
 An evolutionary model for dynamic and adaptative

service composition in distributed environment

Jiawei Lu, Huan Zhou, Jun Xu, Gang Xiao
School of Computer Science and Technology

Zhejiang University of Technology, Hangzhou, China
Email: {viivan, zhouhuan, xujun, xg}@zjut.edu.cn

Haibo Pan
Whzhen avenue Technology Co., Ltd

Hangzhou, China
Email: 345383630@qq.com

Abstract—Service composition is an important mean for
integrating the individual Web services to create new value-
added systems that satisfy complex requirements. Therefore,
how to effectively analyze different types of services and find out
the matching similarity between services to efficiently substitute
failed services in a distributed and dynamic environment
becomes crucial to service composition. In this paper, we
propose a novel approach based on a data cell evolution model
(DCEM) to support the dynamic adaptation of service
compositions. The model combines data service information and
biological cell behavior analysis to encapsulate data services into
data cells. In order to reach optimum adaptations, we analyzed
the static and dynamic structure of data cells based on bigraph
theory to guarantee the consistency of service evolution. To
evaluate the proposed approach, a series of simulation
experiments and comparisons are conducted to demonstrate the
effectiveness of service composition.

Keywords- Service Composition; Data Service; Bigraph; Data
Cell; Service Evolution.

I. INTRODUCTION

Data as a Service (DaaS) is a new cloud computing service
model that provides consumers on demand with data through
different protocols on the Internet in a timely and low cost
manner. However, as the function of a single Web service is
simple and limited, it is difficult to meet the various
requirements in a complex network environment. How to
effectively model evolution of service composition and
analyze its service behavior has become an issue that existing
research must deal with.

Due to Web service with multi-source, heterogeneous,
autonomous and dynamic characteristics, the evolution of
service composition is different from traditional software
evolution and faces more serious challenges. Many scholars
have researched in this field through formal methods [1],
semantic [2] or combinatorial models [3]. However, the above
studies mainly focus on abstract behaviors and semantic
analysis of services in specific field, without considering the
dynamic contexts. Consequently, they easily lead to
performance degradation and composition failure when the
environment changes.

Biological cell is a precise structural, functional, and
evolutionary unit, which structure can change dynamically
with the environment during growth, differentiation and

physiological process. Comparing the dynamic behavior of
service composition with biological cell, they have similarities
in some aspects. It is possible to combine data service with
biological cell to analyze the evolution of service composition
[4,5].

In this paper, we encapsulate data services into data cells
and analyze the dynamic behavior at the cell level. The data
cell, like biological cell has a strong hierarchical structure.
Thus, a formal method is needed to effectively explain the
static and dynamic information of data cells and reflect the
important characteristics such as functions and location
interconnectivity of services. Bigraph [6] is a graphical
formalization theory tool. It has more extensive applications
in formal modeling and consistent evolutionary analysis [7].

In order to reason about the evolution of service
composition better, we propose a data cell evolution model
(DCEM) to increase the flexibility of service in Web system.
The main contributions of this paper can be summarized as
follows:

 We use bigraph theory to encapsulate data services
into data cells, and construct evolution model for data
cell to describe different information of service such
as service name, service quality, service context, and
so on.

 Because the composition processes may be canceled,
or services may be moved or withdrawn, it is
necessary to recombine it to provide a more powerful
service, so that the service dynamic behavior based on
bigraphical reactive system is analyzed. Meanwhile,
we propose a self-healing algorithm which is used to
dynamically adjust available service to substitute the
failed ones.

II. DATA CELL MODELING BASED ON BIGRAPH THEORY

A. The Bigraph Theory

Bigraph is proposed by Milner and other scholars in 2001
to emphasize the location and connection of computing
(physical or virtual) [6]. Bigraph is a 2-tuple B = <BP, BL>.
BP is the place graph and BL is the link graph. The place graph
is used to represent the location of nodes, which are nested
with each other in bigraph. The link graph ignores the nested
relationship and only indicates the connection between nodes.
Fig. 1 shows a bigraphical structure.

DOI reference number: 10.18293/SEKE2019-120

Fig. 1. Elements of bigraph

B. Data Cell Modeling

Based on the bigraph theory, we constructed DCEM that
maps the structures and message interaction of services to
bigraphs, so as to formalize the services and their
compositions by process calculus. DCEM mainly consists of
two layers: data cell and data cell cluster. The form is defined
as follows:

Definition 1 (Data Cell). A bigraph definition of data cell is
a 5-tuple DC=<S, E, Ctrl, CP, CL>: <m, X>→ <n, Y>, where:

 S is a limited set of services in a data cell, ∀s∈S is
called a data service;

 E is a set of finite edges, ∀e∈ E is called a
connecting edge;

 Ctrl: S→C is a mapping relation between services
and service controls;

 CP is the place graph to represent the location of
services and CL is the link graph to represents service
dependencies;

 The inner interface <m, X> indicates that the
bigraph has m sites and a set of inner names X. The
outer interface <n, Y> indicates that the bigraph has
n regions and a set of outer names Y.

Definition 2 (Service Control). A service control is a 5-tuple
C=<CN, CT, P, CL, U>, where:

 CN is a control name of service. CT is used to
specify the type of this service, whether atomic or
composite;

 P is a limited set of ports, which describes the inputs
and outputs of service, ∀p∈P is called a service
port;

 CL=<DL, CN> is the dependency status of current
service, including DL which is the dependent level
with CN from other service;

 U is a probability value which represent the service
reliability.

Definition 3 (Bigraphical Reactive System). A bigraphical
reactive system for data cell is a 3-tuple BS=<BC, R, BC′>:
BC→BC′, where:

 BC is the reactants and BC′ is the products, which
are corresponding to data cells with the bigraphical
structures;

 R is a set of reaction rules and specifies the reaction
process from BC to BC′.

As examples depicted in Fig. 2, the bigraph definition of
data cell aims to represent the structural relationship and data
characteristics in services. The core element correspondence
between data cell and bigraphical structure is also shown in
Table I.

TABLE I. DATA CELL STRUCTURE DEFINITION

Element in data cell Element in bigraph The example

DC Root 0, 1…

m Site 1 , 2 …

S Node s1, s2, s3…

CL Edge e0, e1, e2

C Node control C1, C2, C3…

pC Node Ports

0 1

y

x

s1:C1

s2:C2

s3:C31
1

e1

Fig. 2. Bigraph form of data cells

In practice, in order to meet the increasingly complicated
requirements of users, it is necessary to select appropriate
services from the network and combine them according to
certain business rules to construct a scalable, loosely coupled
combination. The data cell cluster is based on four kinds of
structures (sequence, conditional, parallel, and loop) in
service composition and combines a plurality of data cells
with bigraph operations. The relevant forms of data cell
cluster proposed in this paper are as follows:
Definition 4 (Data Cell Cluster). A bigraph definition of data
cell cluster is a 3-tuple DCC=<DCS, CS, LinkS>, where:

 DCS is a limited set of data cells;
 CS is a limited set of composite structures in data

cells;
 LinkS is a limited set of link ports in the cluster,

∀Link∈LinkS is called a connection between two
ports.

The term language [13] is the basis for the formal
specification and verification of dynamic evolution in
bigraph. Fig. 3 shows the structure of DCC based on different
workflows. Taking the parallel structure (Case 3) as an
example, the cluster has three data cells DC0, DC1, and DC2.
The place graph indicates the positional relationship of
services and other information (e.g., the number and
distributivity of the cells). The link graph shows the
dependency relationship of the services.

To adapt the dynamic environments to complex
requirements, the data interaction between cells is constantly
changing, forming new cell clusters or modifying the original
cell cluster structure. Ensuring the structural integrity of data
cells during this interactive process, while increasing the
effectiveness of service composition, requires serious
consideration. A checking technique for verifying the data
flow of the process model and re-adjusting the model

according to the feedback has been proposed [14]. However,
this process model has a large detection granularity and may
easily detect distortion. We present the bigraph matching
algorithm (Algorithm 1) to evolve data cells according to a
bigraphical reactive system (see definition 3). During
matching, the constraints of R in the bigraph are dynamically
determined by the context and requirements. A reaction rule
in R specifies the reaction process, and can take any number
of parameters. Finally, a new bigraph is generated when the
data cells match successfully.

The algorithm contains two phases and takes into account
time, QoS, and service context information constraints. In the
first phase, we take an initial bigraph BC and a set of reaction
rules R. For each reaction rule r in R, the method isMatch(BC,r)
is called to determine whether the elements in the bigraph can
be matched. In the second phase, if r is matched and the
constraint is satisfied, the matching part in the bigraph will be
replaced by products in r. isMatch(BC,r) is a recursive method
that is iteratively executed until the last node in the bigraph
has been checked.

Algorithm1 BigraphMatch

Input: bigraph BC(an initial bigraph), a set of reaction rules R
Output: a new bigraph BC′

1: if R == Null then
2: return BC
3: else
4: for each reaction rule r in R do
5: flag = isMatch(BC, r)
6: if(flag == TRUE&&timeConstraints == true) then

// If the match is successful and satisfies the time constraint, the
reaction proceeded

7: BC′ = BC′∪{BC|the matching part in BC with reaction in r}
8: end if
9: end for

10: return BC′
11: end if
Procedure isMatch(BC, r)
Input: bigraph BC, term r in R
Output: a flag to indicate whether the match is found

1: for each service s in BC do
2: if(r contains s) then
3: if(s.C.CN != r.C.CN || s.C.CT != r.C.CT || s.C.P != r.C.P) then

// Service control matching
4: continue
5: else
6: for each port p in C do // Service port matching
7: if(s.p.pI != r.p.pI || s.p.pN != r.p.pN || s.p.pT != r.p.pT ||

s.p.pC != r.p.pC) then
8: continue
9: else

10: return True
11: end if
12: end for
13: end if
14: else
15: continue
16: end if
17: end for
18: return False

III. EVOLUTIONARY ANALYSIS OF SERVICE DYNAMIC

BEHAVIOR
In actual use, service composition may face situations such

as service failure and service composition disorder. These
cause data cell variation, thus losing the original functional
properties and structural stability.

Fig. 3. The basic structures of data cell cluster

In our work, DCEM periodically tests the service
availability through a data cell self-healing algorithm
(Algorithm 2), allowing the structural variation of the cells to
be fixed. This enables the service composition to restore the
expected functions, and ultimately achieves the effect of self-
repair to improve the service adaptability. The basic process
of Algorithm 2 is as follows:

Algorithm2 Data Cell Self-Healing

Input: bigraph BC(an initial bigraph)
Output: a new bigraph BC′

1: for each service s in BC do
2: flag = isInvalid(s) //indicate whether the services is invalid
3: if (flag == true) then
4: a broken bigraph BC* = BigraphReplace(BC, s)
 //Choose the most reliable service MDCC
5: MDCC = Max(CR(DCC))
6: generate new reaction rules R = createR(s, MDCC)
 // use algorithm 1 to ensure the structural integrity of DC
7: BC′ = BigraphMatch(BC*, R)
8: end if
9: end for

─ Call method isInvalid(s) at a specified time interval to
check whether the service in data cell is fail.

─ If the service fails then use Algorithm 3 to adjust the
bigraphical structure, such as delete nodes and control
belong to the failed service. Otherwise adjust the time
interval to continue testing.

─ Select the most reliable service from the similar service
clustering to replace the fail one. There are many
clustering algorithms; we mainly use the tag clustering
algorithm in reference [15] and execute the aggregation
process to construct the similar service clustering. Then
the chosen service is considered as a reaction in rules R.

─ Based on the previous steps and the bigraphical reactive
system, generate the appropriate reaction rules R, and call
Algorithm 1 to verify the rationality of reaction. Finally, a
new bigraph is generated with a new reliable composition.

When service is detected as failed, Algorithm 3 needs to
find out the failed service in the data cell. For given
bigraphical information and a failed service s, we traverse
each node in bigraph. If there is a surjection relationship

between the node and s, the corresponding structure is deleted
and a broken bigraph is given. The specific algorithm is
described as follows:

Algorithm3 BigraphReplace

Input: bigraph BC(an initial bigraph), s(a failed service)
Output: a broken bigraph BC*

1: for each service s′ in BC do
 //Indicate whether the service is match
2: flag = node_conMatch(s′, s)
3: if (flag == true) then
 //Delete structures belong to s′
4: BC* = deleteBigraph(BC, s′)
5: if (s′.C.CL.DL != single) then
 // Delete dependency belong to s′
6: BC* = deleteDependent(BC*, s′)
7: end if
8: end if
9: end for

IV. CASE STUDIES AND VERIFICATION

To illustrate the effectiveness of DCEM in service
composition, we introduce a composite service that supports
online book shopping at Orange Country Bookstore (OCB)
[16] (depicted in Fig. 4).

Fig. 4. Composite service for online book shopping

The business process in OCB includes (1) Look for books,
including Search Book, Show Book Info, Show Related Titles,
which are all part of the Barnes & Noble Books composite
service. (2) Add books to shopping cart in a loop, e.g., Barnes
& Noble Shopping Cart. (3) Authentication and payment at
checkout, such as Google Authentication or Payment
Calculator. (4) Email and invoice service, such as invalid
Card, UPS Shipping Web, and E-mail Invoice.

The service composition created by this instance may
change the contextual events during the actual operation,
resulting in service failure. In addition, the system
requirements state that the service composition must maintain
a main workflow after the evolutionary adjustment (for
example, always ensuring that books are first searched and
then added to the cart).

Here, we fully consider the evolution possibility of each
service by analyzing its context. First, we construct the data
cells based on the different business processes, as listed in

Table II, and then further evolve the data cells into cell
clusters according to functional attributes and requirements.
Table III lists the data cell clusters related to the main
workflow of the shopping cart, searching for books, and
payment in the OCB website.

When Barnes & Noble Books is unavailable, causing the
functionality of s4 to go missing (see Fig. 5), the system
detects the failed service and traverses the data cell cluster
according to Algorithm 3 to alter the structure. It then finds
the substitute service Amazon Books (DCCAB) from the
similar service clustering via Algorithm 2 to repair the
structure.

TABLE II. DATA CELL MODELING

TABLE III. DATA CELL CLUSTER MODELING

Data Services Data Cell Clusters Term Language

Barnes & Noble
Books Shopping Cart

Amazon Books

Credit Card Payment

shopping

/e1./e2./e3./e4./e5. (s4e2e4e5

(s1e1e2|s2e1e3|s3e2e4)||s5e5)

/e1./e2.(s10e1|s11e1e2||s12e2y)

/e1./e2.(s7e1e2z||s8e1|s9e2)

DCCBNBSC

0

S1

1
S5

e4

e5

0 S10 1

S11

S12

e1

e2

y

DCCAB

0

S7

1
S8

S9

e2

e1

DCCCCPS

z

S4 S2

S3

e1 e2

e3

1

0

S4

S5

1

S6

2 3

S8

S9S7

e5

e6 e7

e8

e9

S1

S2

S3

e1

e2

e3

e4

Fig. 5. Data cell cluster on OCB when Barnes & Noble Books has failed

0

S4

S10

S11

S12

0

S4

0

S10

S11

S12

0 1

1

y

1

y

S5

1

S6

2 3

S8

S9S7

S5

1

S6

2 3

S8

S9S7

2

e5

e6
e7

e8

e9

e11

e12

e13

e5

e6
e7

e8

e9

EO5

DCCGE DCCAB DCCGS

e11

e12

Fig. 6. Self-healing process in data cell cluster with Amazon Books

Finally, as shown in Fig. 6, DCCAB is absorbed by the data
cell cluster, retaining an unchanged workflow order such as a
looping structure with Book Searching, Book Description,
Related Titles, and Shopping Cart. s10, s11, and s12 are added
in the site of s4. After that, the output port of s12 is connected
to the input port of s4 by e13. Tables IV summarize the term
language operational sets as EO1 to formalize this process of
evolution.

TABLE IV. TERM LANGUAGE OPERATIONAL SET FROM EO1

DC EO1

DCC
GE

ELrule: /�. → /���.
Site: -0 → ������

|���������
|���������

x/y: �/� → Φ
∏ DC� ��(�)

�
��� : (�����(-�)|-�|�/�||������

||������
|��������

||����
|����

)

→(�������
(������

|���������
|���������

)|-�||

������
|-�||������

|��������
||����

|����
)

DCC
AB

ELrule: /�. → /���.
U||V: ������

|���������
||������� → �������

(������
|���������

|���������
)

These actions express how to reorganize elements in the
composition model to re-select suitable data cells from the
same cluster when the Barnes & Noble Books composite
service fails. The failed units are replaced by Amazon Books
and Related Titles (according to the business process from
Fig. 4).

The self-healing process in Fig. 6 is formalized by the
following term language:
/��./��./��./��./��./�. (�����(-�)|-�|�/�||������

||������
|��������

||����
|����

)

→ /���./���./���./��./��./��./��./
��. (�������

(������
|���������

|���������
)|-�||������

|-�||������
|��������

||����
|����

)

V. EXPERIMENT ANALYSIS

To illustrate the effectiveness of the algorithm described in
this paper, we conducted a series of experiments in different
settings. The PC configuration was as follows: Intel Core i5-
8250U CPU (1.6 GHz), Windows 8 and 6 GB RAM. We used
all 12 of the atomic services discussed in Section 4. We then
extracted their parameters and used them as a seed to
randomly generate an extended dataset with 500-2000 ser-
vices. Each service contained basic information such as the
service name, input, output, and success probability. The
experiments compared three kinds of algorithm: (1) The
algorithm (DPSRM) based on the Dynamic Software Product
Line approach [17]; (2) The algorithm (IASRM) based on the
process ontology and multiple recovery [18]; (3) The data cell
self-healing algorithm (DCSRM) proposed in this paper. In
addition, we randomly set the effective service that failed as
a variant v during the composition, which automatically
triggers the service substitution. To ensure unbiased
statistical results, all algorithms were executed independently
20 times.

Fig. 7a presents the results obtained using only DCSRM.
The service number varies from 100 to 500 and the number
of variants increases gradually from 1 to 8. We found that
when the number of variants is small, an increase in the
service number produces a steady increase in the reliability.
However, as the number of variants increases, the reliability
becomes relatively low, especially when the number of
services is small. This is because there are fewer similar

services in the small service set, resulting in no suitable
service being found when the number of variants grows. Fig.
7b shows results for v = 9 and the service number varying
from 100 to 2000. Initially, IASRM gives the highest
reliability, but this obviously decreases as the number of
services increases. Furthermore, DCSRM always
outperforms DPSRM.

(a) (b)
Fig. 7. Comparison of reliability with different variants and services

From Fig. 8, we can see that the response time grows with
the number of services and variants. Moreover, no matter
how v is allocated, DCSRM performs much better and faster
than IASRM and DPSRM. Thus, the experimental results
illustrate that our algorithm significantly improves reliability
and reduces the time cost of service composition.

Fig. 8. Comparison of response time with different variants and services

VI. RELATED WORK

A. Bigraphs and their application

Bigraphs were proposed by Milner and other scholars in
2001 to emphasize the location and connection of computing
units (physical or virtual) [6], and has now become the tool of
choice for many service-adaptive and software-reconfigurable
systems because of its complete formal theory and dynamic
mobility. For example, Lian et al. [7] simulated modeling
using a bigraphical reactive system to analyze the mobile
cloud. Calder et al. [8] proposed a model based on checking
predicates from user-initiated and network events by
extension to a bigraphical reactive system

B. Evolution of service composition

Ensuring the rationality of business process structures after
evolution is an important problem in the composition of
services. If the evolution operation is not implemented
properly, it may cause problems such as a logical deadlock or
component service unreachability [20]. This section analyzes
the evolution of service composition in terms of the rationality
of service evolution operations and the current solutions for
failure recovery.

1) Rationality of service evolution operations

1 2 3 4 5 6 7 8
0

20

40

60

80

100

R
e

lia
b
ili

ty
 (

%
)

number of v

 Services 100
 Services 300
 Services 500

0 200 400 600 800 1000 1200 1400 1600 1800 2000
40

50

60

70

80

90

100

R
e

lia
b

ili
ty

 (
%

)

number of services

 DPSRM
 IASRM
 DCSRM

0 200 400 600 800 1000 1200 1400 1600 1800 2000

500

1000

1500

2000

2500

3000

3500

R
e

sp
o

n
se

 T
im

e
 (

m
s)

number of service(v=1)

 DPSRM
 IASRM
 DCSRM

0 200 400 600 800 1000 1200 1400 1600 1800 2000

500

1000

1500

2000

2500

3000

3500

R
e

sp
o

n
se

 T
im

e
 (

m
s)

number of service(v=3)

 DPSRM
 IASRM
 DCSRM

The rationality of the service composition process and the
correctness of the data flow are usually guaranteed by defining
the evolution criterion in the operation process, thereby
avoiding complex verification processes after evolution. To
ensure the rationality of the service composition process, Zeng
et al. [9] proposed a set of basic evolutionary operations for
adjusting the service workflow structure based on workflow
network modeling, which guarantees the rationality of the
internal process logic during the business process. Urbieta et
al. [3] propose an adaptive service composition framework
that supports the dynamic reasoning of user requests and
service behaviors in the smart city. Khanfir et al. [2] propose
a framework for automatic generation and publishing of
service descriptions by using OWL-S semantic annotations,
the purpose of it is to analyze the process modeling and the
choreography of service composite. In service behavior
analysis, the research is mainly used by formal methods such
as Petri net, process algebra, and π calculus, etc.

2) Current solutions to failure recovery

Self-adaptation is the ability of a system to adapt to changes
in its environment to maintain the original functionality, and
is used in different problem domains. Many recent studies
have focused on enabling adaptation for BPEL processes. For
instance, the monitoring mechanism embedded in the BPEL
engine can be used to capture fault messages [10], allowing
existing processes to be directly deployed without any
modifications. Some scholars perform fault monitoring and
recovery through transaction attributes of object states. Ettazi
et al. [11] fulfilled user requirements in mobile environments
by focusing on transactional aspects of context-aware services.
In addition, there has been some research based on security
monitoring and self-healing systems [12,19]. Asim [12]
presented a framework that automates the monitoring of
business processes and reports the compliance violations at
runtime.

VII. CONCLUSION

Service composition is an important technology for
integrating information to create new value in systems that
satisfy complex requirements. In this paper we propose a
novel approach for service composition with data cell
modeling, which is inspired by biological cell and guided by
the bigraph theory. This enables users to efficiently analyze
the services in a dynamic distributed environment.

However, the preliminary data cells and clusters from
model still need to be manually configured by analyzing and
extracting the important characteristics from services. So, for
future work, some tools may be applied to extract service
features automatically. Another problem for future research
is that more constraints from specific customer requirements,
including service rating, service price and so on, need be
considered to optimize the model in different scenes.

ACKNOWLEDGMENT

This work is supported by the Science and Technology
Key Research Planning Project of Zhejiang Province, China
(NO.2018C01064), and Zhejiang Natural Science Foundation,
China (No. LY19F020034).

REFERENCES

[1] J. Cheng, C. Liu, M. Zhou, Q. Zeng, and A. Ylä-Jääski, “Automatic
composition of semantic web services based on fuzzy predicate petri
nets,” IEEE Transactions on Automation Science and Engineering,
12(2), pp. 680-689. 2015.

[2] E. Khanfir, R B. Djemaa and I. Amous, “Automatic Adaptable
Intentional Service Generating and Publishing Framework using
OWL-S Annotation,” International Journal of Web Services Research
(IJWSR), 15(1), pp. 1-26. 2018.

[3] A. Urbieta, A. González-Beltrán, S. B. Mokhtar, M. A. Hossain, and L.
Capra, “Adaptive and context-aware service composition for IoT-based
smart cities,” Future Generation Computer Systems, 76, pp. 262-274.
2017.

[4] Z. Xiong, W. Luo, L. Chen, and L. M. Ni, “Data vitalization: a new
paradigm for large-scale dataset analysis,” In 2010 IEEE 16th
International Conference on Parallel and Distributed Systems. IEEE.
2010, pp. 251-258.

[5] W. Zhou, L. Liu, C. Pu, et al, “An Experimental Study of a
Biosequence Big Data Analysis Service,” 2017 IEEE International
Conference on Web Services (ICWS). IEEE, 2017, pp. 237-244.

[6] R. Milner, “Bigraphical reactive systems,” International Conference on
Concurrency Theory. Springer, Berlin, Heidelberg, 2001, pp. 16-35.

[7] L. Yu, W T. Tsai, X. Wei, et al. “Modeling and analysis of mobile cloud
computing based on bigraph theory,” 2014 2nd IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering.
IEEE, 2014, pp. 67-76.

[8] M. Calder, A. Koliousis, M. Sevegnani and J. Sventek, “Real-time
verification of wireless home networks using bigraphs with sharing,”
Science of Computer Programming, 80, pp. 288-310. 2014.

[9] J. Zeng, HL. Sun, XD. Liu, T. Deng and JP. Huai, “Dynamic evolution
mechanism for trustworthy software based on service composition,”
Journal of Software, 21(2), pp. 261−276. 2010.

[10] H. Huang, X. Chen and Z. Wang, “Failure recovery in distributed
model composition with intelligent assistance,” Information Systems
Frontiers, 17(3), pp. 673-689. 2015.

[11] W. Ettazi, H. Hafiddi, M. Nassar, and S. Ebersold, “Micats:
Middleware for context-aware transactional services,” In International
Conference on Enterprise Information Systems, Springer. 2015, pp.
496-512.

[12] M. Asim, A. Yautsiukhin, A.D. Brucker, et al, “Security policy
monitoring of BPMN‐ based service compositions,” Journal of
Software: Evolution and Process, , 30(9), e1944. 2018.

[13] R. Milner, “Axioms for bigraphical structure,” Mathematical
Structures in Computer Science, 15(6), pp. 1005-1032. 2005.

[14] N. Trčka, WMP. Van der Aalst and N, “Sidorova Data-flow anti-
patterns: Discovering data-flow errors in workflows,” International
Conference on Advanced Information Systems Engineering. Springer,
Berlin, Heidelberg, 2009, pp. 425-439.

[15] X. Liu, Y. Ma and G. Huang et al, “Data-driven composition for
service-oriented situational web applications,” IEEE Transactions on
Services Computing, 8(1), pp. 2-16. 2015.

[16] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz,
“Dynamic adaptation of service compositions with variability models,”
Journal of Systems and Software, 91, pp. 24-47. 2014.

[17] M. Bashari, E. Bagheri, W. Du, “Self-healing in service mashups
through feature adaptation,” Proceedings of the 21st International
Systems and Software Product Line Conference, ACM.2017, pp. 94-
103.

[18] H. Huang, X. Chen, Z.Wang, “Failure recovery in distributed model
composition with intelligent assistance,” Information Systems
Frontiers, 17(3), pp.673-689. 2015.

[19] S. Subramanian, P. Thiran, N C. Narendra, et al. “On the enhancement
of bpel engines for self-healing composite web services,” International
Symposium on Applications and the Internet. IEEE, 2008, pp. 33-39.

[20] S. Rinderle, M. Reichert and P. Dadam, “Correctness criteria for
dynamic changes in workflow systems––a survey,” Data & Knowledge
Engineering, 50(1), pp. 9-34. 2004,

