
Modeling User Contextual Behavior Semantics with 

Geographical Influence for Point-Of-Interest 

Recommendation 
 

Dongjin Yu, Kaihui Xu, Dongjing Wang 

School of Computer Science and Technology 

Hangzhou Dianzi University 

Hangzhou, China 

yudj@hdu.edu.cn, xkhsky@163.com, dongjing.wang@hdu.edu.cn 

 

 
Abstract—Point-Of-Interest (POI) recommendation assists users 

to find their preferred places and helps businesses to attract 

potential customers. However, the data sparsity and the 

complexity of user check-in behavior pose a big challenge to POI 

recommender systems. To tackle this challenge, we propose a POI 

recommendation method named HeteGeoRankRec based on user 

contextual behavior semantics. First, to mine the fine-grained user 

behavioral features, we employ the meta path of Heterogeneous 

Information Network (HIN) to represent the complex semantic 

relationship among users and POIs and integrate the context 

constraints (such as time and weather) into the meta paths. 

Secondly, we propose a weighted matrix factorization model 

considering the influence of geographical distance to obtain 

semantic preference through the user-POI semantic correlativity 

matrixes generated by multiple meta paths. Finally, we introduce 

a ranking-based fusion method, which unifies the recommendation 

results of different meta paths as the final preference of users. 

Experiments on the real data collected from Foursquare show that 

HeteGeoRankRec has the better performance than the state-of-

the-art baselines.  

Keywords—location-based social network; heterogeneous 

information network; context information; point-of-interest 

recommendation; behavior semantics. 

I.  INTRODUCTION  

In recent years, thanks for the widespread of Internet and 
mobile devices, Location-Based Social Networks (LBSNs) have 
become increasingly popular. Users explore their preferred 
locations, such as libraries, restaurants and stores, through the 
"check-in" behavior provided by the LBSN services. For 
example, more than 50 million people use Foursquare every 
month 1 . The personalized POI recommendation service is 
designed to improve the LBSN service experience by mining 
user preferences through check-in data. 

However, POI recommendation faces serious challenges. 
First, the number of POIs visited by a user usually accounts for 
only a small portion of all the POIs, which results in the highly  
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sparse user-POI check-in data. In addition, the decision-making 
process for user check-in behavior is very complex and prone to 
be affected by rich context information [1]. For example, user’s 
mobility is significantly affected by geographical distance [2,3]. 
In other words, users are more inclined to visit closer locations. 
Meanwhile, user’s visiting preference might be affected by their 
social relationships [4], meaning a user may follow the 
suggestions from his friends or some influential people. Besides, 
the user's preference may also be affected by the time [5] and the 
weather [6]. Taking Fig. 1 as an example, Mary may prefer to 
visit the library on rainy days, while Skye may like to go to the 
restaurant for lunch. Unfortunately, most existing works lack 
deep mining of user behavior semantics and suffer from the 
much worse data sparsity problem. 

Figure 1.  An example of LBSN. 

In this paper, we propose a novel POI recommendation 
model named HeteGeoRankRec, based on user contextual 
behavior semantics. First, we employ the meta path of 
Heterogeneous Information Network (HIN) to represent the 
complex semantic relationships of LBSN. Afterwards, to mine 
fine-grained user behavioral features, we integrate the context 
constraints, such as time and weather, to the meta paths. 
Furthermore, we propose a weighted matrix factorization 
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considering geographical distance, from which we obtain the 
semantic preference through the user-POI semantic correlativity 
matrixes. Finally, we introduce a ranking-based fusion method, 
which unifies the recommendation results obtained from 
different meta paths as the final user preference. 

The rest of the paper is organized as follows. After 
presenting related work in Section Ⅱ, we introduce the related 
concepts and problem definition in Section Ⅲ. Our proposed 
model is given in Section Ⅳ, followed by its experimental 
evaluation in Section Ⅴ. Finally, Section Ⅵ concludes this paper 
and outlines the future work. 

II. RELATED WORK 

The POI recommendation plays an important topic in the 
field of recommendation systems, attracting the attention from 
both the academic and industrial fields. The context information, 
such as geographical influence, has always been regarded as a 
very significant impact on the recommendation performance [7]. 
For example, Li et al. [8] considered the user’s general interests 
as a mixture of intrinsic and extrinsic interests, where the former 
is personal-taste driven and the latter is environment driven. 
Wang et al. [9] modeled the POI-specific geographical influence 
between two POIs using three factors: the geo-influence of POI, 
the geo-susceptibility of POI, and their physical distance. 
However, only considering the geographical influence is not 
always enough to represent the user's behavior characteristics.  

User’s social relationships may affect the user check-in 
behavior. For example, in [4], Gao et al. held that the social 
relationships and check-in sequences significantly affect the 
user's behavior and proposed a fusion model to combine two 
features to predict user’s preference. Besides, Li et al. [10] 
learned potential locations from three types of friends and 
incorporated potential locations into matrix factorization model 
to overcome the cold-start problem. In addition, there are some 
works considering temporal effect [5] and content information 
[11]. Although the aforementioned works improve the 
recommendation performance to some extent by modeling the 
context information, they lack deep mining of user behavior 
semantics and suffer from the data sparsity problem.  

In recent years, some researches [12,13,14] attempted to 
apply HIN to the recommendation tasks to integrate more 
information and represent user behavior semantics. For example, 
Zhao et al. [13] proposed a HIN-based recommendation method, 
which uses matrix factorization and factorization machine to 
solve the information fusion problem. Wang et al. [14] utilized 
the meta-path-based approach to extract implicit relationships 
between a user and a POI, and applied logistic regression to 
establish a prediction model for recommendation. However, 
they simply regarded the location that the user has not visited as 
a negative sample, without considering LBSN actually lacks the 
explicit feedback of POI preferences. 

III. THE PRELIMINARY 

As an abstract representation of the real world, the 
information network [15] focuses on the connection between the 
different types of objects, which is usually defined as follows: 

Definition 1. Information Network. An information 
network is a directed graph 𝐺 = (𝑉, 𝐸), where 𝑉  is a set of 
objects and 𝐸  is a set of links, with an object type mapping 
function ∅:𝑉 → 𝐴 and a link type mapping function 𝜑: 𝐸 → 𝑅. 
In other words, each object 𝑣 ∈ 𝑉  belongs to one particular 
object type ∅(𝑣): ∈ 𝐴 , and each link 𝑒 ∈ 𝐸  belongs to one 
particular relation 𝜑(𝑒): ∈ 𝑅. When there exists more than one 
type of object, i.e., |𝐴| > 1, or one type of relation, i.e., |𝑅| > 1, 
the network is called a heterogeneous information network. 
Otherwise, it is a homogeneous information network. 

Definition 2. Network Schema. The network schema is a 
meta template of information network, denoted as 𝑇𝐺 = (𝐴, 𝑅), 
with the object type mapping ∅: 𝑉 → 𝐴 and the link mapping 
𝜑: 𝐸 → 𝑅. 

Fig. 2 shows an example of LBSN heterogeneous 
information network schema. The network schema serves as a 
template for a network and tells how many types of objects there 
are in the network and where the possible links exist, thereby 
making the heterogeneous information network semi-structured. 

Figure 2.  LBSN heterogeneous information network schema. 

Definition 3. Meta Path. A meta path 𝑀 is a path defined 
on the graph of network schema 𝑇𝐺 = (𝐴, 𝑅), denoted as 𝑀 =

𝐴1
𝑅1
→𝐴2

𝑅2
→⋯

𝑅𝑙−1
→  𝐴𝑙. 

For simplicity, we denote the meta path as 𝑀 = 𝐴1𝐴2⋯𝐴𝑙 . 
As shown in Fig. 2, in a LBSN heterogeneous information 
network, the co-check-in relationship between users can be 

represented by a meta path 𝑈
𝑐ℎ𝑒𝑐𝑘−𝑖𝑛
→      𝑃

𝑐ℎ𝑒𝑐𝑘𝑒𝑑−𝑖𝑛 𝑏𝑦
→          𝑈 , 

abbreviated as 𝑈𝑃𝑈, where 𝑈 and 𝑃 represent the user objects 
and location objects respectively. 

Definition 4. Context-constrained Meta Path. A context-
constrained meta path is a meta path with the context attribute 

constraints on relations, denoted as 𝑀𝑐 = 𝐴1
𝛿1(𝑅1)
→    𝐴2

𝛿2(𝑅2)
→    ⋯

𝛿𝑙(𝑅𝑙−1)
→     𝐴𝑙 |𝑆, where 𝛿(𝑅) represents a set of context attribute 
values on relation 𝑅, 𝑆 defines the context of the meta path and 
the corresponding attribute value constraints. 

For example, suppose the whole day is divided into multiple 
time slices 𝑇1, 𝑇2, ⋯ , 𝑇𝑛, and the check-in relationship between 
user 𝑈 and POI 𝑃 can occur in multiple time slices. We use 𝑈
{𝑇1,𝑇2}
→   𝑃

𝑇1
→𝑈 to indicate that two users check in 𝑃 at 𝑇1, and one 

of them makes a check-in at the 𝑇2 again. Moreover, the path 

𝑈
𝑇𝑖
→𝑃

𝑇𝑗
→𝑈|{𝑆: 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ∈ {𝑇𝑖𝑚𝑒}, 𝑇𝑖 = 𝑇𝑗}  means that two 

users check in the same POI at the same time slice. Taking Fig. 
1 as an example, we can easily find that although three people 
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all go to the gym, the temporal preferences for Bob and Skye are 
more similar. 

Definition 5. Counting Matrix. For a meta path 𝑀 =
𝐴1𝐴2⋯𝐴𝑙 , we define its counting matrix as 𝐶𝑀 =
𝑊𝐴1𝐴2𝑊𝐴2𝐴3 ⋅ … ⋅ 𝑊𝐴𝑙−1𝐴𝑙, where 𝑊𝐴𝑖𝐴𝑗  is the adjacency matrix 

between 𝐴𝑖 and 𝐴𝑗. The values in the counting matrix represent 

the number of times the interactions occur between objects.  

Problem Definition. Given an LBSN heterogeneous 
information network 𝐺, and a check-in record set 𝑆 with context 
information, the problem we try to resolve is to build a 
personalized recommendation model, and return the Top-K 
unvisited POIs for each user 𝑢. 

IV. THE FRAMEWORK 

In this section, we present the proposed POI 
recommendation method, called HeteGeoRankRec, in detail 
(Fig. 3). 

 

 

Figure 3.  The Framework of HeteGeoRankRec. 

A. Build Semantic Correlativity Matrixes Based on Context-

constrained Meta Path 

1) Design Meta Paths: We first employ the meta path to 

build the semantic relationship sequences for further analysis of 

user preferences. Taking the path 𝑈𝑃𝑈𝑃 as an example, it may 

indicate that users prefer locations where people with common 

check-in records have checked in, which is a user-based 

collaborative recommendation. Moreover, the 𝑈𝑈𝑃  path 

represents that users prefer the locations checked in by their 

friends, which is a social recommendation. Therefore, we can 

make the recommendation more explainable by designing 

reasonable meta paths to represent different user behavior 

semantics. Table Ⅰ lists the meta paths and their corresponding 

semantics, where 𝐶 represents the category of POI. 
In addition, the context-constrained meta path is used to 

capture the user's preferences in different contexts (e.g. time, 
weather). For the meta path like 𝑈 ∗ 𝑈𝑃  (e.g. 𝑀3  and 𝑀5  in 
Table Ⅰ), we add context constraints as follows: 

𝑀𝑐: 𝑈
𝑖
→𝑃 ∗ 𝑃

𝑗
→𝑈

𝑘
→𝑃|{𝑆: 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ∈ 𝑍, 𝑖 = 𝑗 = 𝑘}    (1) 

where 𝑍 = {𝑇𝑖𝑚𝑒,𝑊𝑒𝑎𝑡ℎ𝑒𝑟} represents a set of context types. 
Note that weather indicators, such as cloud cover and 
temperature, can also be divided into multiple numerical 

segments. Here, 𝑖 = 𝑗 = 𝑘 indicates that the behavior occurs in 
same context. 

TABLE I.  THE META PATHS AND ITS SEMANTICS 

Symbol Meta path Semantic 

𝑀1 𝑈𝑃 Users prefer locations they have checked in 

𝑀2 𝑈𝑈𝑃 
Users prefer locations where their friends 
have checked in 

𝑀3 𝑈𝑃𝑈𝑃 
Users prefer locations where people with 

common check-in records have checked in 

𝑀4 𝑈𝑃𝐶𝑃 
Users prefer the same category of locations 

they have checked in 

𝑀5 𝑈𝑃𝐶𝑃𝑈𝑃 
Users prefer locations where people having 
checked in the POIs of the same category 

have checked in 

 

2) Build Semantic Correlativity Matrix: We employ the 

counting matrix defined above as a counting-based correlativity 

matrix between user objects and location objects, denoted as 𝑆𝑀. 

This can effectively alleviate the sparsity of the user-POI 

relation matrix by computing the correlativity through meta 

path. The counting-based correlativity reflects the idea of high 

correlativity between nodes with high visibility in the LBSN 

heterogeneous information network. Such an idea is intuitive 

and suitable for recommendation task. Taking the time context 

as an example, the semantic correlativity matrix is built 

according to Eq. (2), which involves three steps: (a) Divide the 

time of day into multiple slices 𝑇1, 𝑇2, ⋯ , 𝑇𝑛, and obtain user 

check-in records for each slice; (b) Obtain the correlativity 

matrixes 𝑆𝑀𝑇𝑖
 by calculating the correlativity from meta paths 

within each time slice; (c) Add the correlativity matrixes to 

construct the semantic correlativity matrix 𝑆𝑀𝑐 of the context-

constrained meta path. 

𝑆𝑀𝑇𝑖
= (𝑊𝐴1𝐴2𝑊𝐴2𝐴3⋯𝑊𝐴𝑙−1𝐴𝑙)

𝑇𝑖 , S𝑀𝑐 = ∑S𝑀𝑇𝑖
    (2) 

B. Predict POI Preference Based on Weighted Matrix 

Factorization 

In this section, we extend the weighted matrix factorization 
algorithm based on implicit feedback proposed in [16] and 
optimize the objective function by adding geographical 
influence factor to make it suitable for POI recommendation. 

1) Calculate User-POI Check-in Probability: Users are 

more inclined to visit closer locations. The check-in probability 

of the user from one location to another 𝑥 (𝑘𝑚)  away 

approximately follows the power law distribution [2], as the 

following: 

𝑦 = 𝑃𝑟𝑢 (𝑖, 𝑗) = 𝑎 ⋅ 𝑥
𝑏                           () 

Let 𝑎 = 2𝑤0，𝑏 = 𝑤1, and Eq. (3) is then transformed into 
Eq. (4) by taking the logarithm:  

 𝑙𝑜𝑔 𝑦 = 𝑤0 + 𝑤1 𝑙𝑜𝑔 𝑥 (4) 

Let 𝑦′ = 𝑙𝑜𝑔 𝑦 , 𝑥′ = 𝑙𝑜𝑔 𝑥 . We then use the linear 

regression method to optimize the following loss function to    

obtain the regression coefficient:  

POI

Weather

Time

Friend

Category

Input Check-in record

𝑆𝑀1

Build LBSN HIN

Predict Preference from 
Semantic Correlativity Matrix 

𝑟 𝑢,𝑖
1

𝑟 𝑢,𝑖
2

𝑟 𝑢,𝑖
 

Recommend POIs Based 
on Learning to Rank

 1

 2

  

𝑆𝑀2

𝑆𝑀 



 𝐿 =
1

2
∑ (𝑦′ − 𝑝𝑛)

2𝑁
𝑛=1 +

𝜆

2
||𝒘||2 () 

where 𝑤0 and 𝑤1 are regression coefficients, denoted together 
by 𝒘 , 𝑝𝑛  is real check-in probability to the 𝑥′ , and the 
regularization parameter 𝜆 is used to prevent the model from 
overfitting. 

Then the check-in probability from POI 𝑖 to 𝑗 for user 𝑢 is 
normalized by Eq. (6): 

 𝑃𝑟𝑢
𝐺(𝑖, 𝑗) =

𝑃𝑟𝑢 (𝑖,𝑗)

𝑀𝑎𝑥(𝑃𝑟𝑢)
 () 

where the denominator represents the maximum check-in 
probability of two POIs among the user records. 

2) Incorporate Geographical Influence: Suppose the 

corresponding value in the meta-path-based semantic 

correlativity matrix is represented as 𝑆𝑀𝑢,𝑖. We define the user 

implicit preference as follows: 

 𝑟𝑢,𝑖 = {
1        𝑆𝑀𝑢,𝑖 > 0 

0        𝑆𝑀𝑢,𝑖 = 0 
 () 

In other words, 𝑟𝑢,𝑖 indicates whether there is a value greater 

than 0 in the correlativity matrix. Furthermore, we introduce 

𝑐𝑢,𝑖 to measure our confidence in 𝑟𝑢,𝑖. In general, as 𝑆𝑀𝑢,𝑖 grows, 

there is a stronger indication that user indeed prefers the 

location. Eq. (8) defines 𝑐𝑢,𝑖 , where 𝛼  controls the rate of 

increase. 

 𝑐𝑢,𝑖 = 1 + 𝛼𝑆𝑀𝑢,𝑖  () 

We believe that the user's preference for unvisited POIs is 
limited by the distance between the candidate POIs and the 
POIs that the user has checked in. Thus, based on matrix 
factorization, the new user preference can be defined as Eq. (9): 

 𝑟 𝑢,𝑖 = 𝛽𝑥𝑢
𝑇𝑦𝑖 +

(1−𝛽)

|𝐷𝑢|
∑ 𝑃𝑟𝑢

𝐺(𝑖, 𝑘)𝑥𝑢
𝑇𝑦𝑘𝑘𝜖𝐷𝑢   () 

where 𝛽 is geographical influence factor, 𝐷𝑢 represents a set of 
POIs that user 𝑢 has checked in, 𝑥𝑢 and 𝑦𝑖  represents the latent 
feature vectors under same dimension 𝑓 for user 𝑢 and POI 𝑖.  

Then, we solve the low-dimensional feature vector 
corresponding to the user and the POI by minimizing the loss 
function defined as Eq. (10) where 𝜆  is used to prevent the 
model from overfitting. 

 𝑚𝑖𝑛𝑥∗,𝑦∗ ∑ 𝑐𝑢,𝑖(𝑟𝑢,𝑖 − 𝑟 𝑢,𝑖)
2 + 𝜆(‖𝑥𝑢‖

2+‖𝑦𝑖‖
2)(𝑢,𝑖)∈𝑇  () 

The alternating least squares method is used to optimize the 
above loss function. For simplicity, we define the following 
variable:  

 𝑦𝑖̃ = 𝛽𝑦𝑖 +
1−𝛽

|𝐷𝑢|
∑ 𝑃𝑟𝑢

𝐺(𝑖, 𝑘)𝑦𝑘𝑘𝜖𝐷𝑢
 () 

The updating equations for 𝑥𝑢 and 𝑦𝑖  are obtained as: 

 𝑥𝑢 = (∑ 𝑐𝑢,𝑖𝑦𝑖̃𝑦𝑖̃
𝑇 + 𝜆𝐼𝑖 )−1 ⋅ ∑ 𝑐𝑢,𝑖𝑟𝑢,𝑖𝑦𝑖̃𝑖   () 

 𝑦𝑖 = (𝛽
2∑𝑐𝑢,𝑖𝑥𝑢𝑥𝑢

𝑇

𝑢

+ 𝜆𝐼)−1 × 

(13) 

 𝛽∑𝑐𝑢,𝑖(𝑟𝑢,𝑖𝑥𝑢 +
1 − 𝛽

|𝐷𝑢|
∑ 𝑃𝑟𝑢

𝐺(𝑖, 𝑘)𝑥𝑢
𝑇𝑦𝑘𝑥𝑢

𝑘𝜖𝐷𝑢

)

𝑢

 

C. Recommend POIs Based on Learning to Rank 

Suppose we have designed 𝐹  meta paths and 𝐺  context-
constrained meta paths, and have obtained 𝐿 = 𝐹 + 𝐺 user-POI 
semantic correlativity matrixes 𝑆𝑀

1 ,  𝑆𝑀
2 ,…,  𝑆𝑀

 . Each matrix 

generates the user semantic preference 𝑟 𝑢,𝑖
𝑙  through the matrix 

factorization algorithm described above. After combining the 
different semantic features, the final preference of user 𝑢 for 
POI 𝑖 can be formulated as: 

 𝑟𝑢,𝑖
∗ = ∑  𝑙 ⋅ 𝑟 𝑢,𝑖

𝑙 
𝑙=1   () 

where  𝑙  represents the weight of the preference obtained by 
meta path 𝑙. 

LBSN often lacks negative feedback, because we regard the 
POIs that the user has checked in as the positive samples. 
However, the POIs where the user has not visited yet does not 
simply mean that they are not interested in (they may not find 
this location). Therefore, a direct and effective recommendation 
model should be able to better rank the POI pairs for users, 
indicating that the user's preference for the POI with high 
correlativity is greater than the POI with low correlativity in 
user semantic correlativity matrix. Here, we adopt the idea of 
pair-wise learning. More specifically, we use the relative orders 
of POIs as the samples to learn the weights in Eq. (14). 

Based on the method proposed in [17], we use the Eq. (15) 
to express the probability that user 𝑢 prefers POI 𝑖 instead of 𝑗: 

 𝑝(𝑖 >𝑢 𝑗| ) =
1

1+𝑒
−(𝑟𝑢,𝑖

∗ −𝑟𝑢,𝑗
∗ )

  () 

where  = { 1,  2⋯  } is a weight vector, >𝑢  represents the 
ordering relationship of two POIs. 

According to the Bayesian formula, if we want all the POIs 
to be sorted correctly, we need to maximize the following 
posterior probability: 

 𝑝( | >𝑢) ∝ 𝑝(>𝑢 | )𝑝( ) () 

Assuming that the user's ranking preference for POI pairs is 
independent, the likelihood function can be defined by: 

𝑝(𝑅| ) = ∏ 𝑝(𝑅𝑢| )𝑢∈𝑈 = ∏ ∏ 𝑝(𝑖 >𝑢 𝑗| )(𝑖>𝑢𝑗)∈𝑅𝑢𝑢∈𝑈   () 

where 𝑅 represents a set of ordering relationships of the POI 
pairs. 

We assume that 𝑝( ) follows a Gaussian distribution with 
zero mean and variance-covariance matrix ∑ = 𝜆𝜃𝐼𝜃 . Thus, the 
objective function of ranking optimization can be formulated as: 

O(θ) = −ln 𝑝( | >𝑢) = − ln 𝑝(>𝑢 | )𝑝( )                                  

 = −∑ ∑ ln 𝑝(𝑖 >𝑢 𝑗| ) − 𝜆𝜃|| ||
2

(𝑖>𝑢𝑗)∈𝑅𝑢𝑢∈𝑈  () 



We employ stochastic gradient descent (SGD) to optimize 
the above objective function. After obtaining  , the predicted 
value of user 𝑢 for all POIs can be calculated by the Eq. (14). 
Finally, we select 𝐾  POIs that user has not visited with the 
highest predicted value and recommend them to the user. 

V. EXPERIMENTS 

A. Experimental Setup 

1) Dataset: The experiments are based on the Foursquare 

dataset2 provided by the author of literature [10], including the 

real-world check-in data from 2010 to 2011. Each check-in 

record includes a user ID, a location ID, and a timestamp, where 

each location has its latitude, longitude and category, and each 

user is associated with her friends. In addition, we used the API 

of darksky.net 3  to collect the weather information for each 

<latitude, longitude, timestamp> record, including temperature, 

humidity and cloud cover. To evaluate the performances of the 

proposed method HeteGeoRankRec4 , implemented based on 

LibRec [18], we construct two datasets via extracting the check-

in records generated from Los Angeles and San Diego. The 

detailed statistics of the datasets are shown in Table Ⅱ. 

TABLE II.  STATISTICS OF DATASETS 

 #Users #POIs #Check-ins Sparsity 

Los Angeles 2,026 8,270 51,917 99.83% 

San Diego 916 4,919 26,762 99.71% 

 
In order to make the experiments more consistent with real 

situation, we split training data 𝐷𝑡𝑟𝑎𝑖𝑛  and testing data 𝐷𝑡𝑒𝑠𝑡  as 
follows: for each individual user, (a) aggregating her check-ins 
for each location; (b) sorting the location according to the first 
time that the user checked in; (c) selecting the earliest 80% to 
train the model and using the next 20% as testing. 

2) Evaluation Metrics: We employ two widely used metrics 

to evaluate the performance of different recommendation 

methods, namely precision and recall, denoted by Pre@K and 

Rec@K, where K is the number of recommended POIs. We 

compute Pre@K and Rec@K as follows: 

 𝑃𝑟𝑒@𝐾 =
1

|𝐷𝑡𝑒𝑠𝑡|
∑

|𝑅𝑢∩𝑇𝑢|

|𝑅𝑢|
𝑢∈𝐷𝑡𝑒𝑠𝑡  () 

 𝑅𝑒𝑐@𝐾 =
1

|𝐷𝑡𝑒𝑠𝑡|
∑

|𝑅𝑢∩𝑇𝑢|

|𝑇𝑢|
𝑢∈𝐷𝑡𝑒𝑠𝑡

 () 

where 𝑅𝑢  represents the Top-K recommendation results for 

user 𝑢, and 𝑇𝑢 is a set of POIs visited by user 𝑢 in 𝐷𝑡𝑒𝑠𝑡 . 
3) Parameters Settings: We use the meta paths listed in 

Table Ⅰ to calculate the semantic correlativity matrixes and add 

time and weather context constraints to 𝑀3 and 𝑀5. We divide 

the time of day into three slices and the weather indicators into 

three segments in tertile, and build the semantic correlativity 

matrixes by the method described in Section Ⅳ.A. The 

parameters of check-in probability are obtained through 

                                                           
2 https://dropbox.com/s/pa1mni3h8qdkdby/Foursquare.zip?dl=0 
3 https://darksky.net/dev 

learning. In particular, we set the latent feature number 𝑓 of the 

matrix factorization model to 10, the geographical influence 

factor 𝛽 to 0.8, and the regularization parameter 𝜆 to 0.01. 

4) Baseline Methods: We compare the proposed method 

with the following baseline methods: 

• WRMF [16]: A matrix factorization model for implicit 
feedback. 

• BPRMF [17]: A matrix factorization model which 
optimizes the ordering of the preference for the observed 
location and the unobserved location. 

• GMF: A matrix factorization model based on that 
proposed in Section Ⅳ.B and check-in matrix 
(correlativity matrix generated from UP meta path) 
directly for recommendation. 

• USG [2]: A model combining user preferences, social 
relationships, and geographical influence with collabo-
rative filtering. 

• RankGeoMF [3]: A matrix factorization model based on 
ranking and geographical influence for POI 
recommendation.  

• ASMF [10]: A model which learns a set of user’s 
potential locations from her three types of friends, and 
then incorporates them into matrix factorization. 

B. Experimental Result 

1) Performance Comparison: The comparisons between 

the HeteGeoRankRec and other methods in terms of Pre@K 

and Rec@K is shown in Fig. 4. Both WRMF and BPRMF are 

recommendation methods for implicit feedback data. Due to the 

severe data sparsity problem of LBSN, these two methods do 

not perform well. However, we observe GMF improves WRMF 

by 55.7% and 19.5% in terms of Pre@5 on Los Angeles and 

San Diego datasets, respectively, due to the incorporation of 

geographical influence. Besides, USG exhibits better 

performance than RankGeoMF on both datasets. One possible 

reason is that USG integrates geographical, social information 

and user preference, while RankGeoMF only uses geographical 

information. Most importantly, on average, the proposed 

HeteGeoRankRec outperforms its competitors WRMF, 

BPRMF, GMF, USG, RankGeoMF and ASMF, in terms of 

Pre@5, by 81.1%, 70.5%, 31.4%,  27.2%, 49.5% and 11.4% 

respectively. 

2) Context Influence: The performance comparisons of 

HeteGeoRankRec with different contexts are shown in Fig. 5, 

which indicate the limited benefit when it only introduces one 

type of context information. However, combining the time and 

weather context will greatly improve the Pre@K and Rec@K 

on both datasets. Therefore, it can be easily concluded that 

considering various contexts to mine the user's behavior from 

multiple dimensions makes the model more accurate. 

4 https://github.com/Skyexu/HeteGeoRankRec 



Figure 4.  Performance comparisons of different methods. 

Figure 5.  Performance comparisons of different contexts. 

VI. CONCLUSION 

In this paper, we propose a POI recommendation method 
called HeteGeoRankRec based on the contextual behavioral 
semantics. It employs meta paths to represent the complex 
semantic relationship of user behavior, and combines social 
relationships, location categories, time and weather contexts, 
and geographical distance to mine the fine-grained user 
behavioral characteristics. In the future, we will further study the 
following issues: (a) deeply explore the influence factors of user 
behavior in LBSN; (b) express more information on the LBSN 
heterogeneous information network; and (c) study POI 
recommendation at specific contexts (e.g. time, weather). 
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