
A Services Development Approach for Smart Home
Based on Natural Language Instructions

Yiyan Chen1,2, Zhanghui Liu1,2, Zhiming Huang1,2, Chuanshumin Hu1,2, and Xing Chen1,2,*

1College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
2Key Laboratory of Network Computing and Intelligent Information Processing

Fuzhou University, Fuzhou 350116, China
*chenxing@fzu.edu.cn

Abstract—With development of the infrastructures supporting
smart home which has entered in a new stage featured by intelli-
gent services. The services based on natural language instructions
are aimed at simplifying and improving our lives. To customize
and develop these services more efficiently, this paper proposes
an approach to model and execute services based on natural
language instructions at runtime which introduces the knowledge
graph into development process. Firstly, a concept model of
knowledge graph is introduced for smart home services. Secondly,
we put forward the mechanism to construct the instance of
knowledge graph for smart home services. Finally, rules of
transformation are provided to achieve mapping from natural
language instructions to the services of knowledge graph. We
evaluate our model on a prototype system and the experimental
results show that our approach can develop services at runtime
and effectually reduce the lines of code by 90%.

Index Terms—services development, smart home, knowledge
graph, runtime model, natural language

I. INTRODUCTION

The continuous development of smart home infrastructure
has ushered in a new era characterized by smart services.
A large number of new devices which are complex and
heterogeneous such as intelligent robots, smart wearable de-
vices and smart home appliances will access to the network
for interaction and collaboration [1] [2]. Human-computer
interaction based on natural language has become the main
interaction method in smart home like Amazon Echo [3] and
Google Home [4].

Smart home service based on natural language commands
is actually a process of decision-making and implementation
according to the instructions given by users and the infor-
mation of their environment [5]. At present, the management
interface of the device is directly invoked by a programming
language such as C or Java to implement services development
of smart home. Although this kind of programming has good
adaptability, it will bring high price. Developers must be
familiar with the management interfaces of different smart
devices in order to implement the interaction. In addition, the
application system is based on the underlying code bound to a
specific intelligent device, which makes it impossible to reuse
its management logic. It is hard to expand the manage system

DOI reference number: 10.18293/SEKE2019-173

when the devices change, though the management mechanism
is similar.

Due to the gap between problem domains and system imple-
mentations, accomplishing mapping between them can create
significant programming complexity. The knowledge graph is
used to describe the concepts, entities, events and relationships
between the object, which can serve as a bridge between
system requirements and system implementation. Moreover, it
turns to be easier to integrate the devices into control system of
smart homes. If we want to introduce knowledge graph into the
development of smart home services, there are two problems
which need to be solved. One is how to define the knowledge
graph model to describe the smart home scene. The other is
how to map natural language utterances to services provided
by devices in the knowledge graph.

In this paper the method is proposed to quickly customize
and develop smart home service on the basis of natural
language instructions. Our contributions are as following:

• A concept model of knowledge graph is introduced for
smart home services.

• We put forward the mechanism to constructing the in-
stance of knowledge graph for smart home services.

• Transformation rules are proposed to achieve mapping
from natural language instructions to the services of
knowledge graph.

II. RELATED WORK

In the development process of IoT applications, program-
ming is usually carried out at the operating system level. This
situation makes the programmer to focus on the underlaying
related issues rather than the application logic [6]. Guang
et al. [7] proposed a top-down IoT application development
method and support system. The system could automatically
generate platform-specific configuration and execution code by
given the platform-independent application management logic.
In addition, some research work [8] [9] proposed a service-
oriented architecture-based solution that provided a device
access interface in the form of RESTFul service to shield the
heterogeneity and complexity of the underlying system.

The Peking University team conducted research on runtime
model theory and construction methods [10] [11]. When
the system meta-model and a set of management interfaces



was given, the SM@RT tool [14] can automatically generate
code. When the systematic meta-model changed, SM@RT can
generate new mapping code automatically.

III. APPROACH OVERVIEW

A. Concept model of knowledge graph

The concept model of knowledge graph provides an abstract
representation of smart home services, and aim to describe the
concepts and relationships of abstract elements for smart home
scene, as shown in Figure 1.

Location

ServiceDevice

User

Context

In
cr
e
a
se

Fig. 1. Concept model of knowledge graph for services of smart home

As Table I illustrates, the concept model defines the concept-
s of the smart home scenario such as location, user, context,
device and service. We give further explanations for those
concepts and their properties in this model.

TABLE I
CONCEPTS AND PROPERTIES IN THE CONCEPTUAL MODEL OF SMART

HOME KNOWLEDGE GRAPH

Concept Name Conceptual Properties
Location <LName>

User <UName, LName>
Context <UName, LName, CType, CValue>
Device <DName, LName, {Key1,Key2, ...,Keyn} >
Service <DName, LName, DFunction, CType, Effect>

Location indicates a specific area and the name of the area
is expressed by LName. User is used to describe the service
object and UName is the name of user. The attribute LName
is the area where the user is located. Context represents an
environment state of users. UName is the name of current
service object. LName represents the area where the users
are located. CType is to describe an type of environment
status (eg brightness, temperature). CV alue is the value of
status. Device represents the equipment object and it contains
three properties LName, DName and Keyi. Keyi means the
configuration parameter or system indicator of device. Service
indicates a service to change the environment or operating the
device and it contains five properties. We need to emphasize
the DFunction and Effect here. DFuction is the function
interface of the device corresponding to the service. Effect
is an operation of changing the environment or managing the
devices meeting the instruction given by user.

The conceptual model also defines the relationship between
concepts mentioned above, as shown in Figure 1. For example,

X
Located−−−−−→ L indicates node User, Context, Device and

Service are located in area L. U Sense−−−−→ C represents user is
aware of the state of the context. S Increase−−−−−−→ C shows that
the service is used to raise the state value of the context.

B. Mapping natural language to service

The implementation of the smart home services in natural
language is based on the knowledge graph model of smart
home. The goal is to map natural language commands to
specific service and the knowledge graph contains all the
information of services. Hence, we have two main tasks in
this part.

Firstly, the task of information extraction is to identify
the semantics in natural language commands. At present,
information extraction methods are mainly divided into two
categories, one is based on statistical learning method and the
other is based on rule pattern matching method. Statistical
learning method is portable and robust. However, it needs a
lot of training data to set parameters and optimize the system.
Rule-based matching method has high efficiency and accuracy.
The text of smart home domain has the characteristics of
domain, regularity and simple logic. The rule-based method
can achieve better extraction effect.

Secondly, the conversion rules are builded to map the
information to services of knowledge graph. When services
matching the commands are found, it is available to execute
the device functional interfaces satisfied with users’ need. The
specific transformation rules are given in Section V.

IV. RUNTIME MODELING

In this part, we will introduce the runtime modeling method
of knowledge graph for smart home. With the purpose of
describing the context knowledge of smart home, we establish
knowledge graph instances by constructing concept instances
and relationship instances.

A. Concept instances modeling

The concept instances are constructed based on the devel-
oper configuration. For realizing bidirectional synchronization
between concept instances and the real-time information of the
scene, a set of rules for mapping are proposed. Developers
need to provide relevant configurations to describe specific
objective facts in the scenario, including scene information,
the mapping of concept instances to smart devices and the
environment of service objects.

The configuration of scene information provides a col-
lection of locations L = {L1, L2, ..., Ln}. The mapping
between concept instances and devices provides a collection
of devices D = {D1, D2, ..., Dn}, a collection of services
S = {S1, S2, ..., Sn} and the relationship between them.
The configuration of users’ environment provides data which
include collection of users U = {U1, U2, ..., Un}, positioning
devices T = {T1, T2, ..., Tn}, and environmental state of users
C = {C1, C2, ..., Cn}. Then the corresponding concept in-
stances are generated by the collections mentioned. Moreover,



TABLE II
MAPPING RULES FOR MODEL OPERATIONS OF LOCATION, USER AND CONTEXT INSTANCES

Location User Context

List List ∗ L→ {L1, L2, ..., Ln} List ∗ U → {U1, U2, ..., Un} List ∗ C → {C1, C2, ..., C3}
Get Li.properties→ Li.properties Get Ui.properties→ Ui.properties Get Ci.properties→ Ci.properties

Get Get Li.LName→ Li.LName
Get Ui.UName→ Ui.UName
Get Ui.LName→ RTModel (Get Ti.location)

Get Ci.UName→ Ci.UName

Get Ci.LName→ Get Uj .LName
(
(∃Uj)Uj

Sense−−−−→ Ci

)
Get Ci.CType→ Ci.CType

Get Ci.CV alue→ Get Dj .keyn
(
(∃Dj)Dj

Provide−−−−−−→ Si

)
Set - - -

TABLE III
MAPPING RULES FOR MODEL OPERATIONS OF DEVICE AND SERVICE INSTANCES

Device Service

List List ∗D → {D1, D2, ..., Dn} List ∗ U → {U1, U2, ..., Un}
Get Di.properties→ Di.properties Get Si.properties→ Si.properties

Get
Get Di.DName→ Di.DName
Get Di.LName→ Di.LName
Get Di.keym → RTModel (Get Di.keym)

Get Si.DName→ Si.DName
(
(∃Dj)Dj

Provide−−−−−−→ Si

)
Get Si.LName→ Si.LName
Get Si.CType→ Si.CType
Get Si.Effect→ Si.Effect
Get Si.DFaction→ Si.DFunction

Set Get Di.keym → RTModel (Set Di.keym) -

the SM@RT tool [10] [11] is used to construct the runtime
model of the smart devices and positioning devices.

The model operation methods of the concept instances
mainly include three types, namely List, Get and Set. List
is used to get all instances of the same type and its proper-
ties. Get and Set are used to read and write the attribute
values of instances respectively. In order to maintain the
bidirectional synchronization of the concept instances and the
scene realtime information, the mapping rules are defined,
as shown in Table II and Table III. There are three main
mechanisms for the bidirectional synchronization of knowl-
edge graph and the real-time information of scene by con-
figuration information, runtime models and rules respectively.
As Table II shown, the attribute LName of location Li is
from the configuration like Get Li.LName → Li.LName.
And there are similar situations in other instances of concept.
The LName of the user U and the Keym of the device
need to be obtained through the runtime model, such as Get
Ui.LName → RTModel (Get Ti.location). The LName
and CV alue of the context as well as LName of the service
need to be obtained by rules, such as Get Ci.LName→ Get

Uj .LName
(
(∃Uj)Uj

Sense−−−−→ Ci

)
.

B. Relation instances modeling

As illustrated in Table IV, we further define the rules
for constructing relation instance to express the relation-
ships between concepts in a smart home scenario. When
two instances of a concept meet certain preconditions, the
relationship between them is constructed. For instance in Rule
4, if the area LName and the CType of the service Si is
equal to the context Cj , and Effect of Si is Increase, the
relationship instance Si

increase−−−−−→ Cj is created. In Rule 2 and
3, the relationship Scence and Provide involve the user’s
environmental information and the device’s features in the real

scenario, so this kind of information needs to be obtained from
the developers’ configuration data.

Fig. 2. Instance of dependency parsing tree

V. MAPPING NATURAL LANGUAGE TO SERVICES

In this chapter, we first apply dependency parser to infor-
mation extraction. Secondly, knowledge reasoning rules are
specified to transform the results of information extraction into
the search of service nodes in the knowledge graph.

Dependent syntax explains the syntactic structure of sen-
tence by analyzing the dependencies between components
within a language unit, as shown in Figure 2. According to the
characteristics of commands in smart home scene, we chose
dependency parsing to extract the information from natural
language instructions.

The final goal is to determine the Service instance Si

based on the properties DName(D), LName(L), CType(C)
and Effect(E) to invoke the DFuction. Therefore, the task
of information extraction is to identify four kinds of the
mentioned information. This will allow us to convert any
natural language utterance to a canonical representation, which
we can map to services.

A. Rules of Extraction

In this paper, Stanford Parser is applied for dependency
parsing. The generation of the extraction rules mainly depends
on the Part of Speech (POS) of the extraction task and the
dependency characteristics.



TABLE IV
RULES FOR CONSTRUCTING RELATION INSTANCES

Relation Instance Precondition
1 Xi

Locate−−−−−→ Lj Xi.LName = Lj .LName

2 Ui
Sense−−−−→ Cj −

3 Di
Provide−−−−−−→ Sj −

4 Si
increase−−−−−−→ Cj Si.LName = Cj .LName ∧ Si.CType = Cj .CType ∧ Si.Effect = “Increase”

5 Si
Reduce−−−−−→ Cj Si.LName = Cj .LName ∧ Si.CType = Cj .CType ∧ Si.Effect = “Reduce”

6 Si
Assign−−−−−→ Cj Si.LName = Cj .LName ∧ Si.CType = Cj .CType ∧ Si.Effect = “Assign”

1) Extraction Rules of “Effect”: Effect is the operation
of changing the environment or managing the device in
commands given by users. By summarizing the commands for
the smart home scene, we found that an operation is usually
represented by a single verb or a verb phrase, like “increase”
and “turn on”. There is a specific dependency “cpmpound:prt”
between words in a verb phrase. The dependency path of the
verb part of the sentence is shown in Figure 3. In algorithm
1, we elaborate how to extract the “Effect” according to the
dependency relationship. The identifier p is used to represent
the nodes in the dependency parsing tree. For example, every
word in Figure 2 can be expressed as p. We use p.word to
describe content of the node p. p→son illustrates the child
node of p. The part of speed of p is represented by p.pos.
p→head expresses the parent node of p. Above all, we imply
r(p, q) to describe the dependency relationship between node
p and q.

Fig. 3. Dependency paths of verb part

Algorithm 1 Extracting the “Effect” information
Input: Dependency parsing of the command;
Output: “Effect” information E
Find the node p whose part of speech is “VB”, E=p.word;
while p has a child node p→son and the relationship
r (p, p→ son) is “compound:prt” do

E=E+(p→ son).word;
p=p→ son;

end while

2) Extraction Rules of DName, LName and CType: Map-
ping the attributes DName, LName and CType to the
commands is the information of device, area and attribute of
environment or device. The expression of these three kinds of
information can be summarized in the following two ways.

• Entity of a single noun, like “light”, “temperature”,
“bedroom”.

• Entity composed by phrase. It can be divided into two
categories. One is the form of “noun+noun” and their
relationship is “compound”, like “air condition”. The
other is the form of “adjective+noun”, their relationship
is “amod”, like “sitting room”.

The data stored in the knowledge map is matched with the
extracted information to classify. In summary, the extraction
rules for the three kinds of information as algorithm 2 shows.

Algorithm 2 Extracting the “device”, “location” and “at-
tribute” information

Input: Dependency parsing of the command;
Output: “device” information D, “location” information L,
“attribute” information A
Find the node p whose part of speech is “NN”, C=p.word;
while p has a child node p→son and the relationship
r (p, p→ son) is “amod” or “compound” do

N=N+(p→ son).word;
p=p→ son;

end while
Look for knowledge graph node Si;
Judge the type of information N is DName, LName or
CType.

B. Rules for Knowledge Reasoning

After information extraction is done, we need to map
extracted information to service in knowledge graph through
transformation mechanism. Universal rules of knowledge rea-
soning is proposed in term of different extraction results for
matching the services. Rules are listed in Table V.

Rule 1, 2 and 3 outline that the user directly specifies the
operation of a device. For example, when the user specifies
“”D, “L”, “C” and “E”, construct rule 1. If there is service
instance Si and the value of attribute LName is L, DName
is D, CType is C, and Effect is E, call the function interface
DFunction of service Si.

Rules 4 and 5 describe the knowledge reasoning based on
the user’s environment when the information given by the
user is insufficient to locate the specific service. For example,
when the user gives the operation and device, construct rule
4. Firstly, the location information of the device is obtained
according to the LName of the current user Ui. Then, we



need to find a service Sj that meets the following conditions.
The attribute LName value of Si is equal to LName of Ui,
DName of Si is D, and Effect is E. Finally, the function
interface pointed to by the attribute DFunction of the service
Si is called.

VI. EVALUATION

In this section, we build a prototype system of smart
home for the actual scene to evaluate the method. Firstly, we
evaluate validity of the modeling method for knowledge graph
instances. Secondly, we compare the development difficulty
and execution performance of the service with the traditional
method. Finally, we discuss the precision of information
extraction.

A. Study Case

Device: air conditioner

Device :light

Location : balcony

Device: water pump

Device: air conditioner

Device: air purifier

Device : light

User: Jack

User: Ben

Location:sitting room

Location : bedroom

Device : curtain

Device:water pump

Device:led

Fig. 4. Example scenario of smart home

There are 3 areas in the scene, which are the sitting room,
bedroom and balcony, as shown in Figure 4. For example, there
are some smart devices such as an air conditoner, lights and an
air purifier in the sitting room. The scene includes four types
of environmental states: temperature, humidity, brightness and
particulate matter. There are services such as “turn on”, “turn
off”, “increase”, “reduce” and so on for various functions of
different devices. Fig. 5 shows the instance of the knowledge
graph which is generated with respect to the smart home scene.

Fig. 5. Instance model of the knowledge graph for smart home

B. Evaluation of the Model

In this section, we develop smart home services based on
Java to verify the effectiveness of the method, comparing the
process and the difficulty of services development with the
method we proposed.

1) Process of Service Development: To develop services
based on Java, developers must be familiar with the man-
agement interfaces of different intelligent devices and realize
their interaction. Moreover, because services are based on
these management interfaces, their management logic cannot
be reused.

We built the runtime model of the smart devices with the
help of the SM@RT tool [10] [11], which realizes the data
read-write and function invocation of the devices in a unified
manner (SM@RT is available from the reference [12]). S-
M@RT(supporting model at runtime) is a tool for constructing
the runtime software architecture by model-driven, including
domain-specific modeling language (SM@RT language) and
code generator (SM@RT generator).

SM@RT language allows users to define the meta-model
and accessing model of run time software architecture. The
meta-model defines the structure and manageable elements of
the target system. The accessing model declares the methods
of managing these elements in meta-model.

SM@RT generator can automatically generate and maintain
the infrastructure of run time software architecture based on
meta-model and access model, and reflect the real-time state
of the underlying system to the run time model. At the same
time, the intelligent device run time model only needs to be
constructed once then it can be reused in different smart home
scenarios. Therefore, it does not bring extra work.

Based on the run time model of smart devices, developers
can automatically build voice control services in smart homes
by describing Scenario-Oriented knowledge, configuring the
mapping relationship between conceptual instances and smart
devices, and describing the environment of service objects.

2) Difficulty in Service Development: Table VI compares
lines of code for smart home services developed by the two
methods. We develop services in Java, and each service is de-
veloped independently. When using the method we proposed,
developers need to finish the scenario oriented configuration,
and the basic code are 115 lines.

For example, it takes 197 lines of code to implement the
service S11 for temperature adjustment performed by Jack.
The workload for these two parts in service S11 can be 126 and
71 lines respectively. It only takes 6 lines of configuration code
to achieve the same functionality in our method. Implementing
these services by traditional method needs 188 lines of code
in average, but only 16 lines are required using the proposed
method, reducing the workload by 90%.

C. the Accuracy of Information Extraction

We convene 50 volunteers to give natural language instruc-
tions based on the prototype system. Because the smart home
scene we built is small, the corpus obtained is limited. In the
end, we receive 1321 responses regarding what the respondents



TABLE V
RULES FOR KNOWLEDGE REASONING

Condition Reasoning Rules
D+L+A+O (∃Si) ((Si.DName = D) ∧ (Si.LName = L) ∧ (Si.CType = A) ∧ (Si.Effect = O))⇒ Si.DFunction

D+L+O (∃Si) ((Si.DName = D) ∧ (Si.LName = L) ∧ (Si.Effect = O))⇒ Si.DFunction
L+A+O (∃Si) ((Si.LName = L) ∧ (Si.CType = A) ∧ (Si.Effect = O))⇒ Si.DFunction

D+O (∃Sj) (∃Ui) ((Ui.UName = uname) ∧ (Sj .LName = Ui.LName) ∧ (Sj .DName = D) ∧ (Sj .Effect = O))⇒ Sj .DFunction
A+O (∃Ui) (Ui.UName = uname) ∧ (∀Sj) ((Sj .LName = Ui.LName) ∧ (Sj .CType = A) ∧ (Sj .Effect = O))⇒ Sj .DFunction

TABLE VI
COMPARISON IN LOC OF TWO APPROACHES

Basic S11 S12 S13 S21 S22 S23 S33 S34 S42 S43 Avarage
Java 0 197 231 181 210 189 140 216 184 140 195 188

Our Approach 115 6 6 6 6 6 6 6 6 6 6 16

want their smart home to do. We extracted the information
from these commands and the results of the evaluation are
shown in Table VII.

We will discussed the results according to the evaluation
data. The accuracy of DName, LName, CType and Effect
extraction from the table is 93%, 90%, 84% and 80%. Because
users have different expressions of the same concept or entity.
For example, “sitting room” and “living room”. Therefore,
when the user does not use the same word in the knowledge
map to perform operations on the device, it will lead to failure
of information extraction. The information extraction method
of this paper achieves better results when the user follows the
scene information.

TABLE VII
THE ACCURACY OF INFORMATION EXTRACTION

Type Sentence Number Right Back Number Precision
DName 867 771 89%
LName 906 815 90%
CType 532 447 84%
Effect 766 612 80%

VII. CONCLUSION

To customize and develop smart home services more effi-
ciently, an approach is proposed to model and execute services
based on natural language instructions at runtime. Due to the
gap between problem domains and system implementations,
accomplishing mapping between them can create significant
programming complexity. In order to solve the problem we
introduce the knowledge graph serve as a bridge between sys-
tem requirements and system implementation. Experimental
results show that the proposed method can greatly reduce the
difficulty and complexity of developing smart home services.
But, due to the lack of technical and design capabilities there
are some function implementation could be optimized. Firstly,
the detection module [13] should be added to check the
correctness and completeness of the instance model. Secondly,
the information extraction method need to be improved by
entity linking to increase the precision.

VIII. ACKNOWLEDGMENT

This work was supported by the National Key R&D Pro-
gram of China under Grant No. 2017YFB1002000, the Talent
Program of Fujian Province for Distinguished Young Schol-
ars in Higher Education and the Guiding Project of Fujian
Province under Grant No. 2018H0017.

REFERENCES

[1] K. Xu, X. L. Wang, W. Wei, H. B. Song, and B. Mao, Toward software
defined smart home, IEEE Communications Magazine, 2016, 54(5):116-
122.

[2] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu
and P. Bahl. An operating system for the home. Usenix Conference
on Networked Systems Design and Implementation, 2012:25-25.

[3] T. Edwards, J. Edwards, E. Dot. The Amazon Echo Dot User Guide:
Newbie to Expert in 1 Hour! The Echo Dot User Manual That Should
Have Come In the Box. Tim Edwards & Jenna Edwards.

[4] P. Dempesey. 2017. The teardown: Google Home personal assistant.
Engineering & Technoloy 12, 3(Apr. 2017), 80-81.

[5] G. Campagna, R. Ramesh, S. Xu, F. Michael, S. L. Monica. Al-
mond: The Architecture of an Open, Crowdsourced, Privacy-Preserving,
Programmable Virtual Assistant. In International World Wide Web
Conferences Steering Committee, 2017.

[6] L. Mottola and G. P. Picco. Programming wireless sensor net-
works:Fundamental concepts and state of the art. Acm Computing
Surveys,2009,43(3):1-51.

[7] G. Y. Guan, W. Dong, Y. Gao, K. B. Fu and Z. H. Chen. TinyLink:
A Holistic System for Rapid Development of IoT Applications. In
International Conference on Mobile Computing and NETWORKING.
New York: ACM, 2017:383-395.

[8] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. M. S. D.
Souza and V. Trif. SOA-Based Integration of the Internet of Things in
Enterprise Services. In IEEE International Conference on Web Services.
2009:968-975.

[9] K. Janowicz, A. Brring, C. Stasch, S. Sachade, T. Everding and A.
Llaves. A RESTful Proxy and Data Model for Linked Sensor Data.
International Journal of Digital Earth, 2013, 6(3):233-254.

[10] G. Huang, H. Song and H. Mei, SM@RT:towards architecture-based
runtime management of Internetware systems, In Asia-paci?c Sympo-
sium on Internetware, pp.1-10, 2009.

[11] H. Song, G. Huang, F.Chauvel, Y. F. Xiong, Z. J. Hu, Y. C. Sun and H.
Mei. Supporting runtime software architecture: A bidirectional transfor-
mation based approach. Journal of Systems & Software. 2011,85(5):711-
723.

[12] Peking University. SM@RT: Supporting models at runtime.
http://code.google.com/p/smatrt/, 2009.

[13] H. He, X. Chen, S. Cai, Y. Zhang, G. Huang. Testing bidirectional model
transformation using metamorphic testing. Information and Software
Technology, 2018, 104:109-129.


