
DOI reference number: 10.18293/SEKE2019-100

A Method to Recommend Artifacts to New Tasks in
Software Projects

Edson M. Lucasa,b, Toacy C. Oliveiraa, Paulo S.C. Alencarc
aPESC/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

bPolytechnic Institute (IPRJ/UERJ), Nova Friburgo, Brazil
cDavid Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

edmlucas@cos.ufrj.br, toacy@cos.ufrj.br, palencar@uwaterloo.ca

Abstract— The software development workflow typically involves
developers executing tasks and manipulating artifacts.
When developers receive a new task they typically
envision a task context with the artifacts they intend to
manipulate based on their past experiences. Given
software projects may last several months, accumulating
a vast amount of tasks, artifacts and developers,
envisioning this initial task context may be difficult and
error-prone. Developers have to walk-through months of
past experiences or examine the experience of other
developers, select similar tasks and then define the initial
context. This paper introduces a method that helps
developers defining the initial task context by combining
interaction information over artifacts with text
information of tasks. First, the Method uses the
Clustering technique to organize project tasks into
similar groups by interaction in artifacts. Then, the
Method uses the Natural Language Processing technique
to associate a new task with groups of similar tasks by
interaction. The evaluation shows that the clustering of
similar tasks by interaction produces similar tasks
assigned with artifacts that will be edited by new tasks.
The association of new tasks with similar groups by
interaction indicates correlation between textual
similarity and interaction similarity.

Keywords-component; interaction; task context;
recommendation

I. INTRODUCTION
Software development projects last for months or years,

where developers interact with each other and manipulate many
artifacts. A typical task context in software development is
formed by a set of artifacts that the developer uses to perform a
task [1], [2]. Another widely explored context variable is the
identification of task experts [3], as well as by experts in similar
tasks to the new task [4].

When the developer receives a task to correct an error or add
new functionality to the software, the developer usually starts by
searching for artifacts that he needs to change to accomplish the
task. This search is based on the developer's experience and the
human capacity to remember of the artifacts already used in
previous similar tasks [5]. In addition, the search is time-
consuming, even when using the traditional navigation and

textual search tools available in development environments, e.g.,
Eclipse Project Explorer.

In this scenario, recommending an initial task context can
help developers in performing new tasks. The recommendation
tools in Software Engineering aim to reduce the uncertainties of
the future through the analysis of project history, and in a more
specific way, according to Robillard et al. [6], these tools are
software applications that provides information items estimated
as valuable to a software engineering task in a given context.

Aiming at inferring new task context, some works focus on
the recommendation of artifacts, i.e., source code, files, classes,
packages [1], [7]–[11], others in the recommendation of artifact
experts [12], [13]. Proposals [14], [15] and [16] recommend
experts to new tasks. Malheiros et al. [17] and Ashok et al. [18]
recommend similar tasks to new task, while Wang et al. [4] and
Ashok et al. [18] also recommend experts on similar tasks to new
task.

This paper presents part of the Tacin method (Task Context
based on Interactions) to recommend a new task context in
software development projects. First, we defined that two tasks
are similar by interaction if the developers edited at least one
common artifact while performing the tasks. The weight of
similarity is equal to the number of artifacts in common. After,
the Method uses the Clustering technique to organize project
tasks into similar groups by interaction in artifacts [19]. Then,
the Method uses the Natural Language Processing technique to
associate a new task with groups of similar tasks by interaction
[20]. In this article, the edit interaction values are captured by
Mylyn, an interaction model [28].

In the evaluation, the clustering of similar tasks by
interaction indicated the production of task groups that had only
6% of the artifacts available in the project, but containing 77%
of the artifacts that will be edited by new tasks. The association
of new tasks with similar groups by interaction reduced by 90%
the available artifacts and produced a recall of 52%. Therefore,
the evaluation indicates success in Clustering and need for
improvement in Natural Language Processing technique, i.e.,
improve the recall to a percentage closer to 77%.

This paper is organized as follows. Section II defines
Clustering and Natural Language Processing. Section III
presents the Method to recommend artifacts to new tasks in
software projects. Section IV assesses the Method based on

average hits on recommending artifacts to new tasks. Section VI
reviews related work and Section VI concludes our paper with a
brief description of future work.

II. BACKGROUND
Developers interact with artifacts and collaborate among

them to perfom tasks in software development projects. The
task objective is generally expressed by text. For example, the
Mylyn Docs project uses a short description in natural language
(English) to express an error. So, developer uses this textual
information to search artifacts from the project's artifact
database to correct it.

Table 1. Short description of task 245759 from the Mylyn Docs project.

 TaskId 245759a
Short
Description

cannot run the HtmlViewer or MarkupViewer in a
stand-alone GUI

a. Available in https://bugs.eclipse.org/bugs/show_bug.cgi?id=245759.

The project task history is large since the projects last
months, but for each performed task is possible to have the
artifacts that were edited and by whom. Our method uses
Clustering technique to organize the software project history
database in clusters using edit interaction information. After, our
method uses Natural Language Processing technique to identify
the cluster that best fits the new task using textual information
[20]. In this section we briefly introduce these two techniques.

Clustering is a computational technique for organizing data
objects (elements) into groups (clusters) in order to provide an
organization to support the human being in understanding
information. Most similar elements tend to stay in the same
group, while less similar or non-similar elements tend to stay in
different groups [21], [22]. Similar groups do not have an
identification according to the content of the groups, so this
technique is also known as unsupervised learning.

The Natural Language Processing (NLP) is formed by a set
of computational techniques motivated by theory for the
automatic analysis and representation of human language [20].
The techniques and models designed for one language are not
easily generalized to other languages in most cases [23].
According to Cambria and White [20], NLP research began with
the word analysis paradigm, evolved to the analysis of concepts,
and it is expected that models can understand narratives in the
future.

III. METHOD TO RECOMMEND ARTIFACTS TO NEW TASKS
The Tacin method recommends a new task context defined

as: 1- artifacts that will probably be edited by developers to
perform a new task; 2- performed tasks similar to the new task;
3- experts in the new task. This paper presents the part of Tacin
to recommends artifacts to new tasks in software projects.

In software projects, developers create or change artifacts to
perform tasks. So, Tacin defines that the similarity weight
between two tasks is equal to the number of artifacts edited in
common between them. First, Tacin organizes task history into
groups of similar tasks by edit interaction. Figure 1 shows the
task representation of the Mylyn Docs project. Tasks are
represented by green triangles; artifacts by blue squares;

interactions by black lines linking tasks to their artifacts. A black
line can represent one or more edit interactions on artifact.

The automatic determination of similar groups from a dataset
is extensively studied in the literature [21]. Tacin uses
LNS_SMC (Large Neighborhood Search - Software Module
Clustering) heuristic based on the large neighborhood search
metaheuristic. The LNS_SMC algorithm was chosen because
presented a good efficiency using the Modularization Quality
(MQ) measure applied to the clustering problem of software
modules [20].

Figure 1 illustrates the association of a new task with the
project task history organized in clusters. Each cluster can be
seen as a single task where its short description is defined as the
concatenation of the short descriptions of all tasks belonging to
the cluster. Thus, the textual similarity between the new task and
the clusters can be calculated.

Figure 1 also illustrates the recommendation of artifacts
with Tacin. The first three groups (clusters) that present the
greatest textual similarity to the new task are selected for the
recommendation. Tacin recommends artifacts that belong to the
group(s) considering three options: 1 - only the group most
similar textually to the new task; 2 - the two groups most similar
textually to the new task; 3 - and the three groups most similar
textually to the new task. Tacin chooses a option accoording
with the effectiveness of past recommendations. For this, the
harmonic average between Reduction and Recall (Rc-measure)
for three options is calculated for each new task, equations
defined in (1-3). The option that has the highest Rc-measure
receives 1 point. Then Tacin can recommend artifacts to
developers using the highest scoring option. If there is a tie,
Tacin recommends the option of a smaller number of selected
groups.
Reduction = 1 - |Recommended Artifacts|
 |Project Artifacts| (1)

Recall = |Recommended Artifacts Ç Relevant Artifacts|
 |Relevant Artifacts| (2)

Rc-measure = 2 ×(Recall × Reduction)
 (Recall + Reduction) (3)

Figure 1. Illustration of the method to recommend artifacts to compose the

context of a new task in software development project.

IV. ASSESSMENT
The planning of the study includes objective, case, research

questions and method according to the guide to conduct and
report case study in Software Engineering [24]. The objective is
described in the format indicated by GQM [25]: Analyze the
Tacin method to recommend artifacts for the purpose of
evaluating their effectiveness from the perspective of the
developer in the context of a software development project.
According to this objective following the RQ1 research
question: Is the Tacin method effective in recommending
artifacts at the beginning of a new software development task?

The effectiveness of Tacin depends on the effectiveness of
task clustering by edit interaction and the correlation between
textual similarity and similarity by edit interaction between
tasks. Then two research sub-questions were defined: RQ1.A: Is
task clustering by edit interaction effective for recommending
artifacts? RQ1.B: Is there evidence on the existence of
correlation between textual similarity and similarity by edit
interaction among tasks?

Tacin reduces the number of artifacts available at the
beginning of a new task, trying not to omit the artifacts that will
be edited by developers. Equation 1 present Reduction measure.
Equation 2 show Recall measure. So, Equation 3 combines these
two measures in a harmonic way. Therefore, the Rc-measure
metric was chosen to measure the efficacy of the Method.

The Mylyn Docs project was the case selected to evaluate the
artifacts recommendation because it has the textual information
of the tasks and developer interactions on the artifacts. The data
collected from Mylyn Docs project was generated by the Mylyn,
Git and Bugzilla tools. The Mylyn plugin logs developer’s
interactions about artifacts as interaction event with kind=’edit’.
The parameters for the query were Classification = Mylyn and
Product = "Mylyn Docs" and Component = EPUB or
Framework or HtmlText or Wikitext and Status = RESOLVE
and Resolution = FIXED and Match ALL of the following
separately→Attachment Description→ contains the string→
mylyn/context/zip. The query was executed in the site
https://bugs.eclipse.org/bugs/query.cgi at April 05, 2017 and
returned 334 tasks with 49906 edit interactions performed by 6
developers over 1538 artifacts. We have identified many
performed tasks in the Mylyn Docs project that do not have
Mylyn logging. So, committing actions were collected to infer
editing actions, usually, a committing action submits edited files
to code repository. Commits extraction resulted in 918 commits
performed by 33 developers over 5407 artifacts.

 The study generated artifact recommendations to new task
in 20 trials, simulating a new task on each first day of the month
from 09/01/2008 to 04/01/2010 to evaluate a long time period.
The artifacts that were associated with tasks up to the date of the
trial and were also associated with the new task after their
completion form the set of relevant artifacts of the new task.
Tacin tries find these relevant artifacts using only edit
interactions finished before the start of each new task. Each trial
generates groups of similar tasks by edit interaction. For each
trial, 30 trials using the LNS_SMC were performed and the
cluster with the highest MQ was chosen to be used to make
recommendation.

Tacin calculates all textual similarities between the new task
and the calculated clusters. The short description field of the
new task was used with concatenation of all the short description
fields of the tasks in each cluster. RapidMiner Studio was used
to calculate textual similarity. The text processing used the
functions Replace Tokens, Transform Cases, Tokenize, Filter
Stopwords, Filter Tokens (by Length) and Stem (Porter). Then
the texts were represented in vectors using the occurrence of
terms. Finally, the similarities between the vectors (texts) were
calculated using the cosine similarity function.

The evaluation contemplates three options of
recommendation according to textual similarity among new task
and tasks clustered by edit interaction. The first option evaluates
the recommendation of the artifacts to the group that presents
greater similarity. The second recommends the task artifacts of
the two groups that present the greatest similarities. Likewise,
the third one recommends the task artifacts of the first 3 groups.
These 3 options are rated according to Recall, Reduction and Rc-
measure for each trial.

A. Results
The average Recall of the first option was 37%, with

Reduction equal to 97% and Rc-measure of 41%. The second
option presented Recall equal to 45%, Reduction of 93% and
48% of Rc-measure. The third one obtained average Recall of
52%, Reduction of 90% and 57% of Rc-measure. Accordingly,
we observed that the third option is the best according to the
average values of Rc-measure.

The result of this study shows that clustering of similar tasks
by interaction (RQ1.A) built at least one cluster that had only 6%
(94% of Reduction) of the artifacts available in the project, but
that had 77% of relevant artifacts (Recall) for a new task. The
conclusion is that the answer is yes to RQ1.A when combined
LNS_SMC with MQ. In 8 rounds, the first cluster more similar
textually with the new task also presented the highest Recall.
However, in 10 trials, the 3 clusters most similar textually to the
new task did not present maximum Recall, among these, in 4
trials (20%) there are no correlation between similarity by
interaction and textual. The conclusion is that the answer is yes
also for RQ1.B, the study showed that there is evidence of
correlation between textual similarity and similarity by
interaction in software development tasks.

V. RELATED WORK
Hipikat uses a large number of documents available in the

project such as source code, documentation, communications
between developers (e-mail, discussion forums), error reporting
and test plans. The Hipikat evaluation presented an average
Recall of 65% [1]. Antunes et al. [8] proposed a recommendation
system to recommend a list of relevant artifacts. The System
uses developer interactions in real time and artifact access time
to list the most relevant artifacts. Then it uses the relations of the
language structure (Java) and textual associations to order the
recommended artifacts in a decreasing way of relevance. The
evaluation showed an average Recall of 42,7%.

The proposal of Ye et al. [9] lists a classification of relevant
artifacts (top 10) to correct an error in the software considering
the information of the project history. The evaluation indicates

that the proposal can recommend relevant artifacts in 70% of the
recommendations. CodeRAnts is a recommendation method for
recommending artifacts. This Method is based on the repetition
of the textual searches performed by the programmers and on the
metaphor of the ant colony [10]. The evaluation was performed
in a simulated environment, in this environment CodeRAnts
obtained an average Recall of 71%. Almhana et al. [11] have
shown that to recommend relevant artifacts to support the
developer in the correction of an error can be mitigated as a
multi-objective problem, maximizing the relevance of the
recommended artifacts and minimizing the number of
recommended artifacts. The evaluation showed strong evidence
that the proposal may recommend lists with relevant artifacts:
Recall @ 5 = 72%; Recall 10 = 81%; Recall 15 = 87%; Recall
20 = 94%.

VI. CONCLUSION
This paper presents part of Tacin method to recommend

artifacts to compose the context of new tasks in software
projects. Tacin makes use of Clustering and Natural Language
Processing techniques. The clustering of task history in similar
tasks by interaction presented a Recall of 77%. The next study
will consider the degree of relevance between artifact and task.
The textual association of the new task with the similar task
groups to produce artifacts recommendation with 52% of Recall.
This study uses only task short description field. The next study
should consider other text information from task history, e.g.,
comments from developers while performing tasks. In addition,
other techniques such as dw-cosine [26], an extension of the
cosine of similarity, and also techniques for small texts with
grammatical errors need to be evaluated.

ACKNOWLEDGMENT
This work was partially supported by the Brazilian funding

agencies CAPES and CNPq and Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERENCES
[1] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: a

project memory for software development,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 446–465, Jun. 2005.

[2] M. Kersten, “Focusing knowledge work with task context,” University
of British Columbia, 2007.

[3] D. W. McDonald and M. S. Ackerman, “Expertise Recommender: A
Flexible Recommendation System and Architecture,” in Proceedings of
the 2000 ACM Conference on Computer Supported Cooperative Work,
New York, NY, USA, 2000, pp. 231–240.

[4] Z. Wang, H. Sun, Y. Fu, and L. Ye, “Recommending crowdsourced
software developers in consideration of skill improvement,” presented
at the ASE 2017 - Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, 2017, pp. 717–722.

[5] I. Roediger Henry L., “Relativity of Remembering: Why the Laws of
Memory Vanished,” Annu. Rev. Psychol., vol. 59, no. 1, pp. 225–254,
Dec. 2007.

[6] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann, Eds.,
Recommendation Systems in Software Engineering. Berlin Heidelberg:
Springer-Verlag, 2014.

[7] M. Andric, W. Hall, and L. Carr, “Assisting artifact retrieval in software
engineering projects,” presented at the Proceedings of the 2004 ACM
Symposium on Document Engineering, 2004, pp. 48–50.

[8] B. Antunes, J. Cordeiro, and P. Gomes, “An Approach to Context-based
Recommendation in Software Development,” in Proceedings of the

Sixth ACM Conference on Recommender Systems, New York, NY,
USA, 2012, pp. 171–178.

[9] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for bug
reports using domain knowledge,” presented at the Proceedings of the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 2014, vol. 16-21-November-2014, pp. 689–699.

[10] I. Caicedo-Castro and H. Duarte-Amaya, “CodeRAnts : A
recommendation method based on collaborative searching and ant
colonies , applied to reusing of open source code,” 2015.

[11] R. Almhana, W. Mkaouer, M. Kessentini, and A. Ouni,
“Recommending relevant classes for bug reports using multi-objective
search,” presented at the ASE 2016 - Proceedings of the 31st
IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 286–295.

[12] A. Moraes, E. Silva, C. da Trindade, Y. Barbosa, and S. Meira,
“Recommending Experts Using Communication History,” in
Proceedings of the 2Nd International Workshop on Recommendation
Systems for Software Engineering, New York, NY, USA, 2010, pp. 41–
45.

[13] T. Fritz, G. C. Murphy, E. Murphy-Hill, J. Ou, and E. Hill, “Degree-of-
knowledge: Modeling a developer’s knowledge of code,” ACM
Transactions on Software Engineering and Methodology, vol. 23, no.
2, 2014.

[14] X. Xie, W. Zhang, Y. Yang, and Q. Wang, “DRETOM: Developer
Recommendation Based on Topic Models for Bug Resolution,” in
Proceedings of the 8th International Conference on Predictive Models
in Software Engineering, New York, NY, USA, 2012, pp. 19–28.

[15] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer
recommendation for bug resolution,” presented at the Proceedings -
Working Conference on Reverse Engineering, WCRE, 2013, pp. 72–
81.

[16] J. Zhu, B. Shen, and F. Hu, “A learning to rank framework for developer
recommendation in software crowdsourcing,” presented at the
Proceedings - Asia-Pacific Software Engineering Conference, APSEC,
2016, vol. 2016-May, pp. 285–292.

[17] Y. Malheiros, A. Moraes, C. Trindade, and S. Meira, “A Source Code
Recommender System to Support Newcomers,” in 2012 IEEE 36th
Annual Computer Software and Applications Conference, 2012, pp. 19–
24.

[18] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V.
Vangala, “DebugAdvisor: A recommender system for debugging,”
presented at the ESEC-FSE’09 - Proceedings of the Joint 12th European
Software Engineering Conference and 17th ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 2009, pp.
373–382.

[19] M. C. Monçores, A. C. F. Alvim, and M. O. Barros, “Large
Neighborhood Search applied to the Software Module Clustering
problem,” Computers & Operations Research, vol. 91, pp. 92–111,
Mar. 2018.

[20] E. Cambria and B. White, “Jumping NLP Curves: A Review of Natural
Language Processing Research [Review Article],” IEEE
Computational Intelligence Magazine, vol. 9, no. 2, pp. 48–57, May
2014.

[21] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999.

[22] J. Han, M. Kamber, and J. Pei, “10 - Cluster Analysis: Basic Concepts
and Methods,” in Data Mining (Third Edition), Third Edition., J. Han,
M. Kamber, and J. Pei, Eds. Boston: Morgan Kaufmann, 2012, pp. 443–
495.

[23] R. Levy and C. Manning, “Is It Harder to Parse Chinese, or the Chinese
Treebank?,” in Proceedings of the 41st Annual Meeting on Association
for Computational Linguistics - Volume 1, Stroudsburg, PA, USA,
2003, pp. 439–446.

[24] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, p. 131, Dec. 2008.

[25] V. R. Basili, “Software Modeling and Measurement: The
Goal/Question/Metric Paradigm,” University of Maryland at College
Park, College Park, MD, USA, 1992.

[26] B. Li and L. Han, “Distance Weighted Cosine Similarity Measure for
Text Classification,” in Intelligent Data Engineering and Automated
Learning – IDEAL 2013, 2013, pp. 611–618.

