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Abstract—Pruning effectively reduces the size of neural
networks, which facilitates deployment of neural networks in
production environment, especially in embedded systems with
limited computing resources. In this paper, we propose a con-
volutional neural network pruning method based on attention
mechanism. We add a attention module to model to generate
scaling factors for channels. The scaling factors are considered as
channels’ importance score, thus filters and convolution kernels
corresponding to channels with lower importance score are
removed. Our method has the ability to learn importance of
channels during training, instead of considering only the direct
impact of parameters like existing methods. Moreover, it does
not depend on any dedicated libraries, so could be combined
with other compression methods for better performance. In
experiments, we prune about 90% parameters in VGGNet with
0.67% accuracy drop and prune about 50% parameters in
ResNet-56 with 1.02% accuracy drop.

Index Terms—convolutional neural network; pruning; atten-
tion mechanism

I. INTRODUCTION

In recent years, with the rapid development of deep learn-
ing, convolutional neural networks have achieved excellent
performance in many fields, such as computer vision, speech
recognition and natural language processing, etc. However,
these extraordinary performances are at the expense of high
computational and storage demands. Thus neural network
compression technique has great significance for deploying a
deep convolutional neural network on embedded devices(like
mobile phone and IOT device) with constrained resource.

Many works have been proposed to compress deep models,
including network quantization [1], [2], matrix decomposition
[3], [4], and knowledge distillation [5], [6]. Pruning is one
of the most effective compression methods, it aims to remove
redundant parameters in neural networks. Which parameters
are redundant depends on importance measurement of pa-
rameters. Early studies measure the importance of parame-
ters by calculating second derivative of parameters to loss
function [7], [8]. In spite of their success, second derivative
has expensive calculation and memory overhead. Thus, most
recently proposed pruning methods are based on direct impact
of parameters, such as parameter magnitude [9] or sparsity of
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output [10], which do not take correlation between parameters
and loss function into consideration.

In this paper, we propose a filter-level pruning method
based on attention mechanism. In our method, a attention
module(SEBlock [11]) is added to network to generate scaling
factors for channels, then we consider scaling factors as chan-
nel importance score to guide filter-level pruning. The attention
module adjust scaling factors of channels according to loss
function in backpropagation, which associates the importance
score of parameters with loss function. By removing filters and
convolution kernels corresponding to low importance score
channels, we can effectively reduce size of deep model and
maintain prediction accuracy.

We conduct experiments on CIFAR-10 dataset [12], results
show that our method can remove about 90% parameters in
VGGNet [13], with only 0.67% accuracy drop. Pruning on
ResNet-56 [14] also be conducted to verify the effectiveness
of our method on the network with shortcut connections. More
serious decrease of accuracy appears on ResNet-56 since it is
a compact network, but we still remove half of parameters
with roughly 1% accuracy drop. Moreover, we compare our
method with weight sum [9] and APoZ [10] on CIFAR-100
[12], the result shows that our method has better performance
under the same pruning ratio.

II. RELATED WORK

LeCun et al. [8] proposed that some of the neurons connec-
tions in neural networks could be removed without decreasing
model accuracy. Similar to LeCun’s work, Hassibi et al. [7]
used hessian matrix to get the second derivative of parameters.
However, the spatial complexity of hessian matrix is O(n2)(n
is the number of parameters), which has expensive memory
cost on deep models. In order to avoid problem mentioned
above, recent studies prefer to prune models according to
direct impact of parameters. Han et al. [15] proposed that
the magnitude of the parameters could reflect the importance
of the parameters, they remove parameters below a certain
threshold to get compact model. Deep compression [16]
further compress deep neural networks with pruning, trained
quantization and Huffman Coding. However, pruning neurons
connections produces sparse matrices, which relies on specific
operational libraries and hardware to exploit performance
advantages [17].



In order to avoid the limitation of pruning neurons con-
nections, structural pruning method was proposed. Lebedev et
al. [18] explored a structured sparsity learning method(SSL),
which adds the regularization term of parameter group to
loss function so that certain groups of parameters would
shrink to zeros during training, eventually be removed safely.
However, SSL still destroys the network structure and depends
on dedicated libraries.

In recent researches [9], [10], [19], [20], filter-level pruning
become an effective pruning method that completely avoid
using dedicated libraries. Li et al. [9] calculated the sum
of the absolute values(L1 paradigm) of weights in filters as
their importance score. This method has strong limitations
because L1 paradigm of filter does not reflect the feature
extraction ability of filter. Hu et al. [10] observed the sparsity
of the ReLU activation function and assumed that a neuron is
unimportant if most outputs of the neuron with ReLU are zero.
Although Hu’s method considers more further effects of the
filters, it still does not determine the importance of parameters
according to loss function. The methods mentioned above are
based on the direct impact the parameters, which does not
well represent the effect of parameters on neural network’s
loss function. Meanwhile, they are artificially formulated,
which leads to that human intervention is added in training
process which violates the rules of end-to-end training in deep
learning.

III. OUR METHOD

In this section, we would first introduce filter-level pruning,
which determines the granularity of our pruning method. Then,
the attention module used in our method would be described.
Next, average scaling factor formula would be presented.
Finally, we would show overall steps of our method and
pruning strategy adjustment on special model.

A. Filter-level pruning

As shown in Fig. 1, each layer of neural network consists
of several filters, one filter has a set of convolution kernels.
Instead of generating sparse matrices or destroying network
structures, filter-level pruning removes entire filter, which
maintains the regularity of the network. For example, channel2
would disappear when the filter2 marked by dotted lines are
removed. In this case, convolution kernels process channel2
in next layer could be removed as well.

In a convolution layer, if we suppose its original parameter
matrix is expressed as W<I,W,H,C>, where I is the number
of input channels, W is the width of convolution kernels, H
is the height of convolution kernels and C is the number of
filters. We can calculate the number of parameters in this layer
as:

|W<I,W,H,C>| = I ×W ×H × C (1)

If we set the filter pruning ratio of this layer to q, q × C
filters in this layer would be removed, so that the number of
remaining parameters in this layer can be calculated as:

|W<I,W,H,(1−q)C>| = I ×W ×H × (1− q)C (2)

Fig. 1. Filter-level pruning.

If we set the filter pruning ratio of the front layer to p, p× I
convolution kernels in this layer would be removed, so that the
number of remaining parameters in this layer can be calculated
as:

|W<(1−p)I,W,H,(1−q)C>| = (1−p)I×W×H×(1−q)C (3)

Obviously, after pruning all layers, the total parameters of the
convolution layer would be reduced to (1−p)× (1−q) of the
original layer. In other words, q+(1−q)×p of the parameters
would be removed.

B. Attention module

Fig. 2. SEBlock structure, the blue part is SEBlock.

As mentioned in related work, the filter-level pruning meth-
ods lack the consideration of correlation between parameters
and loss functions due to computational complexity. To calcu-
late importance score of filters according to loss function in a
feasible computational complexity, we use attention module



Fig. 3. The overall pruning steps of our method.

to generate scaling factors for channels and adjust scaling
factors in backpropagation. In this case, which channel is
enhanced or suppressed can be reflected by the scaling factors.
Then we can rank channels by their scaling factors with
the rule that channels with smaller scaling factors are less
important. Because the one-to-one match between each filter
and each channel, unimportant filters can be selected according
to channel rank.

The attention module(namely SEBlock) used in our method
comes from Squeeze-and-Excitation Networks(SENet) [11],
which is designed for image classification tasks. SEBlock
consists of a global average pooling layer, two fully connected
layer, sigmoid activation function and ReLU activation func-
tion. SEBlock can be added after convolution layer, take the
convolutional layer’s output channels as input data, produce
scaling factor for each channel.

As shown in Fig. 2, SEBlock take a C channels as input,
obtain a vector with C elements after the global average
pooling layer. The number of neurons in first fully connected
layer is C/r, where r is a hyper-parameters for controlling
module parameter number. Between the first and the second
fully connected layer is a ReLU activation function. The
second fully connected layer has C neurons in order to produce
C output value. Finally, the C output values of are projected
between 0-1 by sigmoid activation function to become scaling
factors. The output channels of SEBlock can be obtained by
multiplying each input channel with corresponding scaling
factor.

Although SEBlock was originally designed for improving
the accuracy of image classification, its scaling factor reflects
the network’s choice of feature, which is the embodiment
of the channel importance. Channel-level weights introduce
more scale features to the network and further enhance the
expressive ability of the network. By explicitly describing
the importance of inter-layer channels, model would even-
tually show the phenomenon of restraining or enhancing
some channels. Therefore, our method uses the scaling factor
produced by SEBlock as channel importance score, and prunes
filters in the same layer according to channel rank. Since
parameters in SEBlock are randomly initialized, the model
would seriously lose its prediction accuracy at first. However,
after 1 epoch fine-tuning, the model would quickly return to
its original prediction accuracy level, after several epochs it
would completely recover from adding SEBlock.

C. Average scaling factor

For SEBlock, scaling factors of channels are data-driven,
so we collect a dataset for calculating average scaling factors.
Given a collected subset with N images. We calculate average
of scaling factor IC as follows:

IC =
1

N
Fse(X<n,H,W,C>) (4)

IC is a vector having C elements, each element is average
scaling factor of corresponding channel, X<n,H,W,C> is C
input channels produced by nth image in dataset, W ,H is the
shape of each channel and Fse is the operation of SEBlock.

If the training dataset is not too large, we can directly
use the entire training dataset. However, in order to reduce
the computational complexity on large datasets, a subset of
training dataset is sufficient for calculating average scaling
factor. The amount of samples depends on the total number of
samples in the training dataset. In our experiments, 10%-20%
of the training sample is enough for importance evaluation.

D. Steps of our method

Pruning steps are shown in Fig. 3, the specific steps are as
follows:

1) Adding SEBlock. Given an original model, SEBlock
needs to be added after each convolutional layer. Then,
we would prune model layer by layer with a predefined
pruning rate p, which means p and q in Eq. 3 is equal.

2) Fine-Tuning. After adding SEBlocks or pruning, the
model’s prediction accuracy would decrease. By fine-
tuning(retraining) the model, it would recover from
damage. Meanwhile, SEBlock would scale channels
according to their contribution to the loss function.

3) Selecting Channels. We sort channels in current layer
by importance score, and select p × C channels with
small scaling factors as unimportant ones. In our exper-
iment, we set the pruning rate p of each layer to the
same.

4) Pruning. Aiming to remove low-score channels selected
in step 3, the filters and convolution kernels correspond-
ing to these channels would be removed as section A
describes.

5) Removing SEBlocks After pruning, in order to compare
pruning performance with other pruning methods, we



remove all SEBlocks. In fact, the SEBlock has few pa-
rameters(it is mentioned in [10] that SEBlock only leads
to about 10% increase in parameter number), which
means we could keep SEBlock in practical application.

6) Pruning the Next Layer. Go to step 2 until all layers
are pruned.

E. Pruning Strategy Adjustment

The traditional architecture like AlexNet [21] and VGGNet
[22] are often used to verify the effectiveness of pruning
methods. In these models, pruning one layer would not change
the input shape of other layers except the next layer. But
in residual networks like ResNet [14], they have shortcut
connections in residual module. Shortcut connection connects
the first layer and the last layer in residual module, add them
up as the output of residual module. The shortcut connection
requires that the shapes of input and output be the same. If the
last layer of residual module is pruned, we need to remove the
corresponding filters in the first layer without considering their
importance score. So it is difficult to prune the last layer of
a residual module, in our method, we just prune the first few
layers in a residual module, considering that most parameters
of residual modules are in these layers.

IV. EXPERIMENTS

We conduct experiments on CIFAR-10 and CIFAR-100
dataset. The CIFAR-10 dataset consists of 60000 images in
10 classes, with 6000 images per class and resolution of each
image is 32×32. The dataset is divided into a training set with
50000 images and a test set with 10000 images. The CIFAR-
100 dataset consists of 100 classes, each class contains 500
images for training and 100 images for testing.

On CIFAR dataset, we evaluate our method on two con-
volutional neural network: VGGNet [13](a variant of vgg16
on the cifar dataset) and ResNet56. The hyper-parameters
r mentioned in SEBlock is set to 8 in VGGNet and 4 in
ResNet56. For training original model, batch size is set to
128, the learning rate used in first 50 epochs was 0.1, then
reduced to 0.01. In pruning process, learning rate is set to 0.01.
Weight decay was also used to overcome over-fitting with a
coefficient of 0.0001. For calculating average scaling factor,
we randomly pick 500 images in each category on CIFAR-
10 and 50 images in each category on CIFAR-100. Padding,
random cropping and horizontal flipping are applied for data
augmentation.

A. Distribution of scaling factors

In this section, the distribution of scaling factors at each
layer are are visualized. Experiments are conducted on VG-
GNet with attention module. The distribution of scaling factors
are shown in Fig. 4.

The VGGNet contains four stages, distribution of scaling
factors in the same stage are similar, so only scaling factors
of layer 1,3,5,8 are shown. Fig. 4(a) is the result of the layer
1, which belongs to the first stage. Fig. 4(b) is the result of
layer 3, which belongs to the second stage. Fig. 4(c) is the

(a) layer 1 (b) layer 3

(c) layer 5 (d) layer 8

Fig. 4. Distribution of scaling factors.

result of layer 5, which belongs to the third stage. Fig. 4(d)
is the result of layer 8, which belongs to the fourth stage.
The results show that the distribution of scaling factors in
the same layer is quite different, especially the scaling factor
between adjacent channels. This phenomenon is similar to the
lateral inhibition of human visual neurons,which is beneficial
for extracting the shape feature of objects. With the increase
of depth, the distribution range of scaling factor decreases,
which implies that the importance of channels near the end of
neural network are similar.

B. Results on CIFAR-10

On CIFAR-10 dataset, we evaluate our method on VGGNet
and ResNet-56, the results are shown in Table I and Table II.
The M in each table means million.

TABLE I
VGGNET RESULTS ON CIFAR-10 DATASET.

Model Filters pruned Accuracy Params FLOPs
Original VGGNet 0% 92.24% 14.98M 6.27× 108

Pruned
30% 92.18% 7.43M 3.07× 108

50% 91.97% 3.82M 1.57× 108

70% 91.57% 1.42M 0.57× 108

As shown in Table I, we prune 30% filters in VGGNet
network without obvious accuracy drop, even get an increase
in accuracy when we pruned the first few layers. When
we prune 50% filters, we still could maintain the model’s
accuracy with 0.27% accuracy decrease. We conclude that
our method correctly measures the importance of the channel
which help model recover from pruning. When filter pruning
ratio comes to 70%, accuracy decreases more obviously but
still within 1% loss. It is worth noting that, by using filter-
level pruning method, number of input channels and output
channels for each layer would be reduced by 70%, so re-
duced parameters can be calculated as section III.D describes:
0.7 + (1− 0.7)× 0.7 = 91%.



TABLE II
RESNET-56 RESULTS ON CIFAR-10 DATASET.

Model Filters pruned Accuracy Params FLOPs
Original ResNet-56 0% 92.84% 0.85M 2.51× 108

Pruned
30% 92.43% 0.58M 1.76× 108

50% 91.82% 0.42M 1.26× 108

70% 90.86% 0.25M 0.76× 108

Table II shows the results on ResNet-56, different from
VGGNet, pruning on ResNet-56 causes a relatively large
decrease of accuracy. We prune ResNet-56 with 3 different
compression rates as well: 30%, 50%, 70% filters in each
layer respectively. Although it cause more serious accuracy
decrease than VGGNet, we still prune more than half of the
parameters with 1.02% accuracy drop.

According to our analysis, this phenomenon is reasonable
because recent network architectures has an improvement
of the utilization of parameters. For example, the shortcut
connections of ResNet actually makes network structure in a
shallow-deep state, which enhance feature fusion and feature
delivery. Thus, the parameter utilization of ResNet is much
higher than traditional models without shortcut connections,
which leads to poor performance on a large percentage of
pruning. This phenomenon reminds us that more attentions
should be paid when pruning the networks with shortcut
connections.

C. Results on CIFAR-100

Our method was compared with Weight Sum [9] and APoZ
[10] on CIFAR-100 by pruning VGGNet.

Fig. 5. Our method, Weight sum and APoZ’s results on VGGNet.

As shown in Fig. 5, nine groups of experiments were con-
ducted on all methods. Filter pruning ratio of each experiment
range from 10% to 90% in step length of 10%. Weight sum
has the fastest decline in model accuracy, the accuracy of
model begins to decrease significantly when pruning ratio is
higher than 10%. It is easy to understand that weight sum

only takes parameter magnitude into consideration, which is
not directly related to the model’s loss function. APoZ has
a better performance, when the pruning rate reaches 50% it
begins to have a significant drop in accuracy. This result is
reasonable since APoZ considers more further information,
channels with more value of zero have less influence on the
following layers. However, when pruning ratio is more than
80%, APoZ performs worse than weight sum.

Our method has the best performance among the three
methods mentioned above. When pruning rate is less than
50%, the model has almost no drop of accuracy, even if the
pruning rate is higher than 50%, the accuracy of the model still
decreases slower than the other two methods. An interesting
result is that when we prune 90% filters in each layer, our
method still retain a certain degree of classification ability,
unlike the other two methods whose ability to classify is
completely lost. The result indicates that our method correlates
the importance of channels with model loss function, which
describes the importance of the channels naturally.

D. Results on Mobile Device

The goal of neural network pruning is to reduce the
computational resource consumption of neural networks, so
as to facilitate deployment on device with limited resources.
Therefore, We deployed neural networks on mobile phones
for verifying the performance improvement of our pruning
method in real scenarios. We tested the performance of the
original VGGNet and the VGGNet after removing 50% filters
on mobile phones, the device information is: 4 GB Memory,
Qualcomm Snapdragon 632 CPU, 2.0GHz basic frequency,
training dataset is CIFAR-10 and the framework is Tensorflow.
The results is shown in Table III.

TABLE III
RESULT ON MEIZU NOTE 6 MOBILE PHONE.

Parameter Original 50% filters pruned
Inference time 1046ms 301ms

FLOPs 6.27× 108 1.57× 108

Model file size 59.9MB 15.3MB
Parameter Number 14.98M 3.82M
Parameter pruned 0% 75%

Accuracy 92.24% 91.97%

Due to the inference time is affected by hardware, we
calculate the average inferences time of classifying a image.
Obviously, the pruned model has a significant reduction in file
size and inference time. It takes more than 1000 milliseconds
for the original model to classify a image, which results in a
significant pause of application. On the contrary, the pruned
model only takes 301 milliseconds to classify a image, which
greatly improves user experience. In addition, the endurance
capability of device also benefits from the reduction of com-
putational resource consumption.

V. CONCLUSION

In this paper, we have described a pruning method based on
attention mechanism. Different from existing pruning method



based on direct impact of parameters, we use SEBlock to
automatically learn the importance of channel during train-
ing. As low-score channels and corresponding parameters
are removed, memory and computing cost of model would
be effectively saved. We validated our method on different
datasets, results show that it surpass existing methods under
the same pruning ratio. In addition, our method does not
require any dedicated libraries or hardwares, thus can be
combined with other compression methods.

In future work, we would conduct our method on latest
network and larger dataset to verify the generalization of our
method. We tend to explore pruning method based on global
importance score instead of pruning fixed percentage filters in
each layer.
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