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Abstract—Code generation is a model-driven engineering ap-
proach that enables developers to generate source code auto-
matically and achieves extremely high development productivity.
Specifically, generating code from a descriptive text reduces the
time and expense of software development significantly. However,
the performance of existing methods is not satisfying, since they
are either of low accuracy (lack of specifics of the generated
code) or too complicated (lack of efficiency in training). In this
work, we proposed three novel methods by combining neural
architectures and syntax rules, aiming at explicitly capturing the
syntactical characteristics of target code. First, we proposed three
models based on the Combination of Deep learning and Syntax
rules (CDS models). Then, we evaluated CDS models with BLEU
metric by comparing our models with existing methods. The
results show that our models outperform existing methods for
the challenging code generation task. Finally, we conducted a
comparative study between the three CDS models. With further
analysis we provided advice on the choice of neural architectures
by considering both task accuracy and efficiency. Experimental
results show that (1) there is a trade-off between speed and
accuracy of the model, and (2) one of our CDS models (i.e., the
CDS-POOLING model) outperforms other existing methods for
the challenging code generation task.

Index Terms—code generation, neural network, abstract syntax
tree, encoder-decoder

I. INTRODUCTION

Code generation is a process of generating source code
from sentences that describe code functionality [1]–[3]. Firstly,
generating code automatically with given descriptive sentences
as constraints is significantly faster than writing the code
manually. Moreover, the generated code works in an expected
way and is more maintainable and extendable. In contrast,
with code written manually, different developers tend to use
different styles, which may lead to software errors. Thus, code
generation is of great significance throughout the software
development lifecycle.

However, code generation is challenging because its output
must abide by the syntax rules strictly, and the arithmetic speed
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Fig. 1. An example of Hearth Stone dataset

for the purpose of practicability should also be considered.
Considerable effort has been invested in code generation,
which results in several types of code generation approaches.
However, they often fail to generate executable code correctly
because they hardly capture complicated code structures.

Recently, deep learning approaches based on neural net-
works have shown significant performance improvement on
many artificial intelligence tasks. Public datasets speed up the
development of the code generation area. One of high-quality
datasets is Hearth Stone 1, which aims to generate Python code
based on Hearth Stone card description. An example is shown
in Fig 1, in which a piece of code lies along the bottom. Each
card is identified by ten attributes (e.g., name and attack) and
has a text box to describe the effect of the card.

In this work, we proposed three models based on the
Combination of Deep learning and Syntax rules (CDS mod-
els). This work involves some neural architectures (e.g, self-
attention network, CNN) which have already resulted in
significant progress in the field of natural language process-
ing. Meanwhile, considering the essential difference between

1 available at https://github.com/deepmind/card2code



code and natural language, our work also takes syntax rules
into account. Specifically, we represented the code in a tree
structure. In addition, considering the poor performance of
Recurrent Neural Network in existing methods [1]–[4], we
adopted the pooling operation and self-attention mechanism
in code generation tasks. Moreover, we explored the strengths
and weaknesses of our CDS models (i.e., CDS-POOLING, CDS-
CNN, and CDS-SAN models).

The key contributions of our study are described as follows:
a) We proposed three novel code generation frameworks,

based on the Combination of Deep learning and Syntax
rules (CDS models). To the best of our knowledge, we are
the first to use Transformer model (self-attention network)
and pooling operation in code generation. And our high-
performance models lead to a significant improvement of
BLEU score.

b) We conducted a comparative study between three models
we proposed. We also thought that researchers need a
comprehensive analysis of the task and should adopt
simple and effective networks, when using deep learning
methods.

II. RELATED WORK

Generating code in software engineering has a long history.
Some early works focus on domain specific languages [5],
[6]. For general-purpose code generation, such as [7], which
tries to generate the code for parsing input documents. It
was presented that data driven methods instead of instead of
manual methods are used in manufacturing model, and code
could be generated automatically.

There are some early works using syntax rules only. (1)
Parser Generation approach: some tools such as template
engine [8] were used to automatically generate parser, but
it is too complicated and cannot cover every scenario. (2)
Model Driven approach: an entire application or just its
skeleton is generated. (3) Database-related approach: usually
the programmer defines a database schema, from which entire
CRUD (Create, Retrieve, Update, and Delete) operations or
just the code to handle the database can be generated. (4)
Metaprograming approach: some researchers developed a new
language which could manipulate another piece of source
code; it means that the source code is just another data
structure that can be manipulated [9]. (5) Retrieval-based
approach: some researchers leveraged subtree retrieval mecha-
nism, which can explicitly output existing code examples. [10].

Recently, neural networks are introduced to code generation.
Encoder-Decoder architecture has shown good performance in
practical applications, such as machine translation, dialogue
system, and image captioning. The encoder processes an input
sequence x = (x1, ..., xm) of m elements and returns state
representations z = (z1, ..., zm). The decoder takes z and
generates the output sequence y = (y1, ..., yn) left to right. To
generate output yi+1, the decoder computes a new hidden state
hi+1 based on the previous state hi, an embedding gi of the
previous target language word yi, as well as a conditional input
ci derived from the encoder output z. Based on this generic

formulation, various encoder-decoder architectures have been
proposed.

Recent works on neural machine translation mostly base on
sequence-to-sequence models are worth referring for us. [11],
[12] and many works following adopt attention based models
to get better performance with longer sentences. [13] uses
CNNs to build sequence-to-sequence model which is faster
and allows to discover compositional structure. Transformer
is proposed in [14] first. Although originally used in transla-
tion tasks, self-attentive feed-forward sequence models have
been shown to achieve impressive results on many sequence
modeling tasks [14]–[16]. For code generation task, some re-
searchers attempted to adopt sequence-to-sequence models [1]
or models based on abstract syntax tree [2]–[4], [17] to get
valid program. The decoder of neural network models above
are all based on RNNs except for [17] which uses CNNs to
capture information.

Moreover, some researchers found that much simpler
word-embedding-based architectures exhibit impressive per-
formance, compared with more-sophisticated models using
RNN or CNN [14]. There are some related works which
introduced pooling to some tasks. [18]–[20] show that average
pooling can obtain impressive accuracy on both sentence and
document-level sentiment analysis, factoid question-answering
and text classification tasks with much less training time than
competing methods.

III. ARCHITECTURE

We first define the code generation task as below:
Given a descriptive text q, our target is to generate code

(e.g., Python code), specifically in an AST a format. In this
paper, we start with the syntactic code generation model
proposed in [2]. It focuses on generating AST from text, and
then converting it to concrete code. Formally, our goal is to
find a best generated AST â as Eq.(1).:

â = argmax
a

p(a|q) (1)

p(a|q) =
T∏

t=1

p(yt|y<t, q) (2)

where y<t represents y1...yt−1 and T is the number of total
time steps.

Our CDS models can be divided into three dimensions:
pooling based, CNN based, and self-attention network based.
We train these three models independently, with input of (a)
predicted structure of AST, (b) name of variables, and (c) name
of functions containing syntax information.

A. CDS-POOLING

Word embeddings can learn a lot from rich unstructured
descriptive text, which are widely adopted as building blocks
in the area of Natural Language Processing (NLP). Word
embeddings can cluster similar words in semantical level by
representing each word as a fixed-length vector and encoding
the linguistic regularities and patterns implicitly. Thus, our



CDS-POOLING model is closely related to Deep Averaging
Network, which demonstrates that the average pooling op-
eration achieves tremendous results for some NLP tasks.
Pooling operations capture high level semantic features and
low level word characters information, just same as a method
of information fusion. Moreover, we explored different pooling
operations, rather than only average-pooling.
Average Pooling：Average pooling computes the element-
wise average over word-vectors for the descriptive text, which
average the value of K dimensions for all word embedding.
Thus, Average Pooling is able to obtain a representation z with
the same dimension as the embedding itself.

z =
1

L

L∑
i=1

vi (3)

Max Pooling：Max Pooling extracts the most salient fea-
tures from every word-embedding dimension, by taking the
maximum value along each dimension of the word vectors.

z = Max-pooling(v1, v2, ..., vL) (4)

where the j-th component of z is the maximum element
in the set v1j , ..., vLj , where v1j is, for example, the j-th
component of v1. With this pooling operation, those words
that are unimportant or unrelated to our task will be ignored
in the encoding process.

Hierarchical Pooling: Both average- and max- pooling do
not take word order into consideration, which could be useful
for code generation tasks. Thus, we also proposed a hierarchi-
cal pooling layer, where the two abstracted pooling features are
concatenated together to represent the sentence embeddings.
However, Hierarchical Pooling learns fixed-length representa-
tions for the n-grams that appear in the corpus, rather than just
capturing their occurrences via count features, which is more
suitable for code generation.

For all CDS-POOLING variants above, there is no additional
network to extract features. We just apply max-poling after
embedding, and then attention mechanism is used to acquire
information between features. Finally, two layers of fully
connect neural network and a softmax layer is applied to get
the classification result. Thus, CDS-POOLING model quickly
captures only intrinsic word-embedding information for code
generation. In experiments, we proved that the CDS-POOLING
model significantly promote the precision and accelerate the
calculation speed.

B. CDS-CNN

The Convolutional Neural Network (CNN) [21] is another
strategy extensively employed encode text sequences. Convo-
lution operation can be described as using filters w ∈ Rhk to
capture word-level features. For each kernel F , a convolution
operation uses a D×K slide. First, We applied the embedding
mentioned above as input, which is a tensor of D×L dimen-
sions. L represents the length of descriptive sentence and D is
the embedding dimensions. Then, for each step, we summed
the weighted value in filters and applied nonlinear activation

Fig. 2. Simple Word-Embedding-Based Model

operation to obtain the filter. Finally, the filters become a
vector which represents the output. In practice, several layers
are applied to capture the hierarchical information.

We learned from [22] and applied residual structure in
our model. What’s more, we also conducted batch normal-
ization [23] to speed up the training process and improve
the model performance. Our CDS-CNN model is showed in
Fig 3. The embedding input has the shape of N × L × D.
Our designed interact-CNN takes into account the relationship
between natural language and semantic structure. Moreover,
we use the concatenation operation to mix the information
from natural language and AST together. But attention is
needed for our operation of transposing the length-dimension
and embedding-dimension to fully mix the information. At the
final part of interact-CNN, we applied max-pooling to get the
hierarchical information. Through the interact-CNN part, the
shape of our tensor is reduced to N ×D. At the final part of
Fig 3, there are multilayer perceptron (MLP) and softmax layer
to generate final AST. CNN can be fully trained in parallel to
better exploit the floating-point computation capacity of GPU,
compared with RNN in the train step.

Fig. 3. Encoder-Decoder CNN

C. CDS-SAN

Transformer architecture [14] is based entirely on attention
mechanisms and achieves best performance in the neural
machine translation. In this work, we adopted the self-attention
network architecture, which is a modified version of Trans-
former for two reasons. Firstly, it could be trained fast for its



parallelizable structure, while traditional RNN model is com-
putational and time consuming due to its recurrent structure.
Secondly, it naturally constructs the long-term dependence via
the attention mechanism, see Eq 4. It implies that Transformer
architecture learns non-local dependencies between tokens
regardless of the distance between them.

The self-attention network (SAN) is a special case of the
attention mechanism, which models the dependencies between
tokens from the same sequence [14]. In our work, the self-
attention layer aims to create the embedding representations
of the original text input. Specifically, given the text H =
(h1, h2, ..., hL) carrying the semantics of the original review
along all time steps from the encoder, self-attention network
first yields a weight matrix Aenc = (a1

enc, a2
enc, ..., aL

enc,
computed as Aenc = softmax(w2

enctanh(w1
encHT )),

where w1
enc is a parameter vector and w2

enc is a parameter
matrix. Softmax function is used to normalize the attention
weights.

Since embeddings represent linguistic context information
weakly, we use self-attention network to encode input for a
better representation and drop out the decode part.

Fig. 4. Self-attention Network

IV. EXPERIMENT

Our experiment aims to answer the following research
questions (RQs):

RQ1:How do CDS models perform?
Our work intends to make a comparative study of the

differences between our CDS models and existing state-of-
the-art methods (e.g., LPN [1], SNM [2], ASN [3], and
SEQ2TREE [4] all mentioned above in section II).

RQ2:Can we find a trade-off between training speed and
accuracy of the result?

Most models with more expressive composition functions
perform well? Speed and accuracy, which matters more in
reality? This work includes a rigorous evaluation regarding
the added value of sophisticated composition functions.

A. Dataset

We used Hearth Stone dataset introduced by [1] as a
practical code-generation application. It has 655 cards in total,
533 cards for training, 66 cards for validating, and 66 cards for
testing. Each card is identified by ten attributes (e.g., TYPE

and ATK) and has an functional describe in the text box. Code
implementations of these cards implement the game logic and
card effects once per turn.

B. Evaluation Metrics

We used billingual evaluation understudy score (BLEU) [24]
as the evaluation metric in our experiment. Although BLEU is
developed for translation tasks originally, it can be used to
evaluate programs in this work through measuring how close
the generated code is to the ground truth code in terms of
n-grams.

To obtain the BLEU score, we computed modified n-grams
precision (pn) first. The modified n-grams prediction is
computed as follows. All candidate n-grams counts and their
corresponding maximum reference counts are collected. In the
code generation task, the reference is executable code.

pn =

∑
C∈{Candidates}

∑
n-gram∈C

Countclip(n-gram)∑
C’∈{Candidates}

∑
n-gram’∈C’

Count(n-gram’)
(5)

Then, we define BP to penalize the generated program shorter
than ground truth. c is the length of generated code and r is
the reference code length.

BP =

{
1 if c > r

e1−r/c if c ≤ r
(6)

Finally, we get

BLEU-N = BP · exp(
N∑

n=1

wn log pn) (7)

In our experiment, we used N = 4 and uniform weights wn =
1/N .

Additionally, we also calculated the ACCURACY score
which represents the percentage of 66 test codes that can be
executed and absolutely correct.

C. Experiment Hyperparameters

For the CDS-POOLING model, our character embedding
has 256 dimensions. We used a dropout rate of 0.7; for
the CDS-CNN model, we set the embedding size as 128
to concentrated information and hidden-layer size as 128 to
extract features. The dropout rate is 0.5 because CNN model
is more complicated than pooling. For the CDS-SAN model,
we followed the base Transformer [14], with 4 encoder layers
of 128 hidden dimensions, and 8 attention heads per-layer.
And the CNN filters followed the specifications of [21]. The
dropout rate is also 0.5, same as CDS-CNNẆe optimized these
models with Adam with default hyperparameters and set batch
size as 64. It took us 9 hours to train a pooling model on a
NVIDIA Tesla P100. We used a beam search for generating the
program, and computed BLEU scores to measure performance
on the testing set.



TABLE I
EXPERIMENTAL RESULTS

Model ACCURACY BLEU

SEQ2TREE 1.5 53.4
LPN 6.1 67.1
SNM 16.2 75.8
ASN 18.2 77.6

CDS-POOLING 15.6 78.9
CDS-CNN 19.7 77.0
CDS-SAN 16.7 77.8

D. Experimental results

Table I presents the results of our CDS models in code
generation, in comparison with exisiting methods, e.g., LPN
[1], SNM [2], ASN [3], and SEQ2TREE [4], which are the
state-of-the-art models in the code generation area. The results
show that adopting CDS-POOLING to capture the syntax rules
yields a better performance with much less training time
than other methods. Besides, compared with RNN, CNN is
better suited to capturing the structural information of long
sentences. Finally, theself-attention network based model also
outperforms existing methods.

Fig. 5. Loss Function Over Time

E. Result Analysis and Case study

The results demonstrate that CDS-POOLING is particularly
better than any other existing methods in both speed and
efficiency. As for CDS-SAN, when we made this model more
complicated, the ACCURACY score fell but BLEU score rose,
which means CDS-SAN can handle the detail better. CDS-CNN
model is good at generating more completely correct code.

As mentioned in [3], Hearth Stone contains classes with
similar structures, thus the code generation task can predigest
into the generation of tree-like AST and what we need to do is
to fill in tokens with certain variables and values. Nevertheless,
certain errors must occur because that Hearth-Stone’s code
contains complicated logic, which result in a low accuracy
[2]. To see more details, we presented an example of code
we generated by CDS-POOLING in table II. It illustrates that
our model can handle complicated code syntax effectively.
However, our generated code does not absolutely match the
reference code, but it is correct in general and can be executed.

To be more specific, the reason why the CDS-POOLING has
such an impressive result is that pooling operation builds an

information map to achieve a downsampling-process, which
throws away indifferent information. In contrast, the CDS-CNN
model tends to generate a structural correct code, which leads
to a higher ACCURACY (more absolutely correct codes) but a
similar BLEU compared with previous works.

TABLE II
THE COMPARING OF GENERATED CODE AND REFERENCE CODE

Descriptive Text:

annoy-o-tron name_end 1 atk_end 2 def_end 2 cost_end -1 dur_end

minion type_end neutral player_cls_end mech race_end

common rarity_end b taunt /b nl b divine shield /b

Generated Code:

class AnnoyoTron(MinionCard ) :

def __init__ (self) :

super().__init__("Annoy-o-Tron", 2,

CHARACTER_CLASS.ALL, CARD_RARITY.COMMON,

minion_type = MINION_TYPE.MECH, divine_shield = True)

def create_minion (self, player) :

return Minion(1, 2, taunt = True, divine_shield = True)

Reference Code:

class AnnoyoTron(MinionCard ) :

def __init__ (self) :

super().__init__("Annoy-o-Tron", 2,

CHARACTER_CLASS.ALL, CARD_RARITY.COMMON,

minion_type = MINION_TYPE.MECH)

def create_minion (self, player) :

return Minion(1, 2, divine_shield = True, taunt = True)

V. DISCUSSION AND ANALYSIS

RQ1: How do CDS models perform?
The results demonstrate that CDS-POOLING is particularly

better than any other existing methods in both speed and
efficiency. When we made model more complicated, the
ACCURACY result fell, but the BLEU score rose (see CDS-
SAN), which means that it can handle the details better. And
it clarifies CDS-CNN model is skilled at generating more
completely correct code. Results also illustrate that simple
pooling operation (CDS-POOLING) is surprisingly effective at
representing longer sequence. CDS-POOLING figures over all
elements of th tensor, and CDS-POOLING can be fully trained
in parallel to better exploit the floating-point computation
capacity of GPU, compared with RNN in the train step. In
addition, CDS-POOLING is more amenable to optimization
because the number of non-linearities unit is fixed, moreover,
it not be affected by the text input’s length. The max-pooling is
working as follows: we can consider the embedding size used
as 256 represent 256 kinds of semantics, and the max-pooling
operator is to extract the semantics in sentences.

RQ2: Can we find a trade-off between training speed
and accuracy of the result?

The experiment demonstrated that CDS-POOLING is the
most effective approach outperforming other complicated
models. This also tells us that a simple and effective method
should be a prevailing concern. Additionally, it helps re-
searchers to avoid the blind use of deep learning algorithms
when solving software engineering problems.



Considering the nature of this problem, more sophisticated
models reveal outstanding results but are excessively compu-
tationally expensive, because they need to optimize thousands
of parameters, e.g., RNN or CNN. On the contrary, maybe
some simpler models can be robust, which only compute the
sentence embedding by simply adding or averaging operation
over the word embedding, just as our CDS-POOLING. But
that also means, such a simple pooling operation does not
take word-order information into account. However, pooling
operation has the advantage of having significantly fewer
parameters, which means it can train much faster and obtain
a equally good precision, comparing to RNN or CNN. Thus,
there is a trade-off between training speed and efficiency.

VI. CONCLUSION AND FUTURE WORK

In this work, we are the first to introduce pooling operation,
fully convolutional model, and self-attention network for code
generation tasks to the best of our knowledge. Furthermore,
analysis shows that the pooling based model is the most
efficient. Thus, we achieved state-of-the-art results in the
code generation task. Specifically, on Hearth Stone dataset
we outperformed all the previous methods by 78.9 BLEU. In
addition, we provided some advice to researchers that they
must consider practical reality of target tasks, and do not
fall into the trap of using complicated deep learning models
blindly. In conclusion, our work has theoretical significance
and practical value in the field of software engineering.

In the future, we plan to adopt more models in code
generation tasks, aiming at seeking ways to improve the
performance. However, there is a syntactic difference between
various program languages. Thus, we also plan to apply CDS
models into more code generation datasets.

REFERENCES

[1] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann, T. Kočiský,
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