
Forward Engineering Completeness for Software

by Using Requirements Validation Framework

Nayyar Iqbal1,2,3, Jun Sang1,2, Min Gao1,2, Haibo Hu1,2, Hong Xiang1,2

1Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education,

Chongqing University, Chongqing 400044, China
2School of Big Data & Software Engineering, Chongqing University, Chongqing 401331, China

3Department of Computer Science, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan

nayyariqbal@cqu.edu.cn, jsang@cqu.edu.cn, gaomin@cqu.edu.cn, haibo.hu@cqu.edu.cn, xianghong@cqu.edu.cn

Abstract—In software development environment, software

companies usually ignore the user requirements validation

process in requirement gathering phase, which results in large

number of modifications being required in the software

maintenance phase to fulfill the customer requirements.

Identification of accurate requirements from user stories and

determining the effectiveness of work deliverable of software

industry has always been a challenging task. In this paper, a new

measurement approach for forward engineering completeness

for software was introduced by using requirements validation

framework. The forward engineering completeness for software

was measured in two steps. In the first step, software component

structure was developed in order to find the functional and non-

functional requirements rejected by the customers in the

requirement validation framework. In the second step,

completeness of software from component-based development

was determined in which the following parameters, such as

functional, non-functional completeness attributes, were

considered in the measurement process, and the unadopted

attributes of the reuse code were also considered. Quality level

for the attributes were assigned based upon the valuation of

interior quality of the source code. Therefore, it resulted in the

reduction of development time required for the software and the

cost required for the software development was also reduced. A

case study was incorporated in this research to explain the

measurement process of forward engineering completeness. If

the forward engineering code is satisfying the quality standards,

then the code is in the completeness form. The attributes of code

that negates to be used were considered as unadopted attributes.

Keywords-completeness; forward engineering; functional

requirements; non-functional requirements; requirements

engineering; validation

I. INTRODUCTION

It has been observed that software industries that abused
the Requirement Engineering (RE) in the software
development process resulted in the project failures [1-6].
Ana-Maria et al. [7] argued that business analysts needed to
focus on requirement gathering techniques in a technically
responsible way. Question had been raised as to the

relationship between the functional and non-functional
requirements, with some, such as Vishal and Xiaoqing [8],
argued that there was reciprocal relationship. Software quality
measurement is one of the most complicated tasks in software
design methodology [9]. Quality of the software can be
determined by the success of software system for this various
parameters, framework and methodologies has been proposed
[10]. Forward Engineering as defined by Pressman [11] “In
most cases, forward engineering does not simply create a
modern equivalent of an older program. Rather, new user and
technology requirements are integrated into the reengineering
effort. The redeveloped program extends the capabilities of
the older application”. Reverse and forward engineering are
practiced in the legacy systems to extend the system usable
lifespan [12].

Requirements are client’s invariant statements related to
sub system or system [13]. Functional requirement describes
the complete functionality of software components that should
be required in the software. Non-functional requirement
describes the requirements of software with respect to
security, usability, portability, availability, capacity,
efficiency and reliability [14]. In past lot of work has been
done by the researchers on functional and non-functional
requirements. But illustrating the graphical user interface for
user requirements in the software specification, in order to
validate the user requirements has always been ignored in the
requirement gathering phase. This research focus on the
importance of validation of user requirements so that time and
budget wasted in the modification of software in the
maintenance phase can be saved. Thalheim [15] suggested the
design quality parameters which include completeness,
naturalness, minimality and flexibility. The software after the
development process is said to be in the completeness form, if
it satisfies all the functional and non-functional requirements.
Component is a reusable visible interface, which is the
factored form of any software or sub system. Software
architecture is a static structure that represents arrangement of
components [13]. This research was conducted with the
collaboration of software company. In this new template is
introduced by the authors that demonstrates the requirements
of software components, which is illustrated in Table 1. In DOI reference number: 10.18293/SEKE2019-144

order to identify the adjusted and unadopted requirements
Table 1 was discussed in the requirements validation
framework.

In this research authors defines the two types of
requirements unadopted and adjusted requirements. The
functional or non-functional requirements rejected by Chief
Executive Officer (CEO) of software users/customers are
called unadopted requirements. Business analyst gathers the
software requirements from software users/customers in
natural language, after this these requirements were illustrated
in Table 1, i.e. if software users/customers identifies that user
login should not be by user name and password, but it must be
by any of the followings: thumb scan, scan of Quick Response
(QR) code or scanning the bar code of employee card etc. in
the requirement validation framework then the rejected
requirements are called unadopted requirements. Adjusted
requirements are new requirements (functional or non-
functional requirements) which are added in the software
according to users demand or when any existing software
components are replaced with new software components, then
new functional and non-functional requirements are
incorporated into the software. Examples includes:
replacement of software component of login (email address
and password) with QR code. In addition, as existing
functionality of software was to calculate percentile of student
result and now the customer of software has demanded that
the software must also calculate Cumulative Grade Point
Average (CGPA) of the student. Completeness is defined as
“the state or condition of having all the necessary or
appropriate parts” [16]. Whereas requirements completeness
is defined as “a quality demanded to the set of software
requirements and to each requirement itself, in order to ensure
that there is no information left aside” [17].

In order to adapt the complete customer requirements in
the software, software industries are developing the software
globally [18]. The purpose of global software development is
to gather the adjusted requirements of the software. As
different countries use different social network software, such
as Instagram, Twitter, Reddit, and Facebook etc., according to
their requirements, therefore different regions in the world has
different adjusted requirements. These differences are due to
cultural difference, language difference, platform difference,
business process difference and how the organization interpret
with manual work. Different countries have different cultural
and business-related problems so there is need to develop the
software that captures the complete organization processing
tasks. For this adjusted requirement must be incorporated in
the requirement gathering phase, so that the developed
software must be in the complete form.

II. METHODOLOGY

In this research authors develops the software by using
forward engineering completeness approach. The
methodology structure is illustrated in the Fig. 1. The
developed system is said to be in forward engineering
completeness, if it is developed with complete conditions or
states of new business procedures and rules according to
software engineering philosophies. In System Specification
(SyS) information related to functional requirements, data

requirements, quality requirements and constraints for
software was determined. Problem definition, objectives,
goals, context and major capabilities of the software was
determined.

Figure 1. Forward Engineering Completeness

The purpose of requirement validation framework was to
identify unadopted requirements as illustrated in the Fig. 2. In
this business requirements were gathered from the users in
which user identifies the goal and objectives of the system.

Figure 1. Requirements Validation Framework

The business analyst specifies the functional and non-
functional requirements of the system. The business analyst
and software engineer completed the task of software
specification as shown in Table 1. The Software Quality
Assurance (SQA) team members performed testing on the
software to identify the errors in the software components.
The basic purpose of this Table 1 was to present it in the
framework meeting so the different categories of end-users
from different regions can present their views. Scribe writes
the report of the meeting. Chief executive officer attended the
meeting along with end-users. Project manager and
development team leader monitored the complete working
process from requirement gathering to validation process.
Software developer delivers the presentation of software
requirements. The advantage of using this requirement
validation framework showed the successful completion of
software because after this process software modifications
were not required in the software maintenance phase.

Rules & Definitions

Where S stands for Software, Ri, FRj, NFRk stands for n
number of Requirements, Functional Requirements and Non-
Functional Requirements respectively. Where 1 < i < n, 1 < j
< n and 1 < k < n.

S (R1, R2, R3, …Rn)

whereas

FRj & NFRk ∈ Ri

As defined by Sommerville [19]

S (“what a software should do” & “how the system will do

so”)

Therefore

S (FR1 & NFR1, FR2 & NFR2, FR3 & NFR3, …. FRn & NFRn)

Unadopted and adjusted requirements can be functional or
non-functional requirements. Unadopted functional,
unadopted non-functional, adjusted functional and adjusted
non-functional requirements are represented by UFRl,
UNFRm, AFRp and ANFRq respectively. SFEC stands for
software developed by forward engineering completeness
approach. Where 1 < l < n, 1 < m < n, 1 < p < n and 1 < q <
n.

FRj & NFRk ∈ S and

also

UFRl & UNFRm ∈ S

but
AFRp & ANFRq ∉ S

whereas

AFRp & ANFRq ∈ SFEC

In order to measure the Forward Engineering
Completeness for the software this research incorporates case
study and two steps were considered in the measurement
process. In the first step, unadopted requirements were
identified in the requirement validation framework and for
adjusted requirements, structure of software component was
also discussed. In the second step, software completeness was
calculated by using following parameters. i-First parameter
was functional and non-functional requirements attributes.
These attributes determine the completeness of the forward
engineering. In this integration among the attributes was also
determined, which increases the completeness value. More
completeness scales the forward engineering process closer to
the actual budget and development schedule of the software
and vice versa. ii-Second parameter was unadopted attributes.
In which authors identified those attributes that were not
required in the software by requirement validation framework.
The identification of unadopted attributes helps in budget and
time saving. The time spent on developing the software
components that were not required in the developed software,
was saved by identifying the unadopted attribute in the initial
phase.

As clarified by Sommerville [19] “the non-functional
requirements should define the usability, security, availability
and performance requirements of the service”. Therefore,
usability and security were important for each component in
non-functional requirements. The introduced technique was
helpful for software engineers to measure the forward
engineering completeness for software. In forward

engineering, the software changes can be in terms of
technology or adding new functionality e.g. if software was
developed in old technology it can be changed to new
technology for this, functional, non-functional and unadopted
requirements were identified according to plate form
difference.

III. CASE STUDY

Table 1 consists of three columns, first column describes
the functional requirements of software, second column
describes the system response and the third column illustrates
the software components structure. Table 1 was discussed in
the requirement validation framework. The non-functional
requirements where were applicable, were explained by using
software component structures in the requirement validation
framework. In the pre-condition, user login the system by
using organization email address. The organization email
addresses and default password were issued by the
organization for their employees.

TABLE I. REQUIREMENTS OF SOFTWARE COMPONENTS

Functional
Requirements

System

Response

Software

Components

FR1: The system shall

display text box to

enter the email address

The system displays a

message asking the

user to enter
organization email

address

FR2: The system shall

display text box to enter

the password

The system displays a

message asking the
user to enter the

password

 The system displays a
message of “Successful
Login”

 The system displays
the user Employee
Number (EN) and
name after the login

FR3: The system shall
display options (yes/no)
to change the password

The system asks the
user if he/she wants to
change the password

 If the user clicks on the
yes option, the system
displays a message
asking the user to enter
current password, new
password and confirm
new password

 The system displays
the message “Password
Changed Please login
again with new
Password”

FR4: The system shall

display drop-down list

for the selection of

department

The system displays a

message asking the

user to select the
department from the

drop-down list

FR5: The system shall

display drop-down list

for the selection of

employee title

The system displays a

message asking the

user to select employee

title from the drop-

down list

FR6: The system shall
display calendar control
for the selection of date
of joining

The system displays a
message asking the
user to select date of
joining the organization
from the calendar
control

FR7: The system shall

display drop-down list

for the selection of bank
title

The system displays a
message asking the
user to select bank title
from the drop-down list

FR8: The system shall
display text box to enter
bank account number

The system displays a
message asking the
user to enter bank
account number

FR9: The system shall
display text box to enter
home address

The system displays a

message asking the
user to enter home

address

FR10: The system shall
display text box to enter
contact number

The system displays a

message asking the
user to enter contact

number

FR11: The system shall
display options (yes/no)
to save the changes

The system displays a
message asking the
user whether he/she
wants to save the
required data in the
software or not

 The system displays the
message “Changes

Saved” if user clicks

on the yes option

A. Condition 1

Customer1 from organization1, requested the modification
in the software, functional and non-functional requirements
for user login were by scanning the bar code of employee card
with the bar code reader instead of login by email address and
password. The bar code reader will be connected with the
system through serial port or interface device called wedge or
keyboard port. The bar code of the card will be matched with
the repository of the user saved in the software in order to find
the user matching text (identification).

According to Table 1, Functional Requirement Attributes
(FRA) are those that defines the system behavior under precise
circumstances. FRA (email_address, password,
change_password, current_password, new_password,
confirm_new_password, department, employee_title,
date_of_joining, bank_title, bank_account_number,
home_address, contact_number, save_changes). Non-
functional Requirement Attributes (NFRA) are those that
defines in what way a system must act and create restraints on
its functionality. NFRA (security, usability, portability,
availability, capacity, efficiency, reliability, performance,
integrity, recovery, compatibility, maintainability).
Unadopted Attributes, Total functional and non-functional
requirements Attributes are represented by UA and TA
respectively. In this following were the unadopted attributes
email_address, password, change_password,

current_password, new_password, confirm_new_password.
FRA = 14, NFRA = 12, UA = 6, TA = 26.

Functional Requirement Attributes Completeness

(FRAC) = FRA/TA = 14/26 = 0.54

Non-Functional Requirements Attributes Completeness

(NFRAC) = NFRA/TA = 12/26 = 0.46

Unadopted Attributes Completeness

(UAC) = UA/TA = 6/26 = 0.23

Software Completeness = FRAC + NFRAC - UAC

= 0.54 + 0.46 - 0.23 = 0.77

As the value are represented in unit interval (0, 1).

B. Condition 2

Customer2 from organization2, whose functional and non-
functional requirement were: when the user login the system
by email address and password. The system shall send PIN at
the user cellphone for further authentication of user. So, there
was requirement of new functionality by the user to be added
in the software. The new functionality was required to be
integrated with email software component. According to
Table 1, FRA = 14, NFRA = 12, UA = 1, TA = 26.

Functional Requirement Attributes Completeness

(FRAC) = FRA/TA = 14/26 = 0.54

Non-Functional Requirements Attributes Completeness

(NFRAC) = NFRA/TA = 12/26 = 0.46

Unadopted Attributes Completeness

(UAC) = UA/TA = 1/26 = 0.04

Software Completeness = FRAC + NFRAC - UAC

= 0.54 + 0.46 – 0.04 = 0.96

C. Condition 3

Customer3 from organization3, functional and non-
functional requirements for user login were by thumb scan or
by scanning the Quick Response (QR) code instead of login
by email address and password. QR code functionalities are
represented in the Fig. 3 [10].

Figure 3. QR Code

According to Table 1, the value of FRA, NFRA, UA and
TA were same as for condition 1, because unadopted attributes
in both conditions were same.

Software Completeness = FRAC + NFRAC - UAC

= 0.54 + 0.46 - 0.23 = 0.77

D. Condition 4

Customer4 from organization4, functional and non-
functional requirements were by selecting images for the
password. The images must be available in the software.
According to Table 1, FRA = 14, NFRA = 12, UA = 4, TA =
26. In this unadopted attribute were password,
current_password, new_password, confirm_new_password.

Functional Requirement Attributes Completeness

(FRAC) = FRA/TA = 14/26 = 0.54

Non-Functional Requirements Attributes Completeness

(NFRAC) = NFRA/TA = 12/26 = 0.46

Unadopted Attributes Completeness

(UAC) = UA/TA = 4/26 = 0.15

Software Completeness = FRAC + NFRAC - UAC

= 0.54 + 0.46 - 0.15 = 0.85

Figure 4. Images Displayed for Password

In this user selects six images for password according to

his/her order.

Figure 5. Images Selected for Password

In this research, complete software was developed in
which team A used Forward Engineering (FE) approach.
Team B developed the software by using Forward
Engineering Completeness (FEC) approach. Both approaches
were evaluated by monitoring following types of
errors/defects [11]: Incomplete or Erroneous Specification
(IES), Misinterpretation of Customer Communication
(MCC), Intentional Deviation from Specification (IDS),
Inconsistent Component Interface (ICI), Miscellaneous
(MIS). Total number of Correct Functionalities (CF) in the
software were also counted. In this research only IES, MCC,
IDS, ICI, MIS, were monitored, because these errors/defects
were related to the introduced technique. Total number of
functional and non-functional requirements in the software
were 1398. Table 1 represents the basic software
components. During the evaluation process following errors
in the software were identified: IES = 173, MCC = 122, IDS
= 27, ICI = 42, MIS = 301, CF = 733 as shown in Fig. 6. All
other errors/defects that does not belong to IES, MCC, IDS,
ICI, were considered in the MIS. One value was assigned for
one error/defect whether that error/defect belongs to
functional or non-functional requirements of 1398 total
requirements.

Figure 6. Errors & Correct Functionalities in FE Approach

In forward engineering completeness same type of
errors/defects were monitored in the development process in
order to determine the importance of requirement validation
framework. Total number of functional and non-functional
requirements were in the range of 1398 to 1430. The range in
requirements were due to modifications in the unadopted
requirements in order to fulfill different customer needs.
Maximum value of requirements was assigned to the total
requirements. During the evaluation process total number of
errors in the software were as: IES = 11, MCC = 14, IDS =
9, ICI = 21, MIS = 39, CF = 1336 as shown in Fig. 7.

Figure 7. Errors & Correct Functionalities in FEC Approach

Team A developed the software without following the
introduced techniques whereas team B followed the template
of table for software requirements. After this these
requirements were validated in the requirement validation
framework before the actual development of software. Team
A software development duration was more than the
prescribed duration whereas team B developed the software
in less than the prescribed duration. Total percentage of errors
in software requirements was about 48% in forward
engineering approach. In forward engineering completeness
approach total percentage of errors in software requirements
was about 7%. The decrease in errors was due to the
validation of requirements before the software development.
It has been observed that if development time of software
increase, budget allocated for that software becomes less. As
team A completed the software two months more than
prescribed duration, so for these two months extra budget was

IES
12%

MCC
9%

IDS
2%

ICI
3% MIS

22%

CF
52%

Other
74%

Forward Engineer ing

IES MCC IDS ICI MIS CF

IES
1%

MCC
1%

IDS
1%

ICI
1%

MIS
3%

CF
93%

Other
96%

Forward Engineer ing
Completeness

IES MCC IDS ICI MIS CF

used in order to fulfill the salaries requirements of employees
and other expenses of software company. Software
development time increases due to identification of errors and
defects in software, if these are found in last phases of system
development life cycle than more time is required to remove
them. As team B developed the software by using
requirement validation framework therefore the defects
found in this were nearly negligible. From the Fig. 7 it has
been observed that whenever unadopted requirements are
identified at the start of software development, there was
reduction in budget and time duration for development also
reduces. Forty-five days were required by Team A to perform
corrective, adaptive, perfective and preventive maintenance
whereas Team B completed all maintenance types in one day.

IV. CONCLUSIONS

This research supported the convincing evidence that,
whenever requirement validation framework was used in the
forward engineering, then surplus budget allocated for the
maintenance phase was saved. The suitability of attributes
allows illustrating conclusion about how suitable software
component was for a specific problem. The time required to
develop the software was also reduced. The time spends on
corrective, adaptive, perfective and preventive maintenance
reduces approximately 1 to 2 months for one-year projects,
whereas in normal routine it takes 2 to 3 times more than
scheduled time. It has been observed that software size is
increasing day by day due to change in technology and new
requirements of end-users. As software size increases
ultimately the software complexity also increases. In the final
phase the software, size becomes like a pyramid so if user
stories are ignored in the requirement gathering phase then
large number of errors and defects are identified in the
software. The requirement validation framework identified
the unadopted requirement in the software and new
requirement were also identified in the face to face meeting
which resulted the software in completeness form. The
identification of unadopted requirement saved the software
engineers from complexity of errors and defects.

ACKNOWLEDGMENT

This work was supported by Chongqing Research
Program of Basic Science & Frontier Technology with Grant
No. cstc2017jcyjB0305.

REFERENCES

[1] S. Lauesen, “Problem-Oriented Requirements in Practice -A Case
Study”, In REFSQ 2018, Utrecht, Netherlands, 2018, pp. 3-19.

[2] R. B. Svensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni, R.
Feldt, “Quality requirements in industrial practice - an extended

interview study at eleven companies,” IEEE Trans. Softw. Eng. Vol.
38, 2012, pp. 923–935.

[3] R. Berntsson-Svensson, T. Olsson, B. Regnell, “An Investigation of
How Quality Requirements are Specified in Industrial Practice”, Inf.
Softw. Technol. vol. 55, 2013, pp. 1224–1236.

[4] K. Wnuk, R. K. Kollu, “A Systematic Mapping Study on Requirements
Scoping”, In: Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering, Limerick,
Ireland, 2016.

[5] P. Zave, M. Jackson, “Four Dark Corners of Requirements
Engineering”, ACM Trans. Softw. Eng. Methodol. 6(1), 1997, pp. 1–
30.

[6] S. Hotomski, E. B. Charrada, M. Glinz, “An Exploratory Study on
Handling Requirements and Acceptance Test Documentation in
Industry”, In: 24th IEEE International Requirements Engineering
Conference, Beijing, China, 2016, pp. 116–129.

[7] G. Ana-Maria, O. Cristina-Claudia, A. B. Robert, “Security
Requirements Elicitation from Engineering Governance, Risk
Management and Compliance”, In REFSQ 2018, Utrecht, Netherlands,
2018, pp. 283-289.

[8] S. Vishal, F. L. Xiaoqing, “Analysis of Conflicts Among Non-
Functional Requirements Using Integrated Analysis of Functional and
Non-Functional Requirements”, In 31st Annual International Computer
Software and Applications Conference, IEEE Computer Society,
Beijing, China, 2007, pp. 215-218.

[9] M. K. Chawla, I. Chhabra, “A Quantitative Framework for Integrated
Software Quality Measurement in Multiversions Systems,”
International Conference on Internet of Things and Applications,
IEEE, Pune, India, 2016, pp. 310-315.

[10] M. Yan, X. Xia, X. Zhang, L. Xu, D. Yang, “A Systematic Mapping
Study of Quality Assessment Models for Software Products,”
International Conference on Software Analysis, Testing and Evolution,
IEEE, Harbin, China, 2017, pp. 67-71.

[11] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
McGraw-Hill Education, New York, USA, 8th ed, 2014.

[12] M. Rouse, “Legacy Platform”, Internet: https://whatis.techtarget.com/
definition/legacy-platform-legacy-operating-system, March 2011,
[February 22, 2019].

[13] D. Gustafson, Schaum's Outlines Software Engineering, McGraw-Hill
Education, New York, USA, 1st ed, 2002.

[14] X. Lian, L. Zhang, “Optimized Feature Selection Towards Functional
and Non-Functional Requirements in Software Product Lines”, IEEE,
22nd International Conference on Software Analysis, Evolution, and
Reengineering, Montreal, QC, Canada, 2015, pp. 191-200.

[15] B. Thalheim, Entity-Relationship Modeling: Foundations of Database
Technology, Springer-Verlag, Berlin, Germany, 1st ed, 2000.

[16] G. D. S. Hadad, C. S. Litvak, J. H. Doorn, M. Ridao, Dealing with
Completeness in Requirements Engineering, McGraw-Hill Education,
New York, USA, 5th ed, 2015.

[17] M. K. Pour, “Encyclopedia of Information Science and Technology”,
IGI Global, USA, 4th ed, 2017.

[18] J. Noll, S. Beecham, I. Richardson, Global Software Development and
Collaboration: Barriers and Solutions, ACM Inroads - Special Section
on Global Intercultural Collaboration, 1(3), 2010, pp. 66-78.

[19] I. Sommerville, Software Engineering, Pearson Education Limited,
London, England, 10th ed, 2015.

https://whatis.techtarget.com/
http://ieeexplore.ieee.org/document/7081829/
http://ieeexplore.ieee.org/document/7081829/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7066219
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7066219

