
Assessing the Influence of Size Category of the
Project in God Class Detection, an Experimental
Approach based on Machine Learning (MLA)

Khalid Alkharabsheh
CiTIUS

Universidad de Santiago de Compostela
Santiago de Compostela, Spain

khalid.alkharabsheh@usc.es

Yania Crespo
Departamento de Informática

Universidad de Valladolid
Valladolid, Spain
yania@infor.uva.es

Manuel Fernández-Delgado
CiTIUS

Universidad de Santiago de Compostela
Santiago de Compostela, Spain

manuel.fernandez.delgado@usc.es

José M. Cotos
CiTIUS

Universidad de Santiago de Compostela
Santiago de Compostela, Spain

manel.cotos@usc.es

José A. Taboada
CiTIUS

Universidad de Santiago de Compostela
Santiago de Compostela, Spain

joseangel.taboada@usc.es

Abstract—Design Smell detection has proven to be an effective
strategy to improve software quality and consequently decrease
maintainability expenses. In this work, we explore the influence
of the size category of the software project on the automatic
detection of God Class Design Smell by different machine
learning techniques. A set of experiments were conducted with
eight different learning classifiers on a dataset formed by 12,588
classes of 24 systems. The results were evaluated using ROC
area and Kappa tests. The classifiers change their behaviour
when they are used in sets that differ in the value of the selected
size information of their classes. This study concludes that it is
possible to improve results, mainly in agreement, of God Class
detection feeding machine learning classifiers with project size
information of the classes to analyze.

Index Terms—Design Smell Detection; Machine Learning; God
Class.

I. INTRODUCTION

Software systems available in different departments of or-
ganizations to provide many services in different domains.
Even though the provided services are essential, but the more
critical is the software continues operating without problems
and mistakes. Software quality is an important concern for
software industries, academic, and researchers. Identifying
problems in source code or design of software, correcting
and modifying them are some of the main activities of the
maintenance process in order to increase quality.

All problems related to the software structure that does not
make compile or run-time errors are described by ”Design
Smell” [11]. The presence of Design Smells negatively affects
software quality factors, though technical debt increases [6].
Smells can appear in several software artifacts including
variables, instructions, operations, methods, classes, packages,
subsystems, layers, and their dependencies.

DOI reference number:10.18293/SEKE2019-140

God Class Design Smell is one of the most detected smells
in software according to our systematic mapping study [1]. It
has attracted the attention of the research community. God
Class is defined with different names as the Large Class
Bad Smell [10], the Blob Antipattern [5], and the God Class
Disharmony [15]. The term God Class Design Smell is the
name we use for bringing both together. It is considered as a
class level Design Smell.

Several approaches, tools, and techniques have been pro-
posed to improve the detection of God Class Design Smell.
However, some studies evidence the lack of agreement among
different tools and human experts. Moreover, they have a set of
limitations represented in understanding the precise definition
of God Class Design Smell and the process of mapping the
definition into effective detection algorithms. The current trend
in Design Smell detection has adopted machine learning for
deriving detection rules [12], [21].

This paper aims through an exploratory study to investigate
whether the size category of the project is relevant in God
Class detection. A set of experiments were conducted with
eight different classifiers. The selected classifiers are the most
recently reported in the literature and they jointly involve all
families of classifiers. Results are evaluated using ROC area
[4] and Kappa tests [2].

The main contributions of this study can be summarized
by determining the influence of project size information on
God Class Design Smell detection using machine learning
techniques. Moreover, a large dataset for God Class Design
Smell detection.

The rest of this paper is organized as follows: Section II
describes the related work. Section III presents the problem
statement ,research question, and hypothesis. Section IV de-
scribes the dataset we built. Section V exposes the methodol-



ogy we follow to identify the effectiveness of project domain
information in God Class Design Smell detection. Section VI
discusses the results of experiments. Section VII presents the
main threats to the validity and Section VIII explains our
conclusions.

II. RELATED WORK

In this section, we present studies exploiting machine learn-
ing techniques for Design Smell detection.

Jochen Kreimer [14] presents a method to detect Design
Flaws by combining object-oriented metrics and machine
learning. The proposed approach was validated using five De-
sign Flaws: Big Class also known as (The Blob), Feature Envy,
Long Method, Lazy Class and Delegator and two software
systems: IYC (91 classes) and WEKA (597 classes). Khomh
et al. [13] introduce BDTEX (Bayesian Detection Expert) a
Goal Question Metric-Based approach to detect Antipatterns
using Bayesian Belief Networks (BBNs) stood on rule-based
representation. The approach was validated using three An-
tipatterns: The Blob, Functional Decomposition and Spaghetti
Code and two Java programs: Xerces v2.7.0 (589 classes) and
GanttProject v1.10.2 (188 classes). Maiga et al. [16] introduce
SVMDetect, an approach to detect Antipatterns based on
support vector machine. They compute the object-oriented
metrics for each class. The empirical study involves four
Antipatterns: The Blob, Functional Decomposition, Spaghetti
Code and Swiss Army Knife and three open source software:
ArgoUML v0.19.8 (1,230 classes), Azureus v2.3.0.6 (1,449
classes) and Xerces v2.7.0 (513 classes). Fontana et al. [9]
present their approach based on machine learning techniques
for outline the common problems in the previous Design
Smells detection. The dataset has formed by the 59,333 classes
of 76 systems and a large set of relevant metrics. A set of
six code smells: God Class, Data Class, Feature Envy, God
Method, Brain Method, and Long Method were detected in
the experiment.

As we can see, the related works principally focused on nu-
merical information (mainly object-oriented metrics and other
well-known sets of metrics) on classes to detect a set of smells.
In our work, we focus the attention on certain nominal project
information (size category) and try to explore its influence
in God Class detection in order to take this information into
account in future work, in the aim of obtaining better results
that can be more useful for developers, improving agreement
among tools and experts.

The aim of this paper is analyzing if clarifying the size
category can lead to variations in the detection. The detection
problem is seen as a classification problem; using automatic
classifiers that separate classes in having God Class Design
Smell or not. Our dataset is formed by the 12,588 classes of
24 systems with different sizes and domains. In order to define
our dataset, we analyze these systems using five different tools
common in detecting God Class Borland Together [3], PMD
[8], iPlasma [18], DÉCOR [20] and JDeodorant [22].

III. PROBLEM STATEMENT

The problem that we examine in this study that most of the
research community has not taken into account the impact of
nominal project information on Design Smell detection. The
suspicion that we have raised involves this type of information
can be useful for developers to obtain better detection results.
For this reason, in this work, we address the effectiveness and
importance of project size nominal information in the detection
of God Class Design Smell. To address the study problem, we
introduce the following research question:

RQ: Does the differences between the size category of the
whole project influence in the detection of God Class Design
Smell?

We want to reject the null hypothesis formulated as:

Hsize
0 : Project size does not influence on God Class

detection.

We propose to obtain several classifiers trained with and
without the project size information under examination, work-
ing with the dataset taken as a whole in order to verify
whether this kind of information will affect on the behaviour
of classifiers or not. If this first exploration succeeds, the next
step should be to design the same experiment to investigate
the impact of the project size category in detecting God Class
as explained in Section V. The behaviour of classifiers is
evaluated by ROC area and Kappa performance measurements
as we will see in Sections V and VI.

IV. DATASET

Our dataset is formed by the 12,588 classes of 24 open
source systems written in Java obtained from SourceForge
source code repository which involved different domains and
size categories. We selected the SourceForge repository be-
cause it is the most widely known and used in the context
of open source software, and it supplies useful metadata for
projects. The projects are selected according to particular
criteria, such as should be written in Java, long life cycle with
several version, has a significant change history information
(development, maintenance), and the projects should be of
different size categories.

The high number of projects and classes is intended to
discard the probability of dependencies between classifiers
and a particular subset of data. Table I presents the main
characteristics of our dataset where includes [Project name,
Category of size, Number of Classes, Total Line of Code in
the project (TLOCP)].

The dataset is formed as follows: rows x1 to x16 represent
numerical attributes (metrics), x17, represent the project size
information and x18, the result of classification if a class is
God Class or not (resulting from the selected tools as a logical
or among them). Table II shows the full list of selected variable
x1 to x18 and their definition.



TABLE I
DATASET CHARACTERISTCS

ProjectName SizeCat. #Class TLOCP
jAudio-1.0.4 L 416 117,615
Freemind-1.0.1 L 782 106,396
JasperReports-4.7.1 L 1,797 350,690
SQuirreL-1.2 M-L 1,138 71,626
KeyStoreExplorer-5.1 M-L 384 83,144
DigiExtractor-2.5.2 M 80 15,668
AngryIPScanner-3.0 M 270 19,965
Plugfy-0.6 S 28 2,337
Matte-1.7 M-L 603 52,067
sMeta-1.0.3 M 222 30,843
xena-6.1.0 M-L 1,975 61,526
pmd-4.3.x M-L 800 82,885
checkstyle-6.2.0 M-L 277 41,104
JDistlib-0.3.8 M 78 32,081
JCLEC-4-base M 311 37,575
Javagraphplan-1.0 S-M 50 1,049
Mpxj-4.7 L 553 261,971
Apeiro-2.92 S-M 62 8,908
FullSync-0.10.2 M 169 24,323
OmegaT-3.1.8 L 716 121,909
Lucene-3.0.0 M-L 606 81,611
Ganttproject-2.0.10 M-L 621 66,540
JFreechart-1.0.X L 499 206,559
JHotDraw-5.2 M 151 17,807

TABLE II
VARIABLE DEFINITION

Metrics of class and package level (ratio scale)
Var Metric Definition
x1 LOC Total Lines of Code
x2 NCLOC Non-Comment Lines of Code
x3 CLOC Comment Lines of Code
x4 EXEC Executable Statements
x5 DC Density of Comments
x6 NOT Number of Types
x7 NOTa Number of Abstract Types
x8 NOTc Number of Concrete Types
x9 NOTe Number of Exported Types
x10 RFC Response for Class
x11 WMC Weighted Methods per Class
x12 DIT Depth in Tree
x13 NOC Number of Children in Tree
x14 DIP Dependency Inversion Principle
x15 LCOM Lack of Cohesion of Methods
x16 NOA Number of Attributes

Project level information (nominal scale)
Var Information Values
x17 Size category L, M-L, M, M-S, S

Smell detection (binary)
Var Design Smell According to
x18 God Class PMD, iPlasma, JDeodorant,

Décor, Together

The chosen projects are analyzed with RefactorIT v2.7 tool
1 [19] to compute a set of important class and package level
metrics. The selected metrics are widely used in state of the
art [13], [14], [17] for Design Smell detection, and some of
them are particularly related to God Class characteristics such
as cohesion (Lack of Cohesion (LCOM)), size (Line of Code
(LOC), Number of Attributes (NOA), Number of Children in
Tree (NOC), and complexity (Weighted Methods per Class

1http://RefactorIT.sourceforge.net

(WMA). The second part of Table II is regarding projects level
information, and we can see the size is consists of different
categories. We follow the same approach as [7] to classify the
projects based on categories.

As can be seen, the nominal data of size categories refers
to the size of the Total Line of Code in the whole project
(TLOCP). The project size is divided into six categories based
on the TLOCP include (Small (S) ≤ 4, 999; 5, 000 ≤ Small-
Medium (S-M)≤ 14, 999; 15000 ≤ Medium (M) ≤ 39, 999;
40, 000 ≤ Medium-large (M-L) ≤ 99, 999; 100, 000 ≤ Large
(L) ≤ 499, 999; Very large (VL)≥500,000). In fact, this is
more precisely an ordinal scale. But we are not going to treat
it as ordinal just as a nominal category.

The final part of the table focused on the selected God
Class detection tools. To obtain the value of variable x18, we
used the following five Design Smell detection tool: The five
tools are DÉCOR, JDeodorant, iPlasma, PMD, and Together.
The tools were selected based on the results of a systematic
mapping study [1] we conducted on the state of play in the
field of Design Smell detection for the period 2000 to 2017.
The selected tools are one of the most cited and used in the
literature, and are commonly employed in God Class detection.
Moreover, all the tools support projects implemented in the
Java language and the input source is source code while the
output is text in different formats such as CSV, txt, XML.
Also, most of the tools focus only on smell detection, except
for JDeodorant which includes a refactoring operation that is
performed after the Design Smells have been identified. Nearly
all of the tools have a GUI except for PMD, which is the only
tool that has been developed to support both a Textual User
Interface (TUI) and a GUI.

We use the output of these tools considered as experts for
feeding the data mining algorithms according to the following
criteria. If one tool or more detect God Class Design Smell in
a particular class, we assign a true value in the God Class
attribute. Otherwise, this attribute is set false (as a logical
or among them). According to this strategy, the presence of
the God Class smell is distributed along the different size
categories of the data we are dealing with. Dataset is available
on the web2.

Despite the high number of projects, our dataset includes
1,958 God Classes against 12,588 classes. According to our
experience in the area, the nature of God Class Design Smell
leads to obtaining low ratios of smelly classes detected in each
project. As we can observe from Table III, the number of God
Classes in all categories are enough as inputs to the classifiers
for God Class detection. Our dataset includes only one God
Class smell in the small size category (S). In our experience it
is normal in a small size project to detect one or at most two
God Classes if the project is not a complete disaster. We can
either discard this category or add more projects if we find.
But we do not, because in this case, the small category do
not represent a subset of all dataset or cause a problem if the
Hsize

0 . We decide to include this category in our experiments

2https://citius.usc.es/investigacion/datasets/project-nominal-information



because we choose all classes in each project to send feedback
to the project developers.

TABLE III
BUILDING SET, TESTING SET, AND GOD CLASS DISTRIBUTION BY THE

SIZE CATEGORIES.(NP: NUMBER OF PROJECT, NOC: NUMBER OF CLASS,
GC: GOD CLASSES)

Category #NP #NOC #GC %GC
L (Testing set) 6 4,763 967 20%
M-L (Building set) 8 5,123 623 12%
M-L (Testing set) 1,281 132 10%
M (Testing set) 7 1,281 198 16%
S-M (Testing set) 2 112 34 30%
S (Testing set) 1 28 1 4%

The high number of projects in a specific category of the
size does not mean having more God classes such as (L,
M) categories, but when the number of classes increases in
a particular category, it implies increasing the number of
God Classes. Therefore, it is difficult to balance the dataset
categories. The high number of categories implies a lot of
subsets to have God classes distributed across them. We
would need to increase the number of projects (and classes)
significantly to obtain God Class in all of them. Instead of
this, we modify our intention and only will use the M-L size
category to build classifiers as explained in the next section.

V. METHODOLOGY

In state of the art for Design Smell detection with machine
learning algorithms, a different set of classifiers have been
used. We choose a set of eight supervised machine learning
techniques that are available in Weka version 3.7 [23], which
is a comprehensive collection of machine learning algorithm
tools used for data analysis and predictive modeling. The high
number of selected techniques allows discarding one of them
if it is obtained a particular behaviour or it seems to depend
on specific data. We work based on different approaches with
the default parameters [NaiveBayes (NB), J48, RandomForest
(RF), JRip, SMO, IBK, CHIRP and RandomCommittee (RC)].
We decide training with default parameters in all cases because
we are not tuning for obtaining the best classifier. What we
want to show is that whatever the classifier is, it is a better
classifier if the project size category is taken into account.

Firstly, as an exploratory work, we have trained several
classifiers with and without size information (x17) to verify
whether the use of this type of information increases the
quality of classifiers or not. Secondly, the methodology we
propose consists of obtaining a classifier trained with projects
with the same value for size nominal variable (x17).

As we stated in Section III, the null hypothesis was for-
mulated as size project information does not affect on God
Class detection. The intention is to reject each null hypothesis
(Hsize

0 ). We assume in our experimental design that if size
information is not important, a classifier built for the category
Medium-Large (M-L) of size category info (x17), should
behave the same when classifying projects from different size
categories. If this does not happen and the classifiers behave

worse, we can reject the null hypothesis Hsize
0 and say that

the size category information is important.

Fig. 1. proposed approach.

Figure 1 summarizes the proposed methodology to obtain
the trained classifiers that we will use in the hypothesis testing
process. The building set, i.e., the set devoted for building a
classifier uses the 80% of the projects in M-L category for
x17. The testing set contains the projects in the rest of the
categories of size (L, M, S-M, S) plus the remaining 20%
from the category that has the highest number of classes (M-
L) previously selected to be the building set. This is the set
used to test the hypothesis. The set of classes in building and
testing data are completely different and are distributed on
different project categories.

The building set is divided into two parts. The first part
includes 80% to be the training set and the remaining 20%
to be the validation set. The training set is supplied to the
machine learning algorithm to obtain the required classifier.
After that, the validation set is used to validate it. If the
classifier is good, the testing set is supplied to the classifier
to test the hypothesis. Otherwise, we repeat the process of



using the training and validation set until a good classifier is
obtained.

The ROC area test obtains a comprehensive effectiveness
evaluation of classifiers. This test shows the relation between
the sensitivity and the specificity of the classifiers. Table IV
shows the traditional classification of this test.

TABLE IV
INTERPRETATION OF THE ROC AREA (R).

ROC value Interpretation
0.5 < ROC ≤ 0.6 Fail
0.6 < ROC ≤ 0.7 Poor
0.7 < ROC ≤ 0.8 Fair
0.8 < ROC ≤ 0.9 Good
0.9 < ROC ≤ 1 Excellent

Kappa measures the degree of agreement (or concordance)
of the nominal or ordinal assessments made by appraisers
when assessing the same samples. Kappa can range from −1 to
+1. The higher the value of Kappa, the stronger the agreement.
Table V shows the interpretation of this coefficient.

TABLE V
INTERPRETATION OF THE KAPPA VALUES (K).

Kappa value Degree of Agreement
k < 0.20 Poor
0.21 ≤ k < 0.40 Fair (Weak)
0.41 ≤ k < 0.60 Moderate
0.61 ≤ k < 0.80 Substantial (Good)
0.81 ≤ k ≤ 1.00 Almost perfect (Very Good)

VI. RESULTS AND DISCUSSION

In this section, we present the results of our experiments re-
garding the influence of the size category nominal information
on the detection of God Class to reject the null hypothesis.

Table VI shows the classifiers results when we trained them
with all dataset as a whole without size category information
(cat. info.) and with size category information. In the ROC
area, the majority of classifiers obtain a Good to Excellent
behaviour with and without size information except for IBk
and SMO in the first case (without size) and JRip in the second
case(with size). In particular, SMO’s behaviour according to
ROC is fair and almost fair in both cases. On the other hand,
in the Kappa test, which is considered better indicator because
the ratio of detected God Class in the most categories is
less than 20%, the classifiers obtain a better result with the
selected size information than without this information. In
this case, SMO and NB obtained the worst results in general
(0.467, 0.4967), respectively. According to Kappa analysis, the
behaviour of classifiers is improved with the size information.
Based on this, we conducted the experiment explained in
Figure 1 on the size in order to analyze Hsize

0 .
Figure 2 shows the ROC area results of the classifiers trained

regarding a single category (M-L building set) for project
size information x17. All classifiers when exercised with the
testing set for the same values of the categories (M-L) for size,

TABLE VI
TRAINED CLASSIFIERS

Without size cat. Info. With size cat. Info.
Classifier ROC Kappa ROC Kappa
IBK 0.776 0.3062 0.989 0.934
CHAIRP 0.85 0.5505 0.812 0.7041
J48 0.874 0.4572 0.941 0.7936
JRip 0.864 0.529 0.772 0.6097
SMO 0.703 0.5054 0.683 0.467
NB 0.946 0.5659 0.86 0.4967
RC 0.918 0.4799 1 0.9986
RF 0.944 0.5479 1 0.9982

that were used for building the classifiers obtain the highest
values of ROC area compared with the rest of the categories
in size nominal information (the top black line of the figure).
It deserves to say that we are not training the classifiers to
be the best. As we stated before, we are just working with
default parameters. What we are showing here is that the same
algorithm is better being sensitive to the project size category
in which it was trained. So, it is considered good evidence
that taking into account the information we are analyzing in
this work for God Class detection would improve results.

Fig. 2. ROC area performance.

Figure 3 presents the results of the Kappa test for the
classifiers trained regarding a single category (building set) for
project size information. The testing set with the same value in
the size category (M-L) is marked as the black highlighted line
in the top of the figure. The better Kappa values are obtained,
compared with the rest of the categories except NB in the (M-
L) category. Based on the Kappa results, we can say, the size
nominal information influence on the detection of God Class.
Therefore, we can reject the null hypothesis Hsize

0 .

VII. THREATS TO VALIDITY

In this paper, we highlighted a set of threats to internal
validity that affects negatively on our experiment such as the
disproportionate number of project in every category of the
size nominal information. On the other hand, as threats to
external validity, all project is written in Java in order to use
the selected set of tools. We did not include the “very large”
size projects. Also, the dataset did not include a set of different
versions of the same project. This work is focusing on one type
of smell (God Class). We need to study other smells that can
be detected in different software artifacts. Another threat is



Fig. 3. Kappa values.

the limited number of class level metrics we use and the tools
used to analyze the projects (in the metric collection and smell
detection).

VIII. CONCLUSIONS AND FUTURE WORK

Our study presented an experimental approach based on
machine learning techniques to identify the effective influence
of the size category of the project regarding the detection of
God Class. In this paper, we present an exploratory study
to check whether this information is relevant to be supplied
to the classifier and can lead to variations in the classifica-
tion usefulness, mainly concerning effectiveness (ROC) and
agreement (Kappa). All classifiers behave worst according to
ROC area and Kappa value tests for categories that were not
present when building the classifiers. This study concludes
the importance of the size category of the project in the
Design Smell detection through machine learning classifiers
and should be taken into account in the future works in order
to obtain more useful classifiers.

A large dataset formed by the 12, 588 classes of 24 systems
with different domains and size categories was defined. The
classes in the dataset were analyzed by the five different tools
selected as experts for God Class detection.

Our future work will focus on replicating the experiments
reported in this work rather than using automatic tools as
experts we will involve professional human experts from the
industry in identifying true God Classes. The same approach
could also be extended to study other software context infor-
mation, such as domain, programming language. Also includ-
ing other types of design smell, machine learning techniques,
and metrics, to confirm whether the proposed methodology
has general applicability.

REFERENCES

[1] Khalid Alkharabsheh, Yania Crespo, Esperanza Manso, and José A.
Taboada. Software design smell detection: a systematic mapping study.
Software Quality Journal, pages 1–80, Oct 2018.

[2] N.J.M. Blackman and J.J. Koval. Interval estimation for cohen’s kappa
as a measure of agreement. Statistics in medicine, 19(5):723–741, 2000.

[3] Borland. Together. http://www.borland.com/us/products/together. [Ac-
cessed: 2014-04-06].

[4] Andrew P Bradley. The use of the area under the roc curve in
the evaluation of machine learning algorithms. Pattern recognition,
30(7):1145–1159, 1997.

[5] William J. Brown, Raphael C. Malveau, Hays W. McCormick III, and
Thomas J. Mowbray. AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis. John Wiley and Sons, March 1998.

[6] Ward Cunningham. The wycash portfolio management system. ACM
SIGPLAN OOPS Messenger, 4(2):29–30, 1993.

[7] Francesca Arcelli Fontana, Vincenzo Ferme, Armando Marino, Bohme
Walter, and Pawel Martenka. Investigating the impact of code smells
on systems quality: An empirical study on systems of different appli-
cation domains. In 29th IEEE International Conference on Software
Maintenance, pages 260 – 269, September 2013.

[8] Francesca Arcelli Fontana and Stefano Spinelli. Impact of refactoring on
quality code evaluation. In 4th Workshop on Refactoring Tools, pages
37–40, New York, NY, USA, 2011.

[9] Francesca Arcelli Fontana, M. Zanoni, Armando Marino, and Mika V.
Mantyla. Code smell detection: Towards a machine learning-based
approach. In 29th IEEE International Conference on Software Mainte-
nance, pages 396 – 399, September 2013.

[10] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Object
Technology Series. Addison-Wesley, June 1999.

[11] Francisco Javier Prez Garcı́a. Refactoring Planning for Design Smell
Correction in Object-Oriented Software. PhD thesis, Universidad de
Valladolid, Valladolid, 2011.

[12] A. Hamid, M. Ilyas, M. Hummayun, and A. Nawaz. A Comparative
Study on Code Smell Detection Tools. International Journal of Ad-
vanced Science and Technology, 60:25–32, 2013.

[13] Foutse Khomh, Stephane Vaucher, Yann-Gaél Guéhéneuc, and Houari
Sahraoui. BDTEX: A GQM-based bayesian approach for the detection
of antipatterns. The Journal of Systems and Software, 84(4):559–572,
2011.

[14] Jochen Kreimer. Adaptive detection of design flaws. Electronic Notes
in Theoretical Computer Science, 141(4):117–136, December 2005.

[15] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Prac-
tice - Using Software Metrics to Characterize, Evaluate, and Improve
the Design of Object-Oriented Systems. Springer, 2006.

[16] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Saban andYann
Gal Guéhéneuc, Giuliano Antoniol, and Esma Ameur. Support vector
machines for anti-pattern detection. In 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering., pages 278–281,
September 2012.

[17] Nakarin Maneerat and Pomsiri Muenchaisri. Bad-smell prediction
from software design model using machine learning techniques. In
8th International Joint Conference on Computer Science and Software
Engineering, pages 331 – 336, May 2011.

[18] Cristina Marinescu, Radu Marinescu, Petru Florin Mihancea, Daniel
Ratiu, and Richard Wettel. iPlasma: An integrated platform for quality
assessment of object-oriented design. In 21st International Conference
on Software Maintenance - Industrial and Tool Volume, pages 77–80,
Budapest, Hungary, September 2005.

[19] Raúl Marticorena, Carlos López, and Yania Crespo. Extending a
taxonomy of bad code smells with metrics. In 7th ECCOP International
Workshop on Object-Oriented Reengineering (WOOR), page 6. Citeseer,
2006.

[20] Naouel Moha and Yann-Gael Guéhéneuc. DÉCOR: A tool for the de-
tection of design defects. In 22nd IEEE/ACM International Conference
on Automated Software Engineering, pages 527–528, New York, NY,
USA, 2007.

[21] Javier Pérez, Carlos López, Naouel Moha, and Tom Mens. A classifi-
cation framework and survey for design smell management. Technical
Report 2011/01, Grupo GIRO, Departamento de Informática, Universi-
dad de Valladolid, March 2011.

[22] Nikolaos Tsantalis, Tsantalis Chaikalis, and Alexander Chatzigeorgiou.
JDeodorant: Identification and removal of type-checking bad smells. In
12th European Conference on Software Maintenance and Reengineer-
ing, pages 329–331, April 2008.

[23] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining Practical
Machine Learning Tools and Techniques. Elsevier, 2011.


