
Test Case Generation by EFSM Extracted from
UML Sequence Diagrams

Mauricio Rocha1,2, Adenilso Simão1, Thiago Sousa2, Marcelo Batista2
1Instituto de Ciências Matemáticas e de Computação (ICMC), USP, São Carlos, SP, Brazil

mauriciormrocha@usp.br, adenilso@icmc.usp.br
2Centro de Tecnologia e Urbanismo (CTU), UESPI, Teresina, PI, Brazil

mauricio@ctu.uespi.br, thiago@ctu.uespi.br, marcelo.araujo@uespi.br

Abstract—The effectiveness of Model-Based Testing (MBT)
is mainly due to the potential for automation it offers. If the
model is formal and machine-readable, test cases can be derived
automatically. The Extended Finite State Machine (EFSM) is a
formal modeling technique widely used to represent a system.
However, EFSM is not a common practice in industry. On the
other hand, the Unified Modeling Language (UML) has become
the de-facto standard for modeling software, but due to the
lack of formal semantics, its diagrams can have ambiguous
interpretations and are not suitable for testing automation. In this
context, we present a systematic procedure for generating tests
from a UML model. More specifically, our approach proposes a
mapping from the UML Sequence Diagram into Extended Finite
State Machine in order to provide a precise semantics to them
and uses the ModelJUnit and JUnit libraries in order to generate
test cases automatically.

Index Terms—Model-Based Testing, Model-Driven Engineer-
ing, Sequence Diagram, Extended Finite State Machine, Mod-
elJUnit, JUnit

I. INTRODUCTION

A common practice in most software development processes
is the use of abstract models to aid in the construction of
products. These models represent the essential parts of a
system and allow software engineers to take a conceptual
view of several different software perspectives. An option for
software modeling is the Unified Modeling Language (UML),
since it is widely used and, due to its expressiveness, it is
possible to model both static and structural aspects as well
as dynamic or behavioral [1]. However, due to the lack of
formal semantics, the use of UML can lead to some issues,
such as inconsistency, transformation problems and different
interpretations [2].

An option to minimize these problems is the use of formal
models, since they have a precise semantics to accurately
represent system behavior. However, what is observed in
practice is that formal methods are little used in industry,
probably due to the lack of training and familiarity with the
mathematical notation by the developers.

In the context of software testing, modeling can increase
the productivity of this activity. According to Utting et al. [3],
Model-Based Testing (MBT) allows the automatic generation
of tests from models and other software artifacts, making it
possible to create tests for the software even before coding,

DOI reference number: 10.18293/SEKE2019-133

thus reducing the cost of development. The central idea of
MBT is generating input sequences and their expected outputs
from a model or specification. The input sequences are then
applied to the System Under Test (SUT) and the software
outputs are compared to the outputs of the model. This implies
that the model must be valid, i.e. faithfully represent the
requirements. Basically, MBT are used for functional black-
box testing, where software functionality is examined without
any knowledge of the software’s internal coding.

In MBT, it is recommended to use formal models, since
they can be used as a basis for automating the testing process,
making it more efficient and effective [4]. There are several
formal modeling techniques based on state transition machines
that can be used to specify a test model. Extended Finite
State Machine (EFSM) has been widely used in the formal
methods community, since they make it possible to represent
the flow of control and data of complex systems. Moreover,
EFSM can be implemented as a test model using the the
ModelJUnit [5] library, which was designed as an extension
of JUnit. Therefore, the models are written in Java, a popular
programming language.

In this context, we present a systematic procedure for
generation of test cases from a UML model. The idea is to use
concepts of Model-Driven Engineering (MDE) to transform
the UML Sequence Diagrams into EFSM and using the
ModelJUnit and JUnit libraries in order to generate test cases
automatically. In summary, the main contributions of this paper
include:

1) Definition of transformation rules for mapping the ele-
ments of the UML Sequence Diagram into the Extended
Finite State Machine constructions using Atlas Transfor-
mation Language (ATL) [6].

2) Formalization of the UML Sequence Diagram into
EFSM which is a semantically accurate model.

3) Automatic source code generation of ModelJUnit and
JUnit classes from EFSM using Acceleo [7].

4) Systematic procedure to generate Java tests from UML
Sequence Diagram automatically.

II. BACKGROUND

A. Sequence Diagram
The dynamic behavioral aspect of an object-oriented soft-

ware is defined through the interaction of objects and the



exchange of messages among them. The main diagram of
the interaction model is the UML Sequence Diagram, which
presents the interactions between objects in the temporal order
in which they occur.

Lifelines represent participants of the interaction that com-
municate via messages. These messages may correspond to
the operation call, signal sending or a return message. More
complex interactions can be created using combined fragment.
A combined fragment is used to define control flow in the
interaction. It can be composed of one or more operands, zero
or more interaction constraints, and an interaction operator.
An operand corresponds to a sequence of messages that
are executed only under specific circumstances. Interaction
constraints are also known as guard conditions and represent
a conditional expression.

In this paper, we use three interaction operators that model
the main procedural constructs:

• alt: construction of the if-then-else type. Only one
operand will be executed.

• opt: construction of the if-then type. It is very similar to
the alt operator, with the difference being that only one
operand is defined, which may or may not be executed.

• loop: a construct that represents a loop where the single
operand is executed zero or more times.

Other interaction operators defined by UML 2, that can be
found in OMG (Object Management Group) [1], are not in
the scope of this work.

B. Model-Driven Transformation

Model transformation is a key concept within the scope
of Model-Driven Engineering (MDE). The MDE aims at
supporting the development of complex software that involves
different technologies and application domains, focusing on
models and model transformation [8].

Similarly to models, metamodels play a key role on the
MDE. A metamodel makes statements about what can be
expressed in valid models of a given modeling language.
Modeling languages need to have formal definitions so that
transformation tools can automatically transform the models
built into those languages. The OMG has created a special
language called Meta Object Facility (MOF) [9], which is the
default metalanguage for all modeling languages. Thus, each
language is defined by means of a metamodel using the MOF.

Model transformation is the generation of a target model
from a source model. This generation process consists of a
set of transformation rules that describes how the elements
of the source model are mapped into elements of the target
model. The transformations can be performed in two ways:
Model-To-Model (M2M) mapping or Model-To-Text (M2T)
mapping.

C. Extended Finite State Machine

An Extended Finite State Machine (EFSM) consist of
states, predicates, and assignments related to variables between
transitions, so that it can represent the control and data flow
of complex systems.

An EFSM can be formally represented by a 6-tuple (s0, S,
V , I , O, T ) [10], where:

• S is a finite set of states with the initial state s0;
• V is a finite set of context variables;
• I is a set of transitions entries;
• O is a set of transitions outputs;
• T is a finite set of transitions.

Each transition tx ∈ T can also be represented formally by a
tuple tx = (si, sj , Ptx, Atx, itx, otx), where si, sj and itx ∈
I represents the input parameters of the beginning of the state
transition tx and otx ∈ O represents the output parameter at
the end of the state transition tx. In addition, Ptx represents
the predicate conditions (guards) with their respective context
variables and Atx the operators (actions) with their respective
current variables.

D. Model-Based Testing

The software test aims to perform an implementation of
the system under construction with test data and verify that
its operating behavior conforms to its specification. This
implementation being tested is named the System Under Test
(SUT).

In MBT, the use of models is motivated by the observation
that, traditionally, the testing process is unstructured, non-
reproducible, undocumented and depends on the creativity of
software engineers. The idea is that artifacts used in SUT
coding can help mitigate these problems [3].

In summary, the MBT covers the processes and techniques
for automatic derivation of test cases from abstract software
models. To achieve success in this activity, rigor is necessary
in this process.

III. OUR APPROACH

In this section we present a systematic process for test
case generation by EFSM extracted from UML Sequence
Diagrams. The Figure 1 illustrates our approach, which is
divided into two main steps as detailed below:

Step 1 - Transformation between models. Scenarios are
written in the form of the UML Sequence Diagram. This
UML Sequence Diagram is transformed into an EFSM through
the mapping between their respective metamodels using Atlas
Transformation Language (ATL). The result of this step is a
formal software model represented by an EFSM.

Step 2 - Generation of test cases. From a model of the
software represented by EFSM, the test cases are generated
using EFSM-based test generation methods from ModelJUnit
and JUnit libraries. In this step, a Model-To-Text (M2T)
transformation is performed using Acceleo, resulting in a set
of test cases.

A. Metamodels

We define the UML Sequence Diagram metamodel (source)
and Extended Finite State Machine metamodel (target). These
metamodels were implemented in Ecore using the Eclipse
Modeling Framework (EMF) [11].



Fig. 1. Our Approach.

Fig. 2. Sequence Diagram Metamodel.

The complete official UML specification [1] is very complex
because abstract syntax is represented in several separate
diagrams, which makes it difficult to see all the connections
between the important elements. In addition, the specification
uses the so-called semantic variation points, meaning part
of the semantics is not specified in detail to allow the use
of the UML in many domains. Therefore, the official UML
metamodel is heavily criticized for having many elements
that are seldom used in practice [12], [13]. In this scenario,
the metamodel presented in Figure 2 is simpler than the
one specified by the OMG for the Sequence Diagram, and
does not have constructs that are rarely used in practice.
The metamodel proposed contains 13 metaclasses. The use of
simplified metamodels occurs in most of the papers published
in the literature [14], [15], [16].

The proposed metamodel for EFSM presented in the Figure
3 is based on the formal definition of Yang et al. [10]
explained in section II.C. The metamodel is composed of
six metaclasses, among which, EFSM represents an Extended
Finite State Machine. The EFSM entity is composed of states,
transitions and context variable.

B. Transformation Rules

In this section, we present the transformation rules between
the Sequence Diagram and the Extended Finite State Machine.
The following transformation rules have been defined:

• InitFsm: this rule creates an EFSM with the name of
the sequence diagram and adds the initial state S0. The
previous state and the current state are updated with the
initial state. This rule can only be applied once.

• Transition: for all messages of type signal (type = si) or
operation (type = op), a state is added (which is now the

Fig. 3. Extended Finite State Machine Metamodel.

current state), and a transition that connects the previous
state to the current state of the EFSM. The input for this
transition will be labeled with the name of the message.
If the message operation has a return, the output, guard,
and action of this transition are labeled with the return of
the operation. In addition, the event is labeled with the
name of the operation, its return, and its arguments.

• ContextVariable: for all messages of type operation (type
= op) that have a different return of void, a context
variable is created with the name and return labeled with
the name and return of the operation.

• Alt and Opt: when a fragment combined with the alt
operator or opt operator is found in Sequence Diagram,
it is added a new state for each operand and a new
transition linking the current state to each of the created
states. Every transition will have its input labeled with
the message name and its output labeled with the guard
of the respective operand.

• Loop: when a fragment combined with loop interaction
operator is found in the Sequence Diagram, a reply
message must be defined as the last message of the
snippet. As soon as the process finds this message, a new
state (which is now the current state) and a transition
that connects the previous state to the current state in
the EFSM are added. The input of this transition will be
labeled with the name of the message and the output with
the negation of the operator’s guard. Another transition is
created by connecting the previous state to the last state
created before fragment. The input of this transition will
be labeled with the name of the message and the output
with the guard of the operator.

In our approach, these transformation rules were imple-
mented using Atlas Transformation Language (ATL). ATL
is one of the packages developed in the AMMA (ATLAS
Model Management Architecture) model engineering platform
[6]. ATL rules may be specified either in a declarative style
(Matched Rules) or in an imperative style (Called Rules). Lazy
Rules is kinds of Matched Rules are triggered by other rules.

In order to make feasible the transformations described
above, the following lazy rules were implemented:

• LrInitialState: creates the initial state S0, increments the



order of the states, and changes the previous state and the
current state as the initial state created. In addition, the
name of the Sequence Diagram being scanned is saved
in a variable.

• LrState: creates a new state, increments the order of
states, the previous state is changed to the current state
and the current state changed to the new created state.

• LrTransition: creates a transition that connects the pre-
vious state to the current state. The transition input
and event are labeled with Sequence Diagram message
information. The output, guard, and action can be null and
depend on the operator and message type of the Sequence
Diagram.

• LrContextVariable: this rule creates a context variable
with the name and type labeled with the return variable
of the operation and the type of the operation retract,
respectively.

All of these rules implemented in ATL are available in the
Transformation/SD2EFSM/SequenceDiagram2EFSM.atl file
of the approach repository 1.

C. Test Case Generation

For test case generation our approach uses the ModelJUnit
and JUnit libraries, since they are open-source and their
uses are very simple for Java programmers. In addition,
the ModelJUnit library enables the implementation of formal
models widely used in MBT, such as EFSM. Other advantages
of using ModelJUnit is that it provides a variety of useful
test generation algorithms, model visualization features, model
coverage statistics, and other features [17].

The process of implementing the MBT environment in the
ModelJUnit and Junit libraries consists of four steps:

1) The Model: initially, we have implemented the Fsm-
Model interface to define our model in ModelJUnit.
In this Java Class we define in a enumeration variable
(enum State) all the possible states of our EFSM and for
each context variable we define a variable in the class.
For each input in our model, we wrote action methods
(@Action) to define the transitions that link the states of
our model. In addition to these methods, we define in
our model the getState method that returns the current
state and the reset method that takes the machine to the
initial state.

2) The Adapter: in this step we implemented the Adapter
class that allows our model to communicate with and
take control of our SUT. For each one of the action
method define in the model that trigger an event, we
added a similarly named method in the adapter class.
In our model defined in Step 1, we call the correct
adapter method in each action method. In addition, in
the Adapter class we need to instantiate an object for
each class of the SUT.

3) Generation Tests: in this step, we initially need to
instantiate the model defined in Step 1. Then, we have

1https://github.com/TESTSD2EFSM/SEKE2019

to choose the test strategy that will be used. Mod-
elJUnit offers four different strategies: AllRoundTester,
GreedyTester, LookaheadTester and RandomTester. In
our approach we used the LookaheadTester test strategy,
since it is a more sophisticated algorithm and can cover
all transitions and states quickly [17]. Finally, we call the
buildGraph method to build the graph and generate the
tests. This graph will also be used to calculate coverage
metrics for transitions, states, and action.

4) Test Concretization: In this step, the test cases were
implemented in Java using the JUnit library.

These four steps described above were automatically gener-
ated by Model-To-Text (M2T) transformation using Acceleo.
Acceleo is a template-based technology including authoring
tools to create custom code generators. It allows you to
automatically produce any kind of source code from any
data source available in EMF format [7]. We have imple-
mented the generateClassModel, generateClassAdapter, gen-
erateClassTest and generateClassJUnit generators modules.
The input of these modules is the EFSM generated in step
1 of our approach.

These code generators implemented in Acceleo are available
in the Transformation/Efsm2ModelJUnit/src/Common/ folder
of the approach repository 1.

IV. EXAMPLE

In this section, we use an example to illustrate the applica-
tion of our approach. The UML Sequence Diagram of Figure
4 presents interactions of an ATM (Automatic Teller Machine)
for the withdrawal scenario.

Initially, using the Sequence Diagram editor implemented in
the EMF, we created the Sequence Diagram model described
in Figure 4. Then, using the transformation rules implemented
in ATL, the UML Sequence Diagram is converted into an
Extended Finite State Machine. At the end of the execution
of the transformation rules we will have an EFSM as shown
in Figure 5.

In Step 2 of our approach, from the EFSM extracted in Step
1, the test cases are generated. Using the generator modules
implemented in Acceleo, the classes (AtmModel, AtmAdapter,
AtmTest and AtmJUnit) are generated automatically.

The AtmModel class is an implementation of the FsmModel
interface. In this class is defined the variable enumeration State
that represents all the states (S0, S1, S2, S3, S4, S5, S6, S7,
S8, S9, S10, S11, S12 and S13) of our EFSM. The following
@Action annotated methods have been implemented: insert-
Card(), validateCard(), requestPassword(), enterPassword(),
validatePassword, requestValue(), enterValue(), validateBal-
ance(), value(), unavailableBalance(), exit() and cardOut(). In
addition, the getState method, the reset method and context
variables (cardOk, pswOk and valueOk) were defined.

The objects of type User, ATM and Bank that belong
to the SUT were instantiated in the AtmAdapter class. In
this class, a method was created for each event triggered
in EFSM transitions. These methods (insertCard(), validate-
Card(), enterPassword(), validatePassword(), enterValue() and

https://github.com/TESTSD2EFSM/SEKE2019
https://github.com/TESTSD2EFSM/SEKE2019


Fig. 4. ATM Sequence Diagram.

Fig. 5. ATM EFSM Model.

validateBalance()) are what make the communication of the
model with the SUT.

In ATMTest class was instantiated the objects of type
ATMModel and we used the LookaheadTester test strategy.
To traverse all the transitions we configure the algorithm to
generate a sequence of 70 test steps. To perform the tests we
set the card attribute equal to 111, the psw attribute equal to
123 and the balance attribute equal to 100.00. These attributes
belong to the Bank class of the SUT.

To verify the behavior of our approach, we performed the
following test cases shown on the Table I. In addition to the
test data (card, psw and value), the Table I shows action, state
and transition coverages.

In addition to the metrics presented in Table I, the
test cases TestValidateCard01, TestValidateCard02, TestVal-
idatePassword01, TestValidatePassword02, TestValidateBal-
ance01 and TestValidateBalance02 were concretized in Java
through the JUnit library. Figure 6 shows an example of the

TABLE I
TEST CASES GENERATED.

id card psw value Action State Trans.
1 222 123 50 12/12 2/2 24/24
2 222 246 200 12/12 2/2 24/24
3 111 246 50 12/12 5/5 60/60
4 111 246 200 12/12 5/5 60/60
5 111 123 50 12/12 12/12 144/144
6 111 123 200 12/12 12/12 144/144

Fig. 6. Example of test case concretized in JUnit.

concrete test case of the AtmJUnit class.
These Java classes (AtmModel, AtmAdapter, AtmTest and

AtmJUnit) are available in the ModelJUnit/src/test/java folder
of the approach repository repository 1.

V. RELATED WORKS

One of the strengths of our approach is the automatic model
transformation. As we have developed a tool to support our
method, this task can be facilitated by the use of MDE con-
cepts. Another advantage is the formulation of a UML model
into formal model, since the UML has semantics problems
and the formal models provide a set of techniques based on
precise notation that can accurately translate the behavior of
a system. In addition, since the main objective of our work
is the generation of tests, our approach uses the ModelJUnit
library to concretize the test cases in the Java programming
language. On the other hand, we identified as a limitation of
our work the use of only one UML diagram. Therefore, in
this section of related works, we will compare our approach
taking into consideration four aspects: used UML diagrams,
tool support, use of formal models and concretization of test
cases in some programming language.

In [18] is described a systematic test case generation method
performed on Model-Based Testing (MBT) approaches by
using UML Sequence Diagram. The UML Sequence Dia-
gram is converted into a graph sequence and the graph is
traversed to select the predicate functions. These predicates
are transformed into Extended Finite State Machine (EFSM).
From the EFSM, test cases are generated taking into account
state coverage, transition coverage and action coverage. This
technique is similar to ours, but EFSM is not automatically
generated from the sequence diagram. Moreover, the technique
does not use some important constructions of the Sequence
Diagrams, such as the combined fragment. In this approach the
test cases are concretized in the Java programming language.

In [19] an approach is presented to generate test cases
using UML Activity and Sequence Diagrams. The approach
consists of transforming the Sequence Diagram into a graph

https://github.com/TESTSD2EFSM/SEKE2019


called Sequence Graph and transforming the Activity Diagram
into the Activity Graph. The software graph is formed by
integrating the two graphs that are traversed to generate the
test suite. The proposal uses UML models for generating tests,
but differs from ours since it does not use MDE concepts and
does not use formal models for test generation. In addition, the
approach does not concretize test cases in some programming
language.

In [20] an approach is presented to generate test cases
using UML Sequence Diagrams. The approach consists of
transforming Sequence Diagram in to Sequence Diagram
Graph (SDG) and generate test cases from SDG. The Sequence
Diagram is built with Object Constraint Language (OCL) and
the SDG defines the activities as nodes and the interactions in
the form of paths. The test case is generated by visiting the
nodes and edges in the SDG. This proposal uses UML models
to generate tests, but differs from ours since it does not use
MDE concepts and formal models. In addition, test cases are
not implemented in any programming language.

In the work of Seo et al. [16] is presented a method for
generating test cases from Sequence Diagrams. This method
suggests to generate test cases after conducting an intermedi-
ate transformation from a Sequence Diagram to an Activity
Diagram. The proposal is similar to ours, since it uses model
transformation, but does not use a formal model for generating
test cases. Also we can not identify in the work if the
transformation of models is carried out using MDE concepts,
because it does not describe the manipulated metamodels in
the process. In addition, the approach does not concretize test
cases in some programming language.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a systematic procedure to generate
test cases from UML Sequence Diagrams. Our approach uses
concepts of Model-Driven Engineering to formalize UML
Sequence Diagrams into EFSM and uses the ModelJUnit and
JUnit libraries for automatic generation of test cases.

In Step 1, for the transformation of UML Sequence Diagram
to EFSM, we perform the mapping of the elements of the
respective metamodels through transformation rules. With this,
we can provide a precise semantics to a widely used UML
model.

In Step 2 of the approach, the formal model can be used
as basis for automating the testing process, making it more
efficient and effective. We used the ModelJUnit library to
provide an interface to implement a formal test model, an
adapter that communicates our model with the SUT and some
test strategies already implemented. In addition, the execution
of the tests is measured by coverage of state, actions and
transitions. We use the JUnit library to perform tests in the
Java programming language.

From the example, we can observe the applicability of our
proposal, mainly in the generation of functional tests, since the
approach starts with UML Sequence Diagrams that are impor-
tant tools to model software scenarios and we end with test
cases materialized in the Java programming language. These

tests were performed and metrics were generated allowing to
analyze the behavior of the SUT according to the test model
created.

As future work, other UML diagrams can be incorporated
into the systematic procedure of generating tests and apply-
ing it to real examples through case studies or controlled
experiments. In addition, the generated EFSM can be used
for formal verification, such as checking safety, liveness and
fairness properties.

REFERENCES

[1] O. M. G. OMG. (2015) Unified modeling language 2.5. [Online].
Available: http://www.omg.org/spec/UML/2.5/

[2] M. Petre, “Uml in practice,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 722–731.

[3] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Softw. Test. Verif. Reliab., vol. 22, no. 5, pp. 297–
312, 2012.

[4] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen,
A. J. H. Simons, S. Vilkomir, M. R. Woodward, and H. Zedan, “Using
formal specifications to support testing,” ACM Comput. Surv., vol. 41,
no. 2, pp. 9:1–9:76, Feb. 2009.

[5] ModelJUnit. (2010) The model-based testing tool. [Online]. Available:
https://sourceforge.net/projects/modeljunit/

[6] J. Bézivin, F. Jouault, and D. Touzet, “An introduction to the atlas model
management architecture,” 03 2005.

[7] E. M. Framework. (2018) Acceleo. [Online]. Available: https:
//www.eclipse.org/acceleo/

[8] S. Kent, “Model driven engineering,” in International Conference on
Integrated Formal Methods. Springer, 2002, pp. 286–298.

[9] O. M. G. OMG. (2016) Mof - meta object facility. [Online]. Available:
http://www.omg.org/spec/MOF/

[10] R. Yang, Z. Chen, Z. Zhang, and B. Xu, “Efsm-based test case gen-
eration: Sequence, data, and oracle,” International Journal of Software
Engineering and Knowledge Engineering, vol. 25, no. 04, pp. 633–667,
2015.

[11] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.

[12] S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel, “Meta-model pruning,”
in Model Driven Engineering Languages and Systems, A. Schürr and
B. Selic, Eds. Springer Berlin Heidelberg, 2009, pp. 32–46.

[13] F. Fondement, P.-A. Muller, L. Thiry, B. Wittmann, and G. Forestier,
“Big metamodels are evil,” in Model-Driven Engineering Languages and
Systems, A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and P. Clarke,
Eds. Springer Berlin Heidelberg, 2013, pp. 138–153.

[14] R. Grønmo and B. Møller-Pedersen, “From sequence diagrams to state
machines by graph transformation,” in Theory and Practice of Model
Transformations, L. Tratt and M. Gogolla, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 93–107.

[15] Z. Micskei and H. Waeselynck, “The many meanings of uml 2 sequence
diagrams: A survey,” vol. 10, pp. 489–514, 10 2010.

[16] Y. Seo, E. Y. Cheon, J. A. Kim, and H. S. Kim, “Techniques to generate
utp-based test cases from sequence diagrams using m2m (model-to-
model) transformation,” in IEEE/ACIS 15th International Conference
on Computer and Information Science (ICIS), June 2016, pp. 1–6.

[17] M. Utting, “How to design extended finite state machine test models
in java,” in Model-Based Testing for Embedded Systems, J. Zander,
I. Schieferdecker, and P. J. Mosterman, Eds. Boca Raton, FL: CRC
Press/Taylor and Francis Group, 2012, pp. 147–170.

[18] V. Panthi and D. P. Mohapatra, “Automatic test case generation using
sequence diagram,” in Proceedings of International Conference on
Advances in Computing, A. Kumar M., S. R., and T. V. S. Kumar, Eds.
New Delhi: Springer India, 2012, pp. 277–284.

[19] A. Tripathy and A. Mitra, “Test case generation using activity diagram
and sequence diagram,” in Proceedings of International Conference on
Advances in Computing, A. Kumar M., S. R., and T. V. S. Kumar, Eds.
New Delhi: Springer India, 2013, pp. 121–129.

[20] M. MD* and B. GB, “A new approach to derive test cases from sequence
diagram,” Information Technology & Software Engineering, 2014.

http://www.omg.org/spec/UML/2.5/
https://sourceforge.net/projects/modeljunit/
https://www.eclipse.org/acceleo/
https://www.eclipse.org/acceleo/
http://www.omg.org/spec/MOF/

	Introduction
	Background
	Sequence Diagram
	Model-Driven Transformation
	Extended Finite State Machine
	Model-Based Testing

	Our Approach
	Metamodels
	Transformation Rules
	Test Case Generation

	Example
	Related Works
	Conclusions and Future Work
	References

