
An Empirical Study on Optimal Solutions Selection
Strategies for Effort-Aware Just-in-Time Software

Defect Prediction

Xingguang Yang∗†, Huiqun Yu∗‡�, Guisheng Fan∗�, Kang Yang∗
∗Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

†Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 201112, China
‡Shanghai Engineering Research Center of Smart Energy, Shanghai, China

Abstract—Just-in-time software defect prediction (JIT-SDP)
is an active topic in the filed of software engineering, and
many methods have been proposed to solve this problem. State-
of-the-art method MULTI applies multi-objective optimization
algorithm to the effort-aware JIT-SDP problem, and obtains
good average performance. Although the average performance
of the MULTI method is high, there are many optimal solutions
with poor performance. If an optimal solution is randomly
selected, a poor prediction model may be obtained. In order
to further improve the performance of the MULTI method,
we propose three optimal solutions selection strategies: benefit
priority (BP), cost priority (CP), and a compromise between
cost and benefit (CCB). In order to compare and validate the
effectiveness of the strategies, we conduct a large-scale empirical
study on data sets of six open source projects. The experimental
results show that, compared with the average performance of
MULTI, the optimal solutions selection strategy based on BP has
a significant improvement in ACC and Popt indicators. Therefore,
we recommend using the BP-based optimal solutions selection
strategy to improve the performance of MULTI when using the
MULTI method to solve the effort-aware JIT-SDP problem.

Index Terms—software defect prediction, empirical software
engineering, multi-objective optimization algorithm, just-in-time,
effort-aware

I. INTRODUCTION

Software defect prediction [1] [2] is an active research
topic in the domain of software engineering. As software
scales increase, it becomes very difficult to release a high-
quality software system. In the case of limited software testing
resources, it is critical for the enterprise to find and fix defects
in the software as early as possible.

Software defect prediction is an effective method. By using
defect prediction models, developers can accurately estimate
whether a program module is likely to have defects, thereby
allocating more test resources to modules that are more likely
to have defects, which help to improve the quality of the
software [3].

Traditional software defect predictions have shortcomings
in practical applications [4]. First, because the prediction

Corresponding Authors: Huiqun Yu (yhq@ecust.edu.cn), Guisheng Fan
(gsfan@ecust.edu.cn) DOI reference number: 10.18293/SEKE2019-174

granularity is coarse (i.e., class, file, or package), it is time
consuming to locate risky code regions. Second, a module is
usually completed by many developers, so it is difficult to find
the suitable developer to code checking for the defect-prone
module. Finally, because the defect prediction is made in the
later stages of software development, it is difficult for devel-
opers to come up with thoughts for software development.

Just-in-time software defect prediction (JIT-SDP) can well
overcome the above deficiencies. JIT-SDP is made at change-
level rather than module-level. Once the developer submits
the modified code, the defect prediction will be executed.
Developers can quickly know whether the change is defect-
inducing or not.

Nowadays, many supervised and unsupervised methods
have been proposed to solve the JIT-SDP problem. Yang et al.
[5] compared the performance of supervised learning methods
and unsupervised learning methods in the context of effort-
aware JIT-SDP through a large-scale empirical study. The
experimental results show that some unsupervised learning
methods are even better than supervised learning methods,
which contradicts people’s experience, because supervised
learning methods can learn knowledge from data sets and
should have better performance than unsupervised learning
methods.

Therefore, in order to improve the performance of su-
pervised learning methods, Chen et al. [6] proposed a new
method called MULTI, which formalized the effort-aware JIT-
SDP problem into a multi-objective optimization problem.
The optimal solution set is obtained by using the classical
multi-objective optimization algorithm (MOA) NSGA-II. The
experimental results show that the average performance of the
MULTI method is better than the state-of-the-art supervised
learning methods and unsupervised learning methods. How-
ever, Chen et al. [6] used the median of the performance of
the optimal solution set to represent the average performance
of the MULTI method. In the actual use of the MULTI
method, if an optimal solution is randomly selected, a poor
performance prediction model may be obtained. Therefore, in
order to improve the stability and performance of the MULTI

method, we design three optimal solutions selection strategies:
benefit priority (BP), cost priority (CP), and a compromise
between cost and benefit (CCB). Empirical results show that
the optimal solutions selection strategy based on BP can
significantly improve the performance of MULTI. Therefore,
we recommend using the BP strategy to obtain a higher
performance prediction model when using the MULTI method
to solve the effort-aware JIT-SDP problem.

The contributions of this paper are summarized as follows:
• In view of the shortcomings of the MULTI method,

we propose three optimal solutions selection strategies
BP, CP, and CCB, aiming to improve the effort-aware
prediction performance of the MULTI method.

• Through large-scale empirical research, we compare the
performance of three optimal solutions selection strate-
gies and the average performance of MULTI on the data
sets of six open source projects. Experimental results
demonstrate that BP-based optimal solutions selection
strategy can significantly improve the performance of the
MULTI method in ACC and Popt indicators.

The rest of this article is as follows. Section II introduces re-
lated work of software defect prediction. Section III introduces
the principle of MULTI and our proposed optimal solutions
selection strategies. Case study is introduced in section IV.
Experimental results and discussion are presented in section
V. Section VI describes the threats to validity. The conclusion
and future work are presented in section VII.

II. RELATED WORK

A. Just-in-time Software Defect Prediction

Mockus and Weiss [7] firstly applied JIT-SDP to 5ESS
updates by designing a series of change metrics. Experimental
results show that JIT-SDP can be effectively used in many
commercial software projects. Kamei et al. [4] conducted a
large-scale empirical study of 11 projects, including 6 open
source projects and 5 commercial projects, and they shared
data sets of 6 open source projects. Empirical results reveal
that the model based on logistic regression can achieve 68%
accuracy and an average recall rate of 64%.

Subsequently, many methods were proposed to improve the
performance of the JIT-SDP models. Yang et al. [8] proposed
a novel method called TLEL, which leverages decision tree
and ensemble learning. Experimental results indicate that their
method can significantly improve the performance of JIT-SDP.
McIntosh et al. [3] explored the impact of data validity on
the performance of the JIT-SDP models. Empirical results
demonstrate that in order to ensure the performance of the
prediction models, the defect data sets used should be within
the last three months.

B. Effort-aware Defect Prediction

When building a defect prediction model, in addition to con-
sidering the precision, recall, accuracy, etc., it is also necessary
to consider the effort required to code checking for defect-
prone models. Kamei et al. [4] applied effort-aware defect
prediction to JIT-SDT. They proposed a new method EALR,

which can identify 35% buggy changes while 20% effort is
used. Yang et al. [5] compared unsupervised models with
supervised models for effort-aware JIT-SDP. Experimental
results show that some unsupervised models outperform state-
of-the-art supervised models for effort-aware JIT-SDP. Later,
Fu and Menzies [9] repeated the experiment of Yang et al. [5]
and proved that although supervised models are better than
unsupervised models in project-by-project-based verification,
supervised models are not superior to unsupervised models in
general.

III. OPTIMAL SOLUTIONS SELECTION STRATEGIES

In order to improve the prediction performance of super-
vised methods in effort-aware JIT-SDP, Chen et al. [6] pro-
posed a novel method MULTI, which applies multi-objective
optimization algorithms (MOAs) to JIT-SDP. Their experimen-
tal results show that the average performance of MULTI is sig-
nificantly better than the 43 state-of-the-art methods including
31 supervised methods and 12 unsupervised methods.

However, we find that the Pareto optimal set derived from
MULTI has many optimal solutions with poor performance,
which affects the performance of the MULTI method. There-
fore, we propose three optimal solutions selection strategies
designed to improve the performance of the MULTI method.

A. MULTI

Inspired by search based software engineering (SBSE) [10],
Chen et al. [6] first formalized the effort-aware JIT-SDP
problem into a multi-objective optimization problem. SBSE
aims to solve complex problems with large-scale search space
in software engineering by using search technology.

1) The Design of Objectives: MULTI uses logistic re-
gression for defect prediction, which is widely used in
previous studies [4] [11]. Assuming that a change c =<
m1,m2...,mn > has n metrics, the prediction process of the
logistic regression models can be denoted by the formula 1,
where w =< w0, ..., wn > is the coefficient vector of the
logistic regression model. The output value of y(c) represents
the probability that a change c is buggy.

y(c) =
1

1 + e−(w0+w1m1+...+wnmn)
(1)

Since JIT-SDP is a bi-classification problem, we convert the
output value of y(c). The rule is as in formula 2. When the y
value is greater than 0.5, the change c is classified as buggy,
otherwise it is classified as clean.

Y (c) =

{
1 ify(c) > 0.5
0 ify(c) ≤ 0.5

(2)

For the effort-aware JIT-SDP problem, MULTI mainly consid-
ers two optimization objectives based on cost-benefit analysis
[6]. The first objective is designed from the perspective of
benefit and to identify as many buggy changes as possible. For
a set of changes C, the benefit of a model can be calculated
by formula 3, which represents the number of buggy changes
identified by the model.

benefit(C) =
∑
ciεC

Y (ci)× buggy(ci) (3)

The return value of the function buggy(ci) indicates whether
the change ci is defect-inducing. When the change is buggy,
the return value is 1 otherwise it returns 0.

The second objective is designed from the cost of the model
and is to minimize the effort used for code checking. Once
a change is predicted to be buggy by the defect prediction
model, the software quality assurance (SQA) team will invest
a lot of effort in code checking and test case design. For a set
of changes C, the cost value can be calculated by formula 4.
Here the function SQA(ci) represents the effort required to
code checking for the change ci. According to the suggestion
of Kamei et al. [4], the value of SQA(ci) can be set to the
lines of code(LOC) modified by the change ci.

cost(C) =
∑
ciεC

Y (ci)× SQA(ci) (4)

2) The Generation of Optimal Solutions: Obviously, the
above two objectives are usually conflicting. If a model
wants to identify more buggy changes, it will lead to more
effort. Conversely, if the model wants to reduce the effort for
code checking, it will miss many buggy changes. MULTI is
designed based on NSGA-II [12], which is one of classical
MOAs. Before introducing the coding scheme of chromo-
somes of MULTI, we give some definitions of MOAs.

• Pareto dominance. Suppose wi and wj are two fea-
sible solutions of the JIT-SDP problem. If and only if
benefit(wi) > benefit(wj) and cost(wi) 6 cost(wj) or
benefit(wi) > benefit(wj) and cost(wi) < cost(wj),
wi is Pareto dominance on wj .

• Pareto optimal solution. For a feasible solution w, w is a
Pareto optimal solution if and only if there is no feasible
solution w∗ which is dominance on w. Pareto optimal set
is composed by all the Pareto optimal solutions.

The process of MULTI can be summarized into the following
four steps.

1) Population initialization. For the effort-aware JIT-SDP
problem, a chromosome can be encoded as a coefficient
vector, denoting the coefficients of a logistic regression
model. During the population initialization process, N
chromosomes are randomly generated, and the values of
the elements of each chromosome are randomly gener-
ated.

2) Evolution. After population initialization, classical evolu-
tionary operations are performed to generate new chromo-
somes. General evolutionary operators include crossover
operator, mutation operator, etc.

3) Selection. Choose the optimal chromosomes from the
parent and offspring populations. The selection operator
of NSGA-II is based on non-dominated sorting algorithm
and the concept of crowding distance [12]. Repeat steps
2 and 3.

4) Termination. Once the evolutionary process satisfies the
termination condition, the iteration process terminates and
returns to the final optimal chromosomes.

B. Optimal Solutions Selection Strategies

MULTI designs two optimization objectives and generates
a set of optimal solutions based on NSGA-II. In previous
studies, Chen et al. [6] use MULTI-B to indicate the best
performance of MULTI, and use MULTI-M to indicate the
average performance of MULTI. Although the average per-
formance of the MULTI method is good in the context of
effort-aware JIT-SDP, randomly selecting an optimal solution
from the optimal solution set may result in poor prediction
performance.

Fig. 1 shows the values of ACC indicator generated from a
run results on six subject systems based on 10 times 10-fold
cross-validation. It can be seen from the Fig. 1 that although
the median of indicator ACC in optimal solution set can
obtain a high performance, there are a large number of poor
performance solutions in the optimal solution set. Therefore,
randomly selecting an optimal solution may result in obtaining
a prediction model with poor performance. Therefore, it is
necessary to design a suitable optimal solutions selection
strategy to improve the stability of MULTI.

BUG COL JDT MOZ PLA POS

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 1. values of ACC indicator for six subject systems

Since MULTI considers two optimization objectives, we
design three optimal solutions selection strategies, as follows:

• Benefit priority (BP). BP strategy returns the optimal
solution with maximum benefits in the optimal solution
set.

• Cost priority (CP). CP strategy returns the optimal solu-
tion with minimal cost in the optimal solution set.

• A compromise between cost and benefit (CCB). CCB
strategy considers cost and benefit simultaneously, and
returns the optimal solution with middle cost or benefits
in the optimal solution set.

To better describe the three strategies, we use the pseudo code
to further describe them, as shown in Algorithm 1.

IV. CASE STUDY

Our case study aims to solve following research question.

Algorithm 1: Three optimal solutions selection strategies
Input: training set: D = {(x1, y1), (x2, y2)..., (xn, yn)} ;
Output: optimal solutions:

solution BP, solution CP, solution CCB
1 begin
2 // Generate optimal solution based on MULTI method
3 solutions =MULTI(D)
4 // Sort optimal solutions in ascending order based on

benefit values
5 solutions = order by benefit(solutions)
6 // Return solutions according to three strategies
7 solution BP = solutions[solutions.length− 1]
8 solution CP = solutions[0]
9 solution CCB =

solutions[(solutions.length− 1)/2]
10 end

• Which optimal solutions selection strategy is appropriate
for solving the effort-aware JIT-SDP problem?

The experimental hardware environment is Intel(R) Core(TM)
i7-7700 CPU@ 3.60GHz; RAM 8.00GB. The experimental
code is written in python.

This section introduces data sets, performance indicators,
data analysis method, and experimental design.

A. Data Sets

The experiment considers the data sets of six open source
projects shared by Kamei et al. [4], which have been widely
used in previous studies [5] [6]. These six data sets include
Bugzilla (BUG), Columba (COL), Eclipse JDT (JDT), Eclipse
Platform (PLA), Mozilla (MOZ), and PostgreSQL (POS), and
come from different domains with different scales. The basic
information is shown in the Table I.

In order to better solve the JIT-SDP problem, 14 change
metrics are designed for these data sets, as shown in Table II.
These metrics can be divided into five dimensions: diffusion,
size, purpose, history, and experience. More details can be
found in reference [4].

TABLE I
THE BASIC INFORMATION OF DATA SETS

Project Period #defective
changes #changes %defect

rate

BUG 1998/08/26∼2006/12/16 1696 4620 36.71%
COL 2002/11/25∼2006/07/27 1361 4455 30.55%
JDT 2001/05/02∼2007/12/31 5089 35386 14.38%
MOZ 2000/01/01∼2006/12/17 5149 98275 5.24%
PLA 2001/05/02∼2007/12/31 9452 64250 14.71%
POS 1996/07/09∼2010/05/15 5119 20431 25.06%

B. Performance Indicators

Effort-aware JIT-SDP primarily considers effort for code
inspection of defect-prone changes. According to the sugges-
tion of Kamei et al. [4], the effort used to check changes

TABLE II
THE DESCRIPTION OF METRICS

Dimension Metric Description

Diffusion

NS Number of modified subsystems
ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across each file

Size
LA Lines of code added
LD Lines of code deleted
LT Lines of code in a file before the change

Purpose FIX Whether or not the change is a defect fix

History
NDEV Number of developers that changed the files

AGE Average time interval between the last
and the current change

NUC Number of unique last changes to the files

Experience
EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on a subsystem

can be obtained by calculating their code churn (i.e., the total
number of lines added and deleted by the change). Similar
to previous studies [4] [5] [6], our experiment use ACC and
Popt to evaluate the effort-aware prediction performance for
prediction models. ACC indicates the recall of bug changes
when using 20% of effort. Popt is the normalized version of
effort-aware performance indicator proposed by Mende and
Koschke [13]. Specific information on these two performance
indicators can be found in the literature [4] [5].

C. Data Analysis Method

The experiment uses 10 times 10-fold cross-validation tech-
nique to evaluate the performance of prediction models. 10
times 10-fold cross-validation technique is performed within
the same project. First, the data set of one project is randomly
divided into 10 sets of the same scale, nine of which are used
to train the model and produce the optimal solution set, and
the other one is to test the performance of the optimal solution
set. This step will be repeated 10 times. In our case study, the
optimal solutions selection strategies only select one solution
from optimal solution set. Therefore, 10 times 10-fold cross-
validation can ultimately return 100 solutions for each strategy.

In order to test the degree of performance difference
between different optimal solutions selection strategies, the
experiment uses Wilcoxon signed-rank test and Cliff’s δ to
further analyze the experimental results. Wilcoxon signed-rank
test is a commonly used non-parametric statistical hypothesis
test method. In particular, we use corresponding p-values
to exam whether two optimal solutions selection strategies
have significant difference at the significance level of 0.05.
Meanwhile, we use Cliff’s δ to determine the magnitude
of difference in practical application [14]. Traditionally, the
magnitude of the difference is considered trivial (|δ| < 0.147),
small (0.147 ≤ |δ| < 0.33), moderate (0.33 ≤ |δ| < 0.474),
or large (|δ| ≥ 0.474).

D. Experimental Design

• Data preprocessing. In order to obtain a better prediction
model, according to the suggestion of Kamei et al. [4], we
preprocess the experimental data sets as following steps.

1) ND and REXP metrics are excluded since NF and
ND, REXP and EXP are highly correlated. LA and
LD metrics are normalized by dividing by LT metric
since LA and LD are highly correlated. LT and NUC
metrics are also normalized by dividing NF since LT
and NUC have highly correlation with NF.

2) Each metric (except FIX) is executed with logarithmic
transformation, since these metrics are highly skewed.

3) Due to class imbalance in the defect data sets, we
perform random undersampling and keep the number
of clean changes same as the number of buggy changes
by deleting clean changes randomly.

Our optimal solutions selection strategies are based on
the MULTI method, which uses NSGA-II, so some pa-
rameters need to be set.

• Parameter settings.
1) Population size: 200.
2) The range of coefficient vector: [-10000, 10000].
3) The interval of population initialization: [-10, 10].
4) Crossover operation: simulated binary crossover.
5) Mutation operation: polynomial mutation.
6) The number of generations: 800.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Results

The experiment uses ACC and Popt to evaluate the per-
formance of different optimal solutions selection strategies.
The results are shown in the Table III and Table IV. In Table
III and Table IV, the first column indicates the names of
projects. The second column MULTI-M is the median value
of all optimal solutions, representing the average performance
of the MULTI method. The third to fifth columns represent
the performance of the models based on strategies BP, CP,
and CCB, respectively. Since the experiment uses 10 times
10-fold cross validation technology, each strategy will get 100
result values. All the values in the Table III and Table IV
reflect the median of the 100 result values.

As we can see from Table III and Table IV, the performance
of strategy BP is far superior to the performance of MULTI-M
in the ACC and Popt on six data sets. In addition, compared
to MULTI-M, the performance of strategy CP is even worse,
and the performance of strategy CCB is equivalent. Finally,
we use Wilcoxon signed-rank test and Cliff’s δ determine
the significant difference between different optimal solutions
selection strategies and MULTI-M. If and only if p-value is
less than 0.5 and Cliff’s δ is greater than or equal to 0.147,
the performance of our strategy is significantly different from
MULTI-M, otherwise the difference is negligible. We have
bolded the values that have significant differences.

Conclusion. Compared with MULTI-M, the performance of
strategy BP is significantly better than MULTI-M, the average
performance can be increased by 12% on indicator ACC, and
the average performance on indicator Popt can be increased
by 15%. In addition, the performance of strategy CCB is
comparable to MULTI-M, and the performance of strategy

TABLE III
COMPARISON OF THREE STRATEGIES AND MULTI-M USING ACC

project MULTI-M BP CP CCB

BUG 0.633 0.774 0.251 0.636
COL 0.723 0.804 0.344 0.721
JDT 0.658 0.723 0.371 0.653
MOZ 0.577 0.606 0.213 0.579
PLA 0.682 0.746 0.179 0.683
POS 0.612 0.703 0.252 0.613
Average 0.648 0.726 0.268 0.648

TABLE IV
COMPARISON OF THREE STRATEGIES AND MULTI-M USING Popt

project MULTI-M BP CP CCB

BUG 0.771 0.930 0.492 0.773
COL 0.842 0.936 0.547 0.841
JDT 0.764 0.880 0.557 0.767
MOZ 0.731 0.812 0.473 0.731
PLA 0.792 0.887 0.528 0.790
POS 0.747 0.900 0.441 0.749
Average 0.775 0.891 0.506 0.775

CP is worse than MULTI-M. Therefore, we advise to use
BP-based optimal solutions selection strategy to improve the
performance of the MULTI method in the effort-aware JIT-
SDP problem.

B. Discussion

The experimental results show that the performance of
our optimal solutions selection strategies have the following
characteristics.

BP > CCB > CP
In order to explain this phenomenon, we further analyze the

experimental results. Take data sets BUG as an example, the
experiment uses 10 times 10-fold cross validation to perform
model evaluation, so a total of 100 runs will be produced.
The results of one run of the experiment is shown in the Fig.2
and Fig.3. As we can see from Fig.2 and Fig.3, each graph
contains 200 red dots, each representing an optimal solution.
In the Fig.2 and Fig.3, the horizontal axis represents the value
of the benefit, and the vertical axis represents the value of the
performance indicators (i.e., ACC and Popt).

It is obvious that in an optimal solution set, the benefit
values of optimal solutions are positively correlated with
the performance indicators including ACC and Popt. Our
experimental results show that this feature is also present on
five other data sets. Therefore, BP-based optimal solutions
selection strategy can significantly improve the performance
of MULTI.

VI. THREATS TO VALIDITY

External validity. Although the data sets used in the
experiment are widely used in the field of JIT-SDP [6] [5] [4],
we still cannot guarantee that the findings of the experiment
will apply to all other defect data sets. Therefore, more data
sets in different fields have yet to be mined and shared to
verify the generalization of experimental conclusions.

0 200 400 600 800 1000 1200 1400
benefit

0.2

0.3

0.4

0.5

0.6

0.7

AC
C

Fig. 2. ACC values in an optimal solution set

0 200 400 600 800 1000 1200 1400
benefit

0.5

0.6

0.7

0.8

0.9

Po
pt

Fig. 3. Popt values in an optimal solution set

Construct validity. Threats to construct validity are mainly
considered whether the evaluation indicators can accurately
reflect effort-aware prediction performance of models. Our
experiment uses ACC and Popt to evaluate effort-aware predic-
tion performance of models, which are widely used in previous
JIT-SDP studies [6] [5] [4].

Internal validity. The threats to internal valitidy are mainly
about the accuracy of experimental code. Previous research
code is mainly written in R language [5] [4], while our
experimental code is written in python. In order to reduce the
errors in the code, we check all the code and use the mature
python libraries.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, in order to improve the performance of the
MULTI method, we propose three optimal solutions selection
strategies BP, CP, and CCB. In order to verify the effectiveness
of the strategies, we conduct a large-scale empirical study on
data sets of six open source projects. Experimental results
show that compared with the average performance of MULTI,

BP-based optimal solutions selection strategy can effectively
improve the performance of MULTI.

In the future, we hope to further expand our work. First,
since the experiment only uses data sets from open source
projects, we will collect data sets from commercial projects
to further verify the generalization of experimental conclu-
sions. Secondly, we only consider the cross-validation scenario
when evaluating the performance of prediction models. In the
future, we will extend the work to cross-project-validation
and timewise-cross-validation scenarios to further verify the
generalization of the experimental conclusions.

ACKNOWLEDGMENT

This work is partially supported by the NSF of China under
grants No.61772200 and 61702334, Shanghai Pujiang Talent
Program under grants No. 17PJ1401900. Shanghai Municipal
Natural Science Foundation under Grants No. 17ZR1406900
and 17ZR1429700. Educational Research Fund of ECUST
under Grant No. ZH1726108. The Collaborative Innovation
Foundation of Shanghai Institute of Technology under Grants
No. XTCX2016-20.

REFERENCES

[1] Z. Li, X. Jing, X. Zhu, Progress on approaches to software defect
prediction, IET Software 12 (3) (2018) 161–175.

[2] X. Chen, Q. Gu, W. Liu, S. Liu, C. Ni, Survey of static software defect
prediction, Journal of Software 27 (1).

[3] S. McIntosh, Y. Kamei, Are fix-inducing changes a moving target?: a
longitudinal case study of just-in-time defect prediction, in: Proceedings
of the 40th International Conference on Software Engineering, ICSE
2018, 2018, p. 560.

[4] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
N. Ubayashi, A large-scale empirical study of just-in-time quality
assurance, IEEE Transactions on Software Engineering 39 (6) (2013)
757–773.

[5] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, H. Leung,
Effort-aware just-in-time defect prediction: simple unsupervised models
could be better than supervised models, in: Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, 2016, pp. 157–168.

[6] X. Chen, Y. Zhao, Q. Wang, Z. Yuan, MULTI: multi-objective effort-
aware just-in-time software defect prediction, Information & Software
Technology 93 (2018) 1–13.

[7] A. Mockus, D. M. Weiss, Predicting risk of software changes, Bell Labs
Technical Journal 5 (2) (2000) 169–180.

[8] X. Yang, D. Lo, X. Xia, J. Sun, TLEL: A two-layer ensemble learning
approach for just-in-time defect prediction, Information & Software
Technology 87 (2017) 206–220.

[9] W. Fu, T. Menzies, Revisiting unsupervised learning for defect predic-
tion, in: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, 2017, pp. 72–83.

[10] M. Harman, S. A. Mansouri, Y. Zhang, Search-based software engi-
neering: Trends, techniques and applications, ACM Computing Surveys
45 (1) (2012) 11:1–11:61.

[11] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, K. Matsumoto, An
empirical comparison of model validation techniques for defect predic-
tion models, IEEE Transactions on Software Engineering 43 (1) (2017)
1–18.

[12] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast and elitist multiob-
jective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary
Computation 6 (2) (2002) 182–197.

[13] T. Mende, R. Koschke, Effort-aware defect prediction models, in: 14th
European Conference on Software Maintenance and Reengineering,
CSMR, 2010, pp. 107–116.

[14] E. Arisholm, L. C. Briand, E. B. Johannessen, A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models, Journal of Systems and Software 83 (1) (2010) 2–17.

