Modeling and Veritying TESAC Using CSP

Dongzhen Sun!, Huibiao Zhu*!, Yuan Fei*2, Lili Xiaol, Gang Lul, Jiaqi Yin!
1Shanghai Key Laboratory of Trustworthy Computing,
School of Computer Science and Software Engineering
East China Normal University, Shanghai, China
2School of Information, Mechanical and Electrical Engineering,
Shanghai Normal University, Shanghai, China

Abstract—Cloud computing is an emerging computing
paradigm in IT industries. The wide adoption of cloud computing
is raising concerns about management of data in the cloud.
Access control and security are two critical issues of cloud
computing. Time efficient secure access control (TESAC) model
is a new data access control scheme which can minimise many
significant problems. This scheme has better performance than
other existing models in a cloud computing environment. TESAC
is attracting more and more attentions from industries. Hence,
the reliability of TESAC becomes extremely important. In this
paper, we apply Communication Sequential Processes (CSP) to
model TESAC, as well as their security properties. We mainly
focus on its data access mechanism part and formalize it in detail.
Moreover, using the model checker Process Analysis Toolkit
(PAT), we have verified that the TESAC model cannot assure
the security of data with malicious users. For the purpose of
solving this problem we introduce a new method similar to digital
signature. Our study can improve the security and robustness of
the TESAC model.

Index Terms—TESAC; Cloud computing; CSP; Access con-
trol;Modeling; Verification;

I. INTRODUCTION

Cloud computing is considered to be an important driver of world-
wide IT industries [1]. With the development of cloud computing
technology, many data access models (ACMs) have been proposed
by researchers [2]-[4]. Time efficient secure access control (TESAC)
[5] model is a new data access control scheme which uses asymmetric
encryption to guarantee data security. This scheme is more efficient
than other existing solutions after an evaluation in terms of both
theoretical and experimental results.

The main types of access control models can be roughly divided
into three categories [6]: Mandatory Access Control (MAC), Discre-
tionary Access Control (DAC), Role Based Access Control (RBAC).
In order to achieve the goal of the network as a high-performance
computer, cloud service providers specify suitable access control
policies for users to access data and other resources. For limiting user
access rights in different situations, Ferraiolo et al. [2] put forward
the role-based access control (RBAC), where cloud service provider
determines the user access to the system by means of the job role. Gao
et al. [3] came up with novel data access control (NDAC) to ensure se-
cured and confidential data communication between users and cloud
servers. For the express purpose of providing a superior decision-
making ability, Danwei et al. [4] presented usage control-based access
(UCON) model which can easily implement the security strategy of
DAC, MAC and RBAC. It is a scheme that combines all the merits
of the traditional access control models. These models attach great
importance to security issues, but they adopt only informal methods
to analyze and there is few work on the formalization of these

Corresponding authors: hbzhu@sei.ecnu.edu.cn (H. Zhu),
yuanfei@shnu.edu.cn (Y. Fei).

DOI reference number: 10.18293/SEKE2019-122

models. Due to the superb characteristics of TESAC, the industry
will definitely draw a great amount of interests in this scheme.
So it is extremely important to verify and analyze it by formal
methods. we use classical process algebra language Communicating
Sequential Processes (CSP) [7], [8] to model TESAC, and in terms
of a model checking tool Process Analysis Toolkit (PAT) [9] to verify
some vital properties. The verification results demonstrate and show
that the security problem really exists in this scheme. Through the
formalization, we want to provide a deeper understanding of TESAC
as well as its security properties, and we hope that other researchers
can realize the security problems that may presence in their system
from our verification results.

This paper is organized as follows: Section II presents an overview
of TESAC, as well as introduction to CSP. Section III is devoted to
the modelling of TESAC. The results that we use PAT to verify the
original model are presented in Section IV, and give the improvement
for better performance. Finally, conclusions and future directions are
given in Section V.

II. BACKGROUND

In this section, we will give a briefly introduce of TESAC,
especially its data access control scheme in cloud computing. After
that, we also give a brief introduce of process algebra CSP.

A. TESAC

TESAC is a new data access control scheme based on the users’
profiles. It is different from traditional access control models imple-
menting a cloud environment. It can resolve many problems, such
as high overhead of the system, high searching time for providing
the public key of the data owner, high data accessing time, etc. The
scheme consists of three entities:

« Cloud service provider: It possesses a number of servers hav-
ing sufficient storage space and power to provide infrastructure
and cloud services for both users and data owners.

« Data owner: It sends its encrypted data or file to the cloud
database and managed by servers. Data owner can be any user.

o User: It must be registered at the cloud server for accessing a
data or file.

The specific meaning of some notations of keys are listed in Table
I. The process of encryption and decryption is given in Steps 1-8.
When the user wants to get data from server, the following sequence
of actions occurs:

1) First, the user sends a data access request to the server.

2) When the server receivs the request, it encrypts PUOWN by
using its own PRSP and PUUSR, and then, provides it to the
users.

3) The user obtains PUOWN through two layers of decryption.
Then the user sends a request to the data owner for obtaining
the secret key and the certificate. The user encrypts the request
message with PRUSR and PUOWN, and then, sends it to the
data owner.

4) The data owner uses PROWN and PUUSR to decrypt the
package to get the users message. The data owner needs to
verify the legality of the user to the server.

5) The server sends a feedback message to the data owner.

6) If it is a positive feedback, the data owner uses PROWN and
PUUSR to encrypt its secret and certificate. Finally, the data
owner sends this package to the user.

7) The user uses PRUSR and PUOWN to decrypt the message.
After the user acquires the secret and the certificate, it uses
PRUSR and PUSP to encrypt the certificate. The user then
sends it to the server.

8) The server decrypts the message. If the user’s presented
certificate is matched with the corresponding certificate of the
requested data. The server provides the data to the user. Finally,
the user uses PRUSR, PUSP and secret to decrypt the message
to get the desired data.

TABLE I
NOTATION AND DESCRIPTION

PUOWN | public key of the data owner
PROWN | private key of the data owner
PUUSR public key of the user
PRUSR private key of the user
PUSP public key of the server
PRSP private key of the server

B. A brief overview of CSP

In this subsection we give a brief overview of CSP (Communi-
cation Sequential Processes). It is a process algebra proposed by
Hoare in 1978. As one of the most mature formal methods, it is
tailored for describing the interaction between concurrency systems
by mathematical theories. Because of its well-known expressive
ability, CSP has been widely used in many fields [10]-[12].

CSP processes are constituted by primitive processes and actions.
We use the following syntax to define the processes in this paper,
whereby P and @ represent processes, the alphabets a(P) and a(Q)
mean the set of actions that the processes P and () can take
respectively, and a and b denote the atomic actions and c stands
for the name of a channel. The syntax of CSP is given as below.

P,Q ::=Skip |Stop |a = P |clv - P |c?x - P | P;Q
[PIQIPOQIP b Q|bxQ | Plla+ b

1) Skip indicates a basic process that terminates successfully.

2) Stop represents that a process can’t do anything any more.

3) a — P denotes a process first engages in action a, then acts
due to the specification of process P.

4) clv — P describes a process sends a value v through channel
¢, then behaves according to the specification of P.

5) c¢?xz — P represents a process receives a value and assigns it
to the variable x, then the behavior is like process P.

6) P;(Q indicates only when process P has terminated can
process () start to perform.

7) P || Q means process P and process () perform in parallel.
And they must synchronize facing the same events.

8) PUOQ stands for external choice. A process behaves following
the specification of process P or). However, the choice
depends on the environment.

9) bx (@ expresses circulation. If the value of variable b is true, a
process behaves like process @) circularly. Otherwise, it ends
the circulation.

10) P < b > @ shows conditional choice. If the condition b is
true, a process acts likes P, otherwise, like Q.
11) P[[a < d]] indicates event a is replaced by d in process P.

III. MODELING TESAC

A. Sets, Messages and Channels

In order to formalize the protocol more conveniently, we give
the fundamental information about sets, messages and channels.
We define seven sets in our model. Entity set represents entities
including servers, users and data owners. Req set denotes request and
confirming messages. ACK set means feedback messages. Content
set contains the content to be encrypted. PUKey set contains all the
public key of entities, PRKey set contains all the private key of
entities, Sec set contains the key that the data owner uses to encrypt
the data.

Two core elements of modeling are internal processing proce-
dures of entities and message packets transmitted between entities.
Based on the sets defined above, we abstract them into different
messages. We use the form E(k,d) to indicate that & is utilized to
encrypt the message d. Each message includes a tag from the set
{mvsgreq, MSGkeyl, MSGdatal,; MSGack, MSGkey2, MSYdata2,
msgackin}~

The messages that are transmitted among entities as follows:

MSGreq = {msgreq.a.b.req, msgreq.a.b.cof|
a,b € Entity, req,cof € Req}
MSGrey1 = {MmSgrey1.a.b.E(K1, E'(K;l7 d))|a,b € Entity,
K, € PUKey, K{l € PRKey,d € Content}
MSGaarar = {msgaata1-a-b.E(K1, E(K; ', E(K,d)))|
a,b € Entity, K1 € PUKey, K; ' € PRKey,
K € Sec,d € Content}
MSGgcr = {msgack-a.b.zla,b € Entity,z € Ack}
MSGreyz = {msgreya - E(K1, (Ky ', d)).K; '.Ka|d € Content,
Ki,Ks € PUKey,K; ', K; ' € PRKey}
MSGaataz = {msgdata2.E(K,, E(K; ', BE(K,d))).K;* Ky . K|
Ki,Ky € PUKey,K;,Ks € PUKey,
K{',K;' € PRKey, K € Sec,d € Content}
MSGackin = {msgcont-yly € Content}
MSGout = MSGreq U MSGreyr U MSGaatar U MSGacr
MSGin = MSGheyz UMSGaataz UMSGackin
MSG = MSGout UMSG iy

M SGreq represents the set of request messages. M SGiey1 stands
for the set of two-layer encryption messages. M .SGaqtq1 indicates
the set of messages whose real data encrypted by public and private
keys. M SGacr denotes feedback messages. M SGrey2 stands for
the set of three-layer encryption messages. M SG gq+q2 indicates mes-
sages sent to the process specially for internal processing. M SGqcrin
represents messages that return data to entities by internal process.
M SG oy represents the set of messages transmitted between entities,
M SG;,, denotes internal processing messages of entities.

Then, we give the definitions of channels to model the communi-
cations between processes:

« channels between users, data owners and servers, denoted by
COM_PATH: ComUS, ComUD, ComDS.

o channels of intruders who intercept users, data owners and
servers, represented by INT RUDER_PAT H: FakeU, FakeS,
FakeD.

o channels of processing messages,
PROCESS_PATH: GetU, GetD, GetS.

The declarations of the channels are as follows:

depicted by

Channel COM_PATH, INTRUDER_PATH : M SG ot
Channel PROCESS_PATH : M SGiy,

B. Overall Modeling

As mentioned above, the whole scheme contains three important
entities, including User, DataOwner and Server. We formalize
the whole system as below.

System =g Systemo[|[INTRUDERPATH ||Intruder
Systemqg =45 User||DataOwner||Server

User =45 Useri[|[PROCESSPATH||ProcessU

DataOwner =4 DataOwner,[|PROCESSPATH|]ProcessD
Server =q5 Serveri[|PROCESSPATH||ProcessU

User, DataOwner and Server, as their names demonstrate, repre-
sent the user, the data owner and the server. ProcessU, ProcessD and
ProcessS denote the internal processing procedure of the user, the
data owner and the server. Considering the existence of intruders, we
also build process Intruder to simulate the behavior of intruders
who eavesdrop and modifies messages. Interprocess communication
between processes are illustrated in Fig.2.

C. User Modeling
We first formalize process Userop to describe the behavior of a
user process without intruders.
Userg =df
ComUS!'msgreq.U.S.Teqiata —
ComUS?msggey.S.U.E(PUUSR, E(PRSP, PUOWN)) —
GetU!msgkey2. E(PUUSR, E(PRSP, PUOWN)).
PRUSR.PUSP — GetU?msgqckin-PUOWN —
ComUD!msgrey1.U.D.E(PUOWN, E(PRUSR, reqsc)) —
ComUD?msgpey1.D.U.E(PUUSR, E(PROWN, (s, ¢c))) —
GetU!msggey2. E(PUUSR, E(PROWN, (s, c))).
PRUSR.PUOWN — GetU?msgackin-S-C —
ComUS!'msggey1.U.S.E(PUSP, E(PRUSR, c)) —
ComUS?msgaata1-S-U.E(PUUSR, E(PRSP, E(s,data))) —
GetU!msgdataz-
E(PUUSR, E(PRSP, E(s,data))).PRUSR.PUSP.s —

GetU?msgackin-data — Userg;

ProcessS

FakeS Sa

| Data Owner

gl

GetD
ProcessU ProcessD

Fig. 1. Interprocess communication between processes in model

GetU

where, req_data represents the data request sent from the user
to the server. req_sc represents the request of the secret and the
certificate that the user sends to the data owner. s represents the
secret and c represents the certificate. The six actions on channel
ComUS and ComUD correspond to Steps 1-8 of User in Fig.1

in order. After receiving the encrypted messages, entity Usery sends
them to internal processing part ProcessU by way of channel GetU,
as well as accepts the decrypted messages.

Then the existence of intruder actions needs to take into consid-
eration. For example, we must allow the instances of data request to
be faked, the instances of responses of PUOW N to be intercepted,
etc. We do this via renaming.

Usery =g45 Userg[[ComUS?{|ComUS|} - ComUS?{|ComUS|},
ComUS?|ComUS| < FakeU?|ComUS]|,
ComUS!|ComUS| < ComUS!|ComUS|,
ComUS!|ComUS| + FakeS!|ComUS)|,
ComUD?|ComUD)| < ComUD?|ComUD|,
ComUD?|ComUD)| < FakeU?|ComUD]|,
ComUD!|ComUD]| < ComUD!|ComUD]|,
ComUD!|ComUD| < FakeD!/ComUD|]]

{|c|} denotes the set of all communications over channel c.
Whenever Userg does an action on channel ComUS or ComU D,
U sery will does a corresponding action on channels with prefix Com
or channels with prefix F'ake. Here, channels with prefix Com only
include ComU S and ComU D and channels with prefix Fake only
include FakeU and FakeS.

We can define CSP processes representing the data owner and
server similarly.

D. ProcessU Modeling

In order to simulate the internal process of the user, we use
ProcessU to deal with decrypting message. We must consider the
possibility of intruder actions.

ProcessU =gy
GetU?msgrey2. E(PUUSR, E(PRSP, PUOWN)).
PRUSR.PUSP —
GetU!'msgackin - PUOW N — ProcessU
J(((PUSP == PRSP)||(PUI == PRI))
A(PUUSR == PRUSR))>
(GetU!msgackin-NO — ProcessU)
OGetUmsgkey2. E(PUUSR, E(PROWN, (s, c))).
PRUSR.PUOWN —
GetU!'msgackin-PUOW N — ProcessU
J((PUOWN == PROW N)||(PUI == PRI))
A(PUUSR == PRUSR))>
(GetU!'msgackin-NO — ProcessU)
OGetU?msgaata2.- E(PUUSR, E(PRSP, E(sec, data))).
PRUSR.PUSP.s —
GetU!msgackin. PUOW N — ProcessU
<(((PUSP == PRSP)||(PUI == PRI))

A(PUUSRmatchPRUSR) A (sec == s))>
(GetU!msgackin.NO — ProcessU)

We use PUI to represent the public key of the intruder, PRI
represents the private key of the intruder. ProcessU receives the
encrypted message with decryption keys by channel GetU. Then
it judges whether the decryption key can decrypt the message
successfully. If the key does not match, ProcessU returns a negative
message to Userg. Else, it sends the decrypted content to Userq. The
internal process ProcessD of the data owner and ProcessS of the
server can be defined similarly.

E. Intruder Modeling

Finally, we give the formalization of the intruder. We also regard
the intruder as a process that can perform any attack as a real
world intruder can be. It can intercept or fake messages in the

communication on channel ComUS, ComUD and ComDS. We
define the set of facts that an intruder might learn as follows:

Fact =gy
{U,S,D}y U {PUOWN, PUUSR, PUSP}
U {E(k, content)|k € {Sec, PUKey, PRKey},
content € Content, (s,c)} U MSGoyu: U{PUI, PRI}

Intruder can derive new facts from the ser of Facts it has learned.
We use the symbol F' — f to indicate that the fact f can be derived
from the set F' of facts. The definition is given as follows:

{K{ ', E(K\, E(K; ', d)} = E(K; ', d), {Ka2, E(Ka,d)} — d
{Ka,d} — E(K; ', d), {K1, E(K; ", d)} = E(K1, E(Ky ', d)
F—fAFCF = F — f

The first two rules represent encryption and the third and the fourth
represent decryption. The final rule means if the intruder can derive
the fact f from a set of facts F, then f can also be derived from a
larger set F”.))

e give a definition of Info function in which the intruders can
learn by seeing the intercepted messages, shown as follows:
Info(msgreq.a.b.req) =45 {a,b,req}
Info(msgreq.a.b.cof) =qr {a,b,cof}
Info(msgey1-a.b.E(Ky, (Ky ', d)) =a {a,b, E(K:1, (K5 ", d))}
Info(msgaatar-a.b.E(K1, E(K;y ', E(k,d)))) =ay
{a,b, B(K1, E(K; ', E(k,d)))}
Info(msgackl.a.b.x) =45 {a,b,z}

where a,b € Entity, req,cof € Req, K1 € PUKey, K;l €
PRKey,d € content, k € Sec,x € Ack.

We define a channel deduce to be used for deducing new facts.
The definition is given as follows:

Channel deduce: Fact.P(Fact)

All the messages transmitted between entities can be overheard
by the intruder. It can deduce a new fact from ones it has already
known.

It can also fake some messages if he knows all the sub-messages.
The formalization of Intrudero is defined as below:

Intrudero(F =45

O0m € MSGout FakeU?m —
FakeS!m{user_fake_success = true} —
Intrudero(F U Info(m))

O0m € MSGout FakeS?m —
FakeU!m{server_fake_success = true} —
Intrudero(F U Info(m))

O0Om € MSGout FakeU?m —
FakeD!muser_fake_success = true —
Intrudero(F U Info(m))

O0m € MSGout FakeD?m — FakeU!m —
Intrudero(F U Info(m))

O0m € MSGoyiFakeD?m — FakeS!m —
Intrudero(F U Info(m))

O0m € MSGout FakeS?m —
FakeD!mserver_fake_success = true —
Intrudero(F U Info(m))

O0f € Fact, f ¢ F,F — fdeduce.f.F —
Intrudero(F U f)

When Intruder_0 receives some messages, if it is not encrypted
by another entity with its public key, Intruder_0 can replace some
content in the message and send it to the original receiving entity; If
the message is encrypted with the entitys public key, Intruder_0
can not know or replace the content of the message. Because it
does not know the private key that matches the public key. However,
Intruder_0 has its own public key and private key, allowing it to
fake messages to send to the entities. We give the definition of /K
to represent the initial knowledge of the intruder:

Intruder =q¢ Intrudero(I1K)
IK =g {U,S,D, PUI, PRI}

IV. VERIFICATION AND IMPROVEMENT

In this section, we will verify the four properties (deadlock
freedom, user faking, server faking and protocol completeness) by
virtue of the model checker PAT. According to the verification results,
we improve the original model for a better safety performance.

A. Security Specification

We allow intruders to perform a series of intrusive actions and give
some facts that intruders can learn. Under these conditions, whether
the intruders can attack the system successfully by intercepting and
faking. If the intruder can get PUOW N or data from the server, then
it can be concluded that the system was successfully attacked by the
intruder. This is in the ideal situation, but the protocol is running in
an open environment, then PUOW N is public as a public key. Once
an intruder knows the data owner’s public key, it is critical that the
system can detect and prevent the disclosure of the message. Thus
we will verify our systems against the following specification:

SPEC, =4 CHAOS — (Z —{FakeU})
SPECq =4y CHAOS — (Z f{FakeD})
SPEC, =4 CHAOS — (3 7{FakeS})

If the system with intruders refines these specifications, then it would
indeed be secure.

B. Properties Verification

We describe some security properties as well as their assertion
descriptions in PAT code and give the verification result.We do not
give a description of the intruder disguised as the data owner, because
the disguise as a data owner has no realistic meaning. Because the
data owner can be any user and intruders will not use this protocol
to get its own data. We use System to represent the original model.
Property 1: Deadlock Freedom

The model should not run into a deadlock state. In PAT, there is
a primitive to describe this situation:

#assert System deadlock free;
Property 2: User Faking

This property represents that the intruder has successfully pretend-
ed to be a legal user without being realized by the system. We define
a boolean variable user_fake_success for verification in PAT.

#define User_Fake_Success
user_fake_success == true;

#assert System reaches User_Fake_Success;

Property 3: Server Faking
Similarly, this property represents that the intruder has successfully

pretended to be the server without being realized by other entities.
We define a boolean variable server_fake_success for verification
in PAT.

#define Server Fake Success
server_fake_success == true;

#assert System reaches Server_Fake_Success;

Property 4: Protocol Completeness

Because PUOW N is a public key, if the intruder already acquires
the PUOW N, then the protocol cannot be fully executed. The server
receives three different requests when it executes a complete protocol.
We use a constant n to record whether the server has accepted three
requests. We define a boolean variable protocol_completeness for
verification in PAT.

#define Protocol Completeness
protocol_completeness == true;

#assert System reaches Protocol_Completeness;

The verification results are shown in Fig.2. Deadlock freedom is
valid which means that the System model does not run into a
deadlock state. The User_Fake_Success property is valid and
PAT provides a trace which leads to a state where this property
is satisfied. Intruder can implement an event req_sc on channel
FakeD to be a legal user without being realized. Similarly, the
Server_Fake_Success property is valid shows that intruder can
successfully pretend to be a legal server without being realized. The
third property Protocol_Completeness is not valid. It represents
that intruder can obtain data without executing the complete protocol.
Property 2, 3 and 4 verified the insecurity of TESAC.

) Verification - modell.csp — O X
Assertions

& 1 System() deadlockfree

@ 2 System() reaches User_Fake_Success

@ 3 System() reaches Server_Fake_Success

t:1 4 System() reaches Protocol_Completeness

< >
Selected Assertion

System() reaches Server_Fake_Success

Verify Simulate Witness Trace

Options

Admissible Behavior All v | Timed out after (minutes) 12015

Verification Engine First Witness Tr ~+ Generate Witness Trace

&

Qutput

i
g
E
>

The Assertion (System() reaches Server_Fake_Success)is VALID
The following trace leads 1o a state where the condition is satisfied
<init -> FakeD . PUOWN.PRI.0 -> [f((step_three_dk_success ==true))] -> FakeD ack>

Verification Completed

Fig. 2. Verification Result of the model

C. Attack and Improvement

As the verification result shows above, although this scheme
adopts asymmetric encryption and the server uses the certificate to
authenticate the user, the system is still not reliable. The server

only requests users to obtain the data decryption key and certificate
from the data owner for decrypting the data at the time of first
data accessing. When users initiate a data access request for the
subsequent time, the server directly grants the data. So once the
intruder successfully obtains data for the first time, there will be
no security in the system. An example trace of the intruder acquires
data successfully, which is presented as below:

ComUS!'msgreq.U.S.req_data —
FakeU?msggey1.S.1.E(PUI, E(PRSP, PUOWN)) —
FakeD!msggey1.IU.D.E(PUOWN, E(PRI,req_sc)) —
ComDS?msgreq.D.S.cof — FakeD!msgreq.1S.D.ack —
FakeU?msggey1.D.U.E(PUI, E(PROWN, (s,c)))

First of all, the user sends a data request to the server by channel
ComU S. The intruder intercepts the message sent by the server to
the user through channel FakeU. Then the intruder pretends to be a
user to request the secret and the certificate from the data owner. Data
owner validates the users authenticity from the server, this message
is intercepted by the intruder and returns a positive feedback message
to the data owner. Finally, the data owner provides the certificate and
secret key to the intruder.

That is to say, once an intruder obtains a legitimate identity using
the above path, the intruder can obtain data before deleting it from the
servers user list, which will undoubtedly cause disaster. Next we will
make changes to the protocol and not to reduce its time efficiency.

The request information sent by the user for PUOW N cannot
confirm the origins, as well as the confirm feedback information sent
by the server to data owner. In order to change this situation, we will
improve the protocol. When the user requests to obtain PUOW N, it
needs to sign with his own private key, in this way the server can use
the digital signature to authenticate the user. Similarly, the confirm
message sent by data owner to server and the feedback message of
server returnd to data owner are all signed with their own private key.
The specific updating of the model are as follows:

MSGreq = {msgreq.a.b.E(Kq, E(Kz_l, req_data)),
MSGreq-a.b. E(K1, E(K;l7 cof))|a,b € Entity,
K, € PUKey,K;1 € PRKey,req,cof € Content}
MSGaek = {msgack1-a.b.E(K1, E(K; ", x))|
a,b € Entity,z € Ack, K1 € PUKey, K; ' € PRKey}
The message changed in the new model corresponds to actions 1, 4
and 5 in Fig. 1. These messages are all related to the server. So we
give the updated server process which can be formalized as follow:
SERV ERy =g45 Initialization{n = 0} —
ComUS?msgreq.U.S.E(PUSP, E(PRUSR, req_data)) —
GetS'msgrey2. E(PUSP, E(PRUSR, req_data))
.PRSP.PUUSR — Gets?msgackin-req_data —
ComUS'msgyey1.S.U.E(PUUSR, E(PRSP, PUOWN)){n = 1} —
ComDS?msgreq.D.S.E(PUSP, E(PROW N, cof)) —
GetS'msgrey2. E(PUSP, E(PROWN, cof))
.PRSP.PWOWN — Gets?msgcont.cof —
ComDS!'msgqck.S.-D.E(PUOWN, E(PRSP, ack)){n =2} —
ComUS?msggey.U.S.E(PUSP, E(PRUSR, c)) —
GetS'msgyey2. E(PUSP, E(PRUSR, ¢)).PRSP.PUUSR —
GetS?msgackin-¢ —
ComUS'msgaata1-S-U.E(PUUSR, E(PRSP, E(s,data))){n =3} —
SERV ERy;

We define a variable n to record the number of messages sent
by the server. First, SERV ER_OQ initializes the variable n. It will
be assigned a value of 1 when the server sends PUOW N to the

user by channel ComUS. SERVER_0 communicates with its
internal process PROCESSS through channel GetS. The server
will return a feedback message to the confirmation message sent by
the data owner. If this action completes successfully, the value of
n becomes 2. The server provides the data to the user if the user’s
presented certificate is matched with the corresponding certificate of

the requested data. Meanwhile, the value of n is modified to 3.
Then we update ProcessS to be PROCSSS correspondingly.

PROCESSS =g4
GetStmsgrey2. E(PUSP, E(PRUSR, req_data)).
PRSP.PUUSR —
GetS!'msgackin-req_data - PROCESSS
Q((PUSP == PRSP) A (PUUSR == PRUSR))>
(GetU!msgackin.NO — PROCESSS)
OGetSimsgneys. E(PUSP, E(PROW N, cof)).PRSP.PUOWN —

GetS!msgackin-cof ' YES — PROCESSS
Q((PUSP == PRSP) A (PUOWN == PROWN)A
(n ==1)) > (GetS!msgackin.cof NO —
PROCESSS))
OGetS?msgrey2 E(PUSP, E(PRUSR, ¢)).PRSP.PUUSR —
GetS!'msgackin-c =& PROCESSS
Q((PUSP == PRSP) A (PUUSR == PRUSR))>
(GetS!msgackin.cof NO —
PROCESSS))

PROCSSS receives the message sent by SERV ER_0 through the

channel GetS. It should be noted that if the message is a confirmation
message, PROCSSS will judge whether the value of n is 1. This
is to confirm that the user is getting PUOWN from the server instead
of others.

D. Overall Modeling
We formalize the new system as below.

SYSTEM = SYSTEM;[|[INTRUDERPATH|[INTRUDER,
SYSTEM; =4 USER||DATAOW NER||SERV ER,
USER =4 USER:[|PROCESSPATH||[PROCESSU,
DATAOWNER =4
DATAOWNER,[|[PROCESSPATH||[PROCESSD,
SERVER =4
SERVER,[|[PROCESSPATH||PROCESSS.

The verification results are given as below:

The verification results show that User_Fake_Success and
Server_Fake_Success properties are invalid, which means that sys-
tem realized that the intruder were performing actions of invading
and immediately stopped the process. The Protocol_Completeness
property is valid, which means that after we improve the protocol.
It can be guaranteed that the protocol is executed completely once
when the user requests data.

E. CONCLUSION AND FUTURE WORK

In this paper, we have formalized the TESAC using classical
process algebra language CSP. Then, we have fed the model into
the model checker PAT and verified the security of the model
by asserting four properties (deadlock freedom, user faking, server
faking, protocol completeness). The verification results show that user
faking property and server faking property are valid. It means intruder
can successfully pretend to be a legal user or server without being
realized. Protocol completeness property is not valid. It demonstrates
that TESAC cannot guarantee users to follow all the steps for data
accessing when the intruder attacks. This means that TESAC is not
secure in a cloud computing environment. In order to solve these
problems, we have made improvements to TESAC by introducing a
method similar to digital signature. We have verified the improved

@) Verification - SYSTEM.csp - O b
Assertions

@ 1 SYSTEM() deadiockfree

#:0 2 SYSTEM() reaches User_Fake_Success

Q 3 SYSTEM() reaches Server_Fake_Success

@ 4 SYSTEM() reaches Protocol_Completeness

< >
Selected Assertion

SYSTEM() reaches Server_Fake_Success

Verify
Options
Admissible Behavior All ~ Timed out after (minutes) 12015
Verification Engine First Wit ~~ Generate Witness Trace
Output
........ Verification Result™*~** Y
The Assertion (SYSTEM() reaches Server_Fake_Success)is NOT valid v

Verification Completed

Fig. 3. Verification Result of the improved model

model with respect to the four properties, and the new verification
results indicate that the improved model can prevent intruders from
invading the system. The security and robustness of TESAC would
be improved through our efforts.

ACKNOWLEDGMENT

This work was partly supported by National Natural Science Foun-
dation of China (Grant No. 61872145) and Shanghai Collaborative
Innovation Center of Trustworthy Software for Internet of Things
(No.ZF1213).

REFERENCES

[1] M. ARMBRUST, “Above the clouds : A berkeley view of cloud
computing,” Science, vol. 53, pp. 07-013, 2009.

[2] D. E. Ferraiolo and D. R. Kuhn, “Role-based access controls,” CoRR,
vol. abs/0903.2171, 2009.

[3] X. W. Gao, Z. M. Jiang, and R. Jiang, “A novel data access scheme
in cloud computing,” vol. 756. Trans Tech Publications, 10 2013, pp.
2649-2654.

[4] D. Chen, X. Huang, and X. Ren, “Access control of cloud service
based on UCON,” in Cloud Computing, First International Conference,
CloudCom 2009, Beijing, China, December 1-4, 2009. Proceedings,
2009, pp. 559-564.

[5] S. Namasudra and P. Roy, “Time saving protocol for data accessing in
cloud computing,” IET Communications, vol. 11, no. 10, pp. 1558-1565,
2017.

[6] Z. Mahmood, “Continued rise of the cloud,” 2014.

[71 C. A. R. Hoare, Communicating Sequential Processes.
1985.

[8] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, “A theory of
communicating sequential processes,” J. ACM, vol. 31, no. 3, pp. 560—
599, 1984.

[9] PAT, “Pat: Process analysis

https://doi.org/10.1145/828.833

A. W. Roscoe, Understanding Concurrent Systems, ser. Texts in Com-

puter Science. Springer, 2010.

G. Lowe and A. W. Roscoe, “Using CSP to detect errors in the TMN

protocol,” IEEE Trans. Software Eng., vol. 23, no. 10, pp. 659-669,

1997.

Y. Fei and H. Zhu, “Modeling and verifying NDN access control using

CSP,” 2018, pp. 143-159.

Prentice-Hall,

toolkit.” [Online]. Available:
[10]

(1]

[12]

