 77% 
of the artifacts that will be edited by new tasks. The association 
of new tasks with similar groups by interaction reduced by 90% 
the available artifacts and produced a recall of 52%. Therefore, 
the evaluation indicates success in Clustering and need for 
improvement in Natural Language Processing technique, i.e., 
improve the recall to a percentage closer to 77%. 

This paper is organized as follows. Section II defines 
Clustering and Natural Language Processing. Section III 
presents the Method to recommend artifacts to new tasks in 
software projects. Section IV assesses the Method based on 



 

average hits on recommending artifacts to new tasks. Section VI 
reviews related work and Section VI concludes our paper with a 
brief description of future work. 

II. BACKGROUND 
Developers interact with artifacts and collaborate among 

them to perfom tasks in software development projects. The 
task objective is generally expressed by text. For example, the 
Mylyn Docs project uses a short description in natural language 
(English) to express an error. So, developer uses this textual 
information to search artifacts from the project's artifact 
database to correct it. 

Table 1. Short description of task 245759 from the Mylyn Docs project. 

 TaskId 245759a 
Short 
Description 

cannot run the HtmlViewer or MarkupViewer in a 
stand-alone GUI 

a. Available in https://bugs.eclipse.org/bugs/show_bug.cgi?id=245759. 

The project task history is large since the projects last 
months, but for each performed task is possible to have the 
artifacts that were edited and by whom. Our method uses 
Clustering technique to organize the software project history 
database in clusters using edit interaction information. After, our 
method uses Natural Language Processing technique to identify 
the cluster that best fits the new task using textual information 
[20]. In this section we briefly introduce these two techniques. 

Clustering is a computational technique for organizing data 
objects (elements) into groups (clusters) in order to provide an 
organization to support the human being in understanding 
information. Most similar elements tend to stay in the same 
group, while less similar or non-similar elements tend to stay in 
different groups [21], [22]. Similar groups do not have an 
identification according to the content of the groups, so this 
technique is also known as unsupervised learning. 

The Natural Language Processing (NLP) is formed by a set 
of computational techniques motivated by theory for the 
automatic analysis and representation of human language [20]. 
The techniques and models designed for one language are not 
easily generalized to other languages in most cases [23]. 
According to Cambria and White [20], NLP research began with 
the word analysis paradigm, evolved to the analysis of concepts, 
and it is expected that models can understand narratives in the 
future. 

III. METHOD TO RECOMMEND ARTIFACTS TO NEW TASKS 
The Tacin method recommends a new task context defined 

as: 1- artifacts that will probably be edited by developers to 
perform a new task; 2- performed tasks similar to the new task; 
3- experts in the new task. This paper presents the part of Tacin 
to recommends artifacts to new tasks in software projects. 

In software projects, developers create or change artifacts to 
perform tasks. So, Tacin defines that the similarity weight 
between two tasks is equal to the number of artifacts edited in 
common between them. First, Tacin organizes task history into 
groups of similar tasks by edit interaction. Figure 1 shows the 
task representation of the Mylyn Docs project. Tasks are 
represented by green triangles; artifacts by blue squares; 

interactions by black lines linking tasks to their artifacts. A black 
line can represent one or more edit interactions on artifact. 

The automatic determination of similar groups from a dataset 
is extensively studied in the literature [21]. Tacin uses 
LNS_SMC (Large Neighborhood Search - Software Module 
Clustering) heuristic based on the large neighborhood search 
metaheuristic. The LNS_SMC algorithm was chosen because 
presented a good efficiency using the Modularization Quality 
(MQ) measure applied to the clustering problem of software 
modules [20]. 

Figure 1 illustrates the association of a new task with the 
project task history organized in clusters. Each cluster can be 
seen as a single task where its short description is defined as the 
concatenation of the short descriptions of all tasks belonging to 
the cluster. Thus, the textual similarity between the new task and 
the clusters can be calculated. 

Figure 1 also illustrates the recommendation of artifacts 
with Tacin. The first three groups (clusters) that present the 
greatest textual similarity to the new task are selected for the 
recommendation. Tacin recommends artifacts that belong to the 
group(s) considering three options: 1 - only the group most 
similar textually to the new task; 2 - the two groups most similar 
textually to the new task; 3 - and the three groups most similar 
textually to the new task. Tacin chooses a option accoording 
with the effectiveness of past recommendations. For this, the 
harmonic average between Reduction and Recall (Rc-measure) 
for three options is calculated for each new task, equations 
defined in (1-3). The option that has the highest Rc-measure 
receives 1 point. Then Tacin can recommend artifacts to 
developers using the highest scoring option. If there is a tie, 
Tacin recommends the option of a smaller number of selected 
groups. 
Reduction = 1 -  |Recommended Artifacts| 
                                   |Project Artifacts| (1) 
 

Recall = |Recommended Artifacts Ç Relevant Artifacts| 
                                    |Relevant Artifacts| (2) 
 

Rc-measure = 2 ×(Recall × Reduction) 
                             (Recall + Reduction) (3) 

 
Figure 1. Illustration of the method to recommend artifacts to compose the 

context of a new task in software development project. 



 

IV. ASSESSMENT 
The planning of the study includes objective, case, research 

questions and method according to the guide to conduct and 
report case study in Software Engineering [24]. The objective is 
described in the format indicated by GQM [25]: Analyze the 
Tacin method to recommend artifacts for the purpose of 
evaluating their effectiveness from the perspective of the 
developer in the context of a software development project. 
According to this objective following the RQ1 research 
question: Is the Tacin method effective in recommending 
artifacts at the beginning of a new software development task? 

The effectiveness of Tacin depends on the effectiveness of 
task clustering by edit interaction and the correlation between 
textual similarity and similarity by edit interaction between 
tasks. Then two research sub-questions were defined: RQ1.A: Is 
task clustering by edit interaction effective for recommending 
artifacts? RQ1.B: Is there evidence on the existence of 
correlation between textual similarity and similarity by edit 
interaction among tasks? 

Tacin reduces the number of artifacts available at the 
beginning of a new task, trying not to omit the artifacts that will 
be edited by developers. Equation 1 present Reduction measure. 
Equation 2 show Recall measure. So, Equation 3 combines these 
two measures in a harmonic way. Therefore, the Rc-measure 
metric was chosen to measure the efficacy of the Method. 

The Mylyn Docs project was the case selected to evaluate the 
artifacts recommendation because it has the textual information 
of the tasks and developer interactions on the artifacts. The data 
collected from Mylyn Docs project was generated by the Mylyn, 
Git and Bugzilla tools. The Mylyn plugin logs developer’s 
interactions about artifacts as interaction event with kind=’edit’. 
The parameters for the query were Classification = Mylyn and 
Product = "Mylyn Docs" and Component = EPUB or 
Framework or HtmlText or Wikitext and Status = RESOLVE 
and Resolution = FIXED and Match ALL of the following 
separately→Attachment Description→ contains the string→
mylyn/context/zip. The query was executed in the site 
https://bugs.eclipse.org/bugs/query.cgi at April 05, 2017 and 
returned 334 tasks with 49906 edit interactions performed by 6 
developers over 1538 artifacts. We have identified many 
performed tasks in the Mylyn Docs project that do not have 
Mylyn logging. So, committing actions were collected to infer 
editing actions, usually, a committing action submits edited files 
to code repository. Commits extraction resulted in 918 commits 
performed by 33 developers over 5407 artifacts. 

 The study generated artifact recommendations to new task 
in 20 trials, simulating a new task on each first day of the month 
from 09/01/2008 to 04/01/2010 to evaluate a long time period. 
The artifacts that were associated with tasks up to the date of the 
trial and were also associated with the new task after their 
completion form the set of relevant artifacts of the new task. 
Tacin tries find these relevant artifacts using only edit 
interactions finished before the start of each new task. Each trial 
generates groups of similar tasks by edit interaction. For each 
trial, 30 trials using the LNS_SMC were performed and the 
cluster with the highest MQ was chosen to be used to make 
recommendation. 

Tacin calculates all textual similarities between the new task 
and the calculated clusters. The short description field of the 
new task was used with concatenation of all the short description 
fields of the tasks in each cluster. RapidMiner Studio was used 
to calculate textual similarity. The text processing used the 
functions Replace Tokens, Transform Cases, Tokenize, Filter 
Stopwords, Filter Tokens (by Length) and Stem (Porter). Then 
the texts were represented in vectors using the occurrence of 
terms. Finally, the similarities between the vectors (texts) were 
calculated using the cosine similarity function. 

The evaluation contemplates three options of 
recommendation according to textual similarity among new task 
and tasks clustered by edit interaction. The first option evaluates 
the recommendation of the artifacts to the group that presents 
greater similarity. The second recommends the task artifacts of 
the two groups that present the greatest similarities. Likewise, 
the third one recommends the task artifacts of the first 3 groups. 
These 3 options are rated according to Recall, Reduction and Rc-
measure for each trial. 

A. Results 
The average Recall of the first option was 37%, with 

Reduction equal to 97% and Rc-measure of 41%. The second 
option presented Recall equal to 45%, Reduction of 93% and 
48% of Rc-measure. The third one obtained average Recall of 
52%, Reduction of 90% and 57% of Rc-measure. Accordingly, 
we observed that the third option is the best according to the 
average values of Rc-measure. 

The result of this study shows that clustering of similar tasks 
by interaction (RQ1.A) built at least one cluster that had only 6% 
(94% of Reduction) of the artifacts available in the project, but 
that had 77% of relevant artifacts (Recall) for a new task. The 
conclusion is that the answer is yes to RQ1.A when combined 
LNS_SMC with MQ. In 8 rounds, the first cluster more similar 
textually with the new task also presented the highest Recall. 
However, in 10 trials, the 3 clusters most similar textually to the 
new task did not present maximum Recall, among these, in 4 
trials (20%) there are no correlation between similarity by 
interaction and textual. The conclusion is that the answer is yes 
also for RQ1.B, the study showed that there is evidence of 
correlation between textual similarity and similarity by 
interaction in software development tasks. 

V. RELATED WORK 
Hipikat uses a large number of documents available in the 

project such as source code, documentation, communications 
between developers (e-mail, discussion forums), error reporting 
and test plans. The Hipikat evaluation presented an average 
Recall of 65% [1]. Antunes et al. [8] proposed a recommendation 
system to recommend a list of relevant artifacts. The System 
uses developer interactions in real time and artifact access time 
to list the most relevant artifacts. Then it uses the relations of the 
language structure (Java) and textual associations to order the 
recommended artifacts in a decreasing way of relevance. The 
evaluation showed an average Recall of 42,7%.  

The proposal of Ye et al. [9] lists a classification of relevant 
artifacts (top 10) to correct an error in the software considering 
the information of the project history. The evaluation indicates 



 

that the proposal can recommend relevant artifacts in 70% of the 
recommendations. CodeRAnts is a recommendation method for 
recommending artifacts. This Method is based on the repetition 
of the textual searches performed by the programmers and on the 
metaphor of the ant colony [10]. The evaluation was performed 
in a simulated environment, in this environment CodeRAnts 
obtained an average Recall of 71%. Almhana et al. [11] have 
shown that to recommend relevant artifacts to support the 
developer in the correction of an error can be mitigated as a 
multi-objective problem, maximizing the relevance of the 
recommended artifacts and minimizing the number of 
recommended artifacts. The evaluation showed strong evidence 
that the proposal may recommend lists with relevant artifacts: 
Recall @ 5 = 72%; Recall 10 = 81%; Recall 15 = 87%; Recall 
20 = 94%. 

VI. CONCLUSION 
This paper presents part of Tacin method to recommend 

artifacts to compose the context of new tasks in software 
projects. Tacin makes use of Clustering and Natural Language 
Processing techniques. The clustering of task history in similar 
tasks by interaction presented a Recall of 77%. The next study 
will consider the degree of relevance between artifact and task. 
The textual association of the new task with the similar task 
groups to produce artifacts recommendation with 52% of Recall. 
This study uses only task short description field. The next study 
should consider other text information from task history, e.g., 
comments from developers while performing tasks. In addition, 
other techniques such as dw-cosine [26], an extension of the 
cosine of similarity, and also techniques for small texts with 
grammatical errors need to be evaluated. 
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