
Modeling and Simulation of CPS based on SysML

and Modelica(KG)

Fei Deng,Yunqiang Yan, Feng Gao, Linbo Wu

Institute of Computer Application

China Academy of Engineering Physics

MianYang,China

fax_caep@163.com

Abstract—Cyber-Physical Systems (CPS) is usually

associated with large numbers of domains. The domain

relevance allows system engineers’ knowledge to spread many

domains. The efficiency and accuracy of modeling are not able

to be guaranteed. Therefore, in this paper, a set of CPS modeling

guideline is proposed based on SysML, and the system’s 4-layer

abstract hierarchy and the kind of modeling products obtained

on each layer are defined. Based on this, a modeling specification

containing seven sub-processes is designed. In order to verify the

correctness of CPS function and the consistency of the business

logic at the primary phase of the design, we summarize the

mapping rules of SysML-Modelica and define the algorithm of

model conversion. Finally, a simple CPS case is used to verify

our task. The results show that this method can be effective in

CPS’s modeling and Simulation.

Keywords—Cyber-Physical Systems; Modeling ;SysML; Modelica;

I. INTRODUCTION

CPS is organic and in-depth integrity of Computation,
Communication, and Control technologies, and a next-
generation intelligent system that closely integrates and
coordinates computational resources with physical resources
[1-3]. CPS integrates such systems engineering as
environmental perception, embedded computing, and network
communication, closely coordinates computing and physical
resources, covering all aspects of social life. As computing
technology, network technology and control technology are
constantly developing,CPS has become a new trend of
research and development of modern information technology.
Modeling and simulation are quite significant to the
construction of CPS. It can not only verify the CPS at the
primary phase of the design but also is an important section of
model-based development and testing.

Since CPS is usually associated with multiple domains and
the domain relevance allows the system engineers’ knowledge
to associate with many domains [4]. The efficiency and
accuracy of modeling are not able to be guaranteed. Therefore,
a set of the modeling guide of the CPS system based on SysML
is proposed in this paper, and 4-layer abstract hierarchy of the
system and the kind of modeling products obtained on each
layer are defined. Based on this, a modeling specification
containing seven sub-processes is designed. In order to verify
the correctness of CPS function and the consistency of
business logic at the primary phase of design, we summarize
the mapping rules of SysML to Modelica model and define the
algorithm of model conversion. Finally, a simple temperature
control system case is used to verify our method.

The structure of this paper is organized as follows: In the

DOI reference number: 10.18293/SEKE2019-167

second section, the background and the related work are
overviewed. In the third section, the overall framework is
proposed, and CPS modeling method, model mapping cabinet
and conversion algorithm are described in detail. In the fourth
section, the case analysis is performed. In the fifth section,
summary and prospects are made.

II. BACKGROUND AND RELATED WORK

A. Cyber-Physical System

The typical CPS architecture mainly includes the
following three kinds of parts: sensor, actuator, and controller
[6]. The sensor is used to perceive all information of the
physical domain. The controller can accept information from
the sensor and send orders according to the control logic. The
actuator receives a control order and begins to control the
physical objects. The operation mechanism among the basic
components is shown in Fig. 1.

Network

fabric

Platform1Platform1

Sensor1
Controller1

Sensor2 Controller2

Controller3
Actuator1

Merge

Physical
interface

Physical

Plant

Physical
interface

Fig. 1. C typical Cyber-physical system

In the simulation study of the CPS system, Lin Jing et al.
from the Missouri University of Technology used agent-based
modeling to construct a model of CPS [7]. Based on the
service-oriented architecture (SOA), the University of Texas
proposed Physical-entity service model for CPS modeling [8].
Frank Wawrzik et al. proposed a SysML-based CPS modeling
simulation method SICYPHOS CPS [4].

SysML (System Modeling Language) is a system
modeling language extended from UML (United Modeling
Language) [5,9-10].Based on the nine types of SysML graphs,
system engineering personnel can easily regulate term, model,
design, and analysis and verification on the system [11],
which is widely used in the industry field. Although SysML is
widely used now, from the perspective of system security
analysis, the current SysML specification cannot effectively
support the dynamic simulation of physical engineering
systems. Therefore, Modelica[12-13] will be selected for
dynamic simulation of CPS in this paper.

III. MODELING AND SIMULATION OF CPS

Based on the analysis of SysML and Modelica features and
the current challenges for CPS simulation and verification, we
designed a CPS modeling and simulation framework based on

mailto:fax_caep@163.com

SysML and Modelica, and realized the SysML-Modelica
automatic conversion tool (Fig.3).

M
o
d
elin

g
 a

n
d
 S

im
u
latio

n
 o

f

C
P

S

Mapping SysML →Modelica

XMI File Parsing

Requirements

CPS Modelling

(SysML)

Activity

Diagram

Block

Definition

Diagram

Conversion

Module

CPS SImulation

(Modelica)

(*.xmi) (*.mo)

Simulation Result

Fig. 2. Logic framework diagram of conversion

The overall logical framework is shown in Fig. 2: Firstly,
construct SysML model according to the files and
requirements of system design, and export of XMI [14] data
model, and the automatic conversion of SysML-Modelica is
realized according to the mapping rules of the construction
model. Finally, input the Modelica model to verify the
correctness of CPS function and the consistency of the
business logic.

Fig. 3. Model Conversion Tool GUI

The workflow of data conversion processing and
conversation in this process is shown in Fig. 4:

1) Use Enterprise Design (EA) to construct the CPS

behavior model and structural model, and use export function

owned by the EA tool to export the CPS SysML model as the

XMI file;

2) Analyze XMI files with Java-based extension tool

DOM4J;

3) Convert the extracted information into the grammatical

format conforming to the Modelica modeling language, and

output Modelica Text semantically equivalent to SysML

information;

4) Use OpenModelica to simulate Modelica Text.
SysML Module

（XMI）
Simulation

Result

DOM Parsing
Open

Modelica

Modelica

Text
Transformation

Extraction

of model

elements

Fig. 4. Flow of data processing

There are two main technical points to achieving this work:
(1) CPS modeling: Due to the increasing complexity of CPS,
it makes the system modeling process more complex and
difficult; (2) The conversion rules of SysML-Modelica
modeling languages: Since SysML and Modelica are two
different modeling languages, there are differences in

grammatical descriptions in many model elements. Therefore,
we need to construct a set of semantic equivalent model
conversion rules based on model semantics.

A. CPS Modeling

From the above analysis on the structure of the CPS system,
it can be clearly known that all physical entities in the CPS
only belong to one of these three types. When modeling the
static structure, a structural model can be constructed for each
entity. After structural modeling, it is required to model the
dynamic behavior of each entity. When the industry world
constructs the corresponding SysML model, select Block
Definition Diagram (BDD) and Internal Block Diagram (IBD)
that can express system architecture information, to construct
a structure model and use Activity Diagram (ACT), Sequence
Diagram (SD), or State Machine Diagram (STM) to express
dynamic activity information. Considering the semantic
features contained in our Modelica model, mainly use BDD to
construct the structure model of CPS and use ACT to construct
the activity model of CPS in this paper.

a) Modeling Guidelines

The complex structure and activity of CPS allow the
modeling process of the system to be more complicated and
difficult to grasp. One of the most effective ways to solving
these problems is to construct a hierarchical model for the
system. Abstraction layers that are hierarchical and clearly
defined can effectively reduce system complexity which helps
system modeling personnel to create and manage system
models at different levels of granularity. We define the system
4-layer abstract hierarchy, which is the system layer, function
layer, software and hardware layer, and deployment layer
from top to bottom with an increasing amount of granularity
described in each layer.

In the practical modeling, from the primary requirement
of CPS, the modeling design process is divided into 7 sub-
processes based on the four levels, and in each modeling
process, different modeling tasks need completing.

SP3

Develop

component

RE, BE, SC

SP4

Integrating

RE, BE,

SC

SP5

Develop software

and hardware

RE, BE, SC

SP6

Integrate

RE, BE,

SC

SP7

Deployment
RE

RE

BE&SC

 products

SP1

Development

initial RE

SP2

Develop initial

BE scenarios &

architectures

BE&SC

Integrated RE, BE, SC

products

New ideas, find

inconsistencies

Integrated

 RE, BE, SC

products

New ideas, find

inconsistencies

Integrated RE, BE, SC

products

Defects and

inconsistencies

RE:Requirement;Be:Behavior;SC:structure

Abstract

layer

Input Subprocess

System

layer
Function layer Software & hardware layer Deployment layer

Fig. 5. Modeling process

1) Sub-process SP1 supports the development of primary

requirements for system layer. The top-level requirements of

the system are described from the angel of system realization

according to the system prospect and the needs of relevant

stakeholders.

2) Sub-process SP2 supports system layer initial activity

scenarios and the development of system structure. The initial

behavior scenario describes a coarse- granular workflow; The

development of the initial architecture mainly includes

limiting system boundaries, defining system interfaces, and

linkage between systems and external environment entities.

3) Sub-process SP3: Based on the output of SP1 and SP2,

refine and expand the initial requirements, activity scenarios,

and architecture, and focus point shifts to the internal system.

This process is a constant iterative course until the system

engineering gets a satisfactory result.

4) Sub-process SP4 is responsible for coordinating and

integrating the cross-system layer and functional layer as well

as the inconsistencies of requirements, activities, and

structural products.

5) Sub-process SP5 develops the requirements, activities,

and architecture of the hardware and software layer based on

the results of SP4 integration. The focus shifts from logical

functional components to hardware or software components.

6) Sub-process SP6 is similar to sub-process SP4, in

charge of coordinating and integrating across functional layer

and hardware layer as well as inconsistencies in requirements,

activities, and structural products within the software layer.

7) Sub-process SP7 is responsible for the designing

scheme of deploying software and hardware to physical units.

B. XMI file Parsing

The information in the diagram can be read by parsing the
XMI file of the active graph and the module definition graph.

The block definition diagram displays the static structure
information of the system. Its main element is block. We can
obtain the information contained in the entity through parsing
block and its value attribute tags, and use Variable and
Parameter respectively to save them. The Variable data type is
used to store variables information in a block. As shown in
Table 1, it includes two attributes: name and type, the name
represents the variable name, and type represents the variable
type. The Parameter data type stores information of
parameters in a block, containing attributes’ type, name, and
value. The attributes’ name and type have the same meaning
as the Variable data type, and the value attribute represents the
default value of the parameter.

TABLE I. THE MAPPING RELATIONSHIP BETWEEN XMI TAGS AND GRAPH ELEMENTS

Model
Graph

element
XMI Label

Define data

types
Contains properties

BDD block
<packagedElement

xmi:type=“uml:Class”>
Variable type, name

Value

attribute
<ownedAttribute> Parameter

type, name,
value

ACT

Activity

zoning
<group> ActivityPartition name,classname, id

node <node>\<ownedParameter> Node id,name,classname,owner,type

Transfer
edge

<edge>\<guard> Transition id,source,target,guard

The main elements in the activity diagram include nodes,
edges, detection values of the edge, activity parameters, and
active partitions. The basic element information corresponds
to node, edge, guard, ownedParameter, and group of the label
in the XMI file. As shown in Table 1, we store the parsed
active graph elements into the following three data types:
Node, Transition, and ActivityPartition. The Node data stores
information of the control nodes, action nodes, object nodes,
and active parameter elements in the SysML activity diagram,
which contains 5 attributes in total: ID name, classname,
owner, and type, respectively. Among them, type represents
the node type and contains owned Parameter. The Transition
data type stores information of the edge elements in the
SysML activity diagram. Its specific type is shown as follow
and contains 4 attributes in total like ID, source, target, and
guard. id uniquely identifies one edge, source and target are
the id values of the edge source node and the target node, and
guard is the monitor value, that is, the transfer condition of the
edge. The ActivityPartition data type stores information of
active partition elements in the SysML activity diagram and
contains three attributes in total like id, name, and classname.
Id uniquely identifies an active partition, name is the name of
the active partition, and classname is the type of active
partition.

Based on the above analysis of the block definition graph
and activity graph XMI file and customized data types, the
element information under the tags is stored according to the
corresponding data type created by traversing each label in the
XMI file as required.

C. Mapping Rule of SysML2Modelica

According to the modeling rules for CPS in the previous
section, we will obtain a series of block definition diagrams
and activity diagrams. After establishing the mapping rule,

SysML model can be converted to Modelica model. The
element in the block definition diagram is mainly converted to
an element in the Modelica model declaration area, and the
elements in the activity diagram are mainly converted to
elements in the Algorithm area of Modelica model.

The block of the block definition diagram is the basic unit
in SysML and corresponds to an instance of the Modelica
model, thus establishing the mapping rules for SysML block
and Modelica model. The value property of the block maps the
variables of Modelica model; The port and components of the
block (Instances of other modules) map to the member type in
Modelica model. They are directly mapped to Modelica model
equation if modular constraints are not combined with other
SysML activity diagrams. At this, the structure of the module
has been basically built successfully in Modelica model.

When modeling CPS, we use activity charts to represent
the activity of CPS. The action in the activity diagram
represents processing or transformation, so it is mapped to the
equation of Modelica. Determines that the node is mapped to
if-else judgment, and the merge node indicates that the above
input continues to execute when arriving, and is mapped to
continue executing downwards in the code of Modelica model.

The following table summarizes the rules for mapping
elements in the above two SysML diagrams to Modelica
elements.

TABLE II. MAPPING RULES BETWEEN SYSML AND MODELICA

 SysML Modelica

BDD

block model

interfaceblock connector
port node instance of

connector

value variable

constraint equation

ACT

decision node if-else

merge node execute sequentially

action equation

State Step
Transition(no

trigger)

Transiton

According to the above mapping rules, the model
conversion algorithm is defined according to section 3.4, and
the SysML diagram can be directly converted to Modelica
code.

D. Model Conversion Algorithm

The conversion algorithm converts the block definition
diagram and activity diagram into the Modelica model
according to the conversion rules. The input of the algorithm
is the XMI file for the block definition diagram and the active
graph, and the output is Modelica model. The basic idea as
follows: Firstly, use the resolution algorithm of the active
graph XMI file to obtain all active partition collections, node
collections, and edge collections. Construct a Modelica model
for each active partition, and use the XMI file resolution
algorithm in block definition graph to obtain the
corresponding block variable collection and parameter
collection, and then declare these variables and parameters in
the model declaration area. If the activity diagram contains
latency actions for relative time events, Declare an instance of
Timer in the model declaration area. Then, go down from the
starting node of the active partition and output different
contents in the model algorithm region according to the node
type, including selection, circulation, and concurrent structure
processing. The specific model conversion algorithm is shown
in Table 3 of the arithmetic.

TABLE III. SYSML-MODELICA CONVERSION ALGORITHM

Algorithm: SysML2Modelica

Input：Activity zoning set AP, node set N, edge set T, variable set V,

parameter set P

Output：Modelica model

Procedure SysMLtransformModelica(M) Begin

1. for each ap in AP do
2. Create Modelica Model;

3. Export variables and parameter declarations based on V and P;

5. Get the set of all waiting time action nodes: TimerNodes;
6. for each TimerNode in TimerNodes

7. Declare an instance of ModelicaTimer;

8. end for
10. node= Initial node of activity zoning;

11. while(node!=null) do

12. if(node =="Action") then output"node.name";
14. else if(node =="Decision") then output "if + node.name + then";

16. else if(node=="AcceptEvent") then output "if + node.name +
then";

18. else if(node=="AcceptEventTimer") then

19. if Relative time events then output "if time > Relative time
then";

21. else output "when time > Absolute time then";

23. end if
24. else if(node=="Merge") then

25. if Merge nodes and decision nodes form a cycle then

26. output "while +Decision node name Attribute value+ loop";
27. else output "end if;"

29. end if

30. else if(node=="Fork") then
31. Each concurrent branch continues to call the transformation

algorithm;

32. else if(node =="ActivityFinal" or "FlowFinal") then

33. output End statement that match statements if、when

34. break;

35. end if
36. Find the next node of node;

37. node=nextNode;

38. end while

39.end for

End Procedure SysML2Modelica

IV. CASE

In this section, a simple temperature control system [15] is
used to illustrate how to model CPS, to convert into the
Modelica model by mapping rules and finally conduct
stimulation. The temperature control system is a temperature
adjustment system involving temperature sensors, air
conditioners and switch controllers. The system requires
temperature control between 16 °C and 28 °C and limits the
season to be summer. The temperature sensor senses room
temperature and transmits the temperature to the switch
controller. The controller learns the temperature and sends the
coolOn or coolOff order after judging. The air conditioner
implements cooling operations according to the corresponding
order. If the air conditioning does not work, the temperature
will gradually increase as time. Due to the space limitation, in
this paper mainly take the switch controller as an example to
illustrate.

A. Structure Modeling

The structure analysis on the temperature control system
shows that temperature sensor corresponds to sensor entity in
CPS, air conditioner corresponds to the actuator entity, and
controller corresponds to the controller entity. For each such
entity, block is used to define the basic information in the
block definition diagram. The temperature sensor has 2 ports
with one port perceiving temperature and one port transmitting
temperature information to the switch controller. In this case,
we require the temperature sensor to learn the temperature
directly from the temperature port of the air conditioner. The
controller also has two ports, one of which learns the
temperature from the temperature sensor as described above,
and one port sends order to the air-conditioning. Similarly, the
air conditioner has a port for receiving order and a port for
transmitting temperature. Besides, air conditioners accept
different order and follow different temperature variable
equation constraint. Temperature sensors follow only one
working equation constraint. At this point, the block definition
diagram for each entity and that for the port can be given. The
BDD of the system is shown in Fig. 6.

Fig. 6. System Entity Block Definition Chart

B. Behavior modeling

As mentioned above, for controllers SysML activity graph
is used to represent activity information, controllers usually
have complex control logic. The biggest advantage of activity
graph is that they can represent the logical information well.

Fig. 7 is the activity diagram of the switch controller in the
temperature control system.

Fig. 7. Activity Chart of Switching Controller

C. SysML-Modelica Model Conversion

Firstly, according to the entity block definition diagram,
we know that there are three different entities in the entire
system, and each entity corresponds to Modelica model. In
terms of the switch controller, combined with the block
definition diagram and the activity diagram, according to the
SysML-Modelica model mapping rule in Section 3.3,
Modelica code shown in Fig. 8 (a) can be obtained.

Fig. 8. Modelica code Code for Switch Controllers and Systems

Though temperature sensors and air conditioners belong to
different types of CPS entities, alike switch controllers, they
can be converted to Modelica code combined with module
diagrams and model mapping rules. For all models required
for StateGraphics library, automatically a line of Modelica
code is required to "addinner
Modelica.StateGraph.StateGraphRootstateGraphRoot; ". It is
pointed out particularly that the two temperature variance
equations are quadratic equations of time t. After the time T is
derived, two Timer types are required to add to the Modelica
code to calculate the temperature variable. Finally, the
important step is to connect all Modelica models according to
BDD to form the entire temperature control system. From Fig.
6, we can see the system model Modelica code as shown in
Fig. 8.

D. Analysis of Simulation Results

Introduce all model converted code into the OpenModel
tool for simulation. We can know the variation of room
temperature with the time in the temperature control system,
as shown in Fig. 9. The entire room temperature fluctuates
directly from 16 °C to 28 °C according to the switch controller.

Fig. 9. Temperature variable curve

V. SUMMARY AND DISCUSS

In this paper, firstly the architecture of CPS is analyzed and
divide it into three types: sensors, actuators, and controllers.
For the two aspects of structure and behavior, CPS is
hierarchical modeling with SysML. In order to be able to
simulate modeling, the mapping rules between the SysML-
Modelica models are summarized. On this basis, the model
conversion algorithm is designed, the SysML-Modelica model
automatic conversion tool is realized, and an case analysis is
conducted by the temperature control system. Although in this
article the CPS modeling and simulation process based on
SysML and Modelica has been realized, there are still
shortcomings. We will further study the following two aspects:
1) Extend SysML-Modelica mapping rules to support
automatic conversion of more SysML-Modelica models; 2)
Provide more modeling language interfaces, such as SystemC.
Establish a unified modeling and simulation framework for
CPS that can be applied to more domains.

REFERENCES

[1] Lv, C., et al. "Simultaneous Observation of Hybrid States for Cyber-
Physical Systems: A Case Study of Electric Vehicle Powertrain. " IEEE
Transactions on Cybernetics 48.8(2018):1-11.

[2] Zanero, Stefano. "Cyber-Physical Systems."IEEE Computer50.4
(2017): 14-16.

[3] Mo, Haining, Neeti Sharad Wagle, and Michael Zuba. "Cyber-physical
systems."ACM Crossroads Student Magazine20.3 (2014): 8-9.

[4] Wawrzik F, Chipman W, Molina J M, et al. Modeling and simulation
of Cyber-Physical Systems with SICYPHOS[C] International
Conference on Design & Technology of Integrated Systems in
Nanoscale Era. IEEE, 2015.

[5] OMG, “Systems Modeling Language (SysML) specification,” OMG
standards, formal/2013-06-01

[6] Modelica by Example. http://book.xogeny.com/

[7]]Lin J, Sedigh S, Miller A. A General Framework for Quantitative
Modeling of Dependability in Cyber-Physical Systems: A Proposal for
Doctoral Research[J]. 2009, 1:668-671.

[8] Huang J, Bastani F, Yen I L, et al. Extending service model to build an
effective service composition framework for cyber-physical
systems[C]// IEEE International Conference on Service-Oriented
Computing and Applications. 2009:1-8.

[9] Friedenthal S, Moore A, Steiner R. A Practical Guide to SysML[J]. San
Francisco Jung Institute Library Journal,2013, 17(1):41-46.

[10] Delligatti, Lenny. SysML Distilled: A Brief Guide to the Systems
Modeling Language. 2013.

[11] Weilkiens T. Systems engineering with SysML/UML: modeling,
analysis, design[M]. Morgan Kaufmann, 2011

[12] Fritzson P. Principles of object-oriented modeling and simulation with
Modelica 2.1[M]. John Wiley & Sons, 2010.

[13] Introduction to physical modeling with Modelica[M]. Springer Science
& Business Media, 2012.

[14] Kovse J, Härder T. Generic XMI-based UML model
transformations[C]//International Conference on Object-Oriented
Information Systems. Springer, Berlin, Heidelberg, 2002: 192-198.

[15] Chen X, Ye R, Sun H, et al. Deriving Requirements Specification with
Time: A Software Environment Ontology Based Approach[J].
2013:431-43

http://book.xogeny.com/

