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Abstract

One challenge in constructing a Bayesian network (BN)
is defining the node probability tables (NPTs), which can
be learned from data or elicited from domain experts. In
practice, for large-scale BN it is common not to have
enough data for learning and elicitation from experts is
unfeasible. Previous work proposed a solution to this
problem: the Ranked Nodes Method (RNM). However, this
solution needs to be applied by a RNM expert who, through
the elicitation of expert judgement, identifies the necessary
parameters for the RNM algorithm to generate the NPTs.
Hence, this paper presents a novel approach to define NPT
using the RNM with no ranked nodes-specific knowledge.
The solution is named Simulated Bayesian Network Expert
(SBNE). It consists of eliciting a subset of the NPT from the
domain experts which is used as input to an algorithm that
estimates the optimal parameters for the RNM to generate
the NPTs. To validate our solution, we conducted an
experiment with multiple domain experts and compared the
results with other methods. Our solution outperformed
the other methods (producing NPTs at least 12% more
accurate) and is, therefore, a promising approach to apply
RNM without relying on RNM experts.
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1 Introduction

Bayesian Network (BN) is a mathematical model that
graphically and numerically represents the probabilistic
relationships between random variables through Bayes
theorem. Recently, given the evolution of the computational
capacity, which enabled the calculation of complex BNs,
it has become a popular technique to assist on decision-
making [7] and it has been applied in several areas such as
large-scale engineering projects [12], software engineering
[16, 14], and sports management [4].

The challenges for the construction of BNs can be
divided into two sub-problems: (i) construct the directed
acyclic graph (DAG) and (ii) define the NPTs. In this
research, we focus on (ii). In cases where there is historical
data with enough information about the domain to be
modelled it is possible to automate the process of NPT
definition through batch learning [10].

Unfortunately, in practice, in most cases, there is not
enough data [7] to apply batch learning. In such cases,
it is necessary to manually define the NPTs through the
elicitation of domain experts knowledge. However, given
that the complexity of building NPTs grows exponentially,
depending on the number of parents and states, the manual
definition of the NPT becomes unfeasible.

To reduce the complexity of manually defining a NPT
through the elicitation of knowledge from domain experts,
Fenton et al. [7] proposed the Ranked Nodes Method
(RNM). This method is limited to nodes (i.e., random
variables) with an ordinal scale (e.g., “Good”, “Medium”,
“Bad”), which are called ranked nodes.

In ranked nodes, the ordinal scale is mapped into a scale
monotonically ordered in the interval [0, 1]. The solution
is based on a Normal distribution truncated between [0, 1]
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(i.e., TNormal) to represent the NPTs. Hence, the NPT of
a child node is a TNormal calculated as the mixture of the
TNormals of its parent nodes. There are four expressions to
model the mixture’s mean (µ): weighted mean (WMEAN),
weighted minimum (WMIN), weighted maximum (WMAX)
and the mixture of the classic minimum and maximum
functions (MIXMINMAX).

Hence, to properly use the RNM it is necessary to
understand the mixture process to select the appropriate
parameters: the weighted expression; a set of weights of the
parent nodes; and the variance (σ). However, even when
RNM experts are available, the application of the RNM
method still presents challenges.

The means to identify a suitable expression to mix the
TNormals of the parent nodes based on mode assessments
of the domain experts is straightforward, as described in
Laitila and Virtanen [11]. Conversely, the discovery of
the weights and variance parameters are far more complex.
Such tasks are usually performed by the RNM experts using
a trial and error strategy. This strategy comes down to a
cycle of generating, verifying and adjusting the parameters
to regenerate the NPTs, which is repeated until a satisfying
result is discovered [7, 11].

In this paper, we present a novel approach to improve
the applicability of RNM. Our main goal is to encapsulate
its complexity, allowing for its use by domain experts with
no prior knowledge about ranked nodes. We use “what
if” analysis (i.e., truth tables) to elicit knowledge from
experts using visual aids. Given the information collected,
we use the expert system proposed in Silva et al. [5] to
obtain the weighted expression to mixture the TNormals
and an algorithm named “Simulated Expert” to estimate the
optimal variance and set of weights of the parent nodes.

We evaluated our solution with an experiment in which
multiple domain experts applied our approach to RNM
and two other methods to quantify a BN model related to
the evaluation of cohesion of agile software development
teams. The NPTs generated with the three methods were
compared in terms of accuracy using manually defined
NPTs as benchmark. The results showed that our solution
is promising as it has achieved greater accuracy compared
to the other methods.

2 Background

BNs are probabilistic graph models used to represent
knowledge about uncertain domains. A BN, B, is a
directed acyclic graph that represents a joint probability
distribution over a set of random variables V [9]. The
network is defined by the pair B = {G,Θ}. G is the
directed acyclic graph in which the nodes X1, . . . , Xn

represent random variables and the arcs represent the direct
dependencies between these variables. Θ represents the set

Table 1. Example of a truth table.
Parent A Parent B Parent C Child D
Very low Very high Very low Low
Very high Very low Very low Low
Very low Very low Very high Low
Very low Very high Very high High
Very high Very low Very high Low
Very high Very high Very low Medium

of probability functions. This set contains the parameter
θxi|πi

= PB(xi|πi) for each xi in Xi conditioned by πi,
the set of parents of Xi in G. Equation 1 presents the joint
distribution defined by B over V .

PB(X1, . . . , Xn) =
n∏
i=1

PB(xi|πi) =
n∏
i=1

θXi|πi (1)

We present an example of a BN in Fig. 1, in which
ellipses represent the nodes and arrows represent the arcs.
The probability functions are usually represented by NPTs.
Even though the arcs represent the causal connection’s
direction between the variables, information can propagate
in any direction [13].

Figure 1. A Bayesian network example.

According to Fenton et al. [7], to define the NPT, the
RNM user should define the resulting TNormal parameters
constructing “truth tables” using example scenarios, which
they define as “what if” analysis. An example is shown
in Table 1. By analysing it, we can conclude that defining
the parameters is not straightforward and there is a need to
understand the TNormal mixture process to apply the RNM.

In Perkusich et al. [15], a simplified approach to use
the RNM whenever there is a need to collect data from
multiple experts was presented. Instead of using “what
if” analysis, it asks the experts to order the relationships
between the child and parents nodes given their relative
magnitude. The collected data is analysed statistically and
used to define the weights for the function of µ, having the
function type defined to WMEAN and a fixed variance of
5.0E−4. Therefore, although it encapsulates the complexity
of the RNM approach, it has limited modelling capabilities
and, as discussed in Perkusich et al. [16], it might produce
incorrect NPTs.



In da Silva et al. [5], an approach based on production
rules was proposed to encapsulate the complexity of
calibrating the NPTs. Given a set of input values, the
developed expert system automatically calibrates the NPTs.
In this work, the modelling capabilities of the approach
presented in Fenton et al. [7] is combined with ranked nodes
specific knowledge encapsulation of the approach presented
in Perkusich et al. [16]. However, the proposed approach
also fixed the variance in 5.0E−4, which is a limiting factor.

3 Solution

SBNE is an approach to elicit expert knowledge and
apply the RNM method without relying on the assistance
of RNM experts. SBNE stands for Simulated Bayesian
Network Expert. This approach can be divided into three
steps: (i) direct or indirect probability assessment from
domain experts; (ii) use of production rules1 to define
the weighted expression; and (iii) use of the “Simulated
Expert” algorithm to estimate the input parameters required
to apply the RNM method. In (i) domain experts use a GUI
(still a prototype) that allows them to evaluate probability
distributions directly (i.e., using numbers), or indirectly
(i.e., using a visual tool).

3.1 Knowledge Elicitation Process

Figure 2. Component Prototype (A).

The prototype used in the probability elicitation
process is here decomposed into two separate figures (for
presentation purposes only). Hence, for each combination
of extreme cases of the parent nodes (i.e., each row
in the truth table) domain experts provides the expected
probability distribution using an interactive bar chart (see
Fig. 2) or sliders horizontally arranged (see Fig. 3). During

1Files available at https://github.com/SEKE2019/SBNE

Figure 3. Component Prototype (B).

the elicitation process the domain experts directly interacts
with the vertical bars so that by raising or lowering one
of the bars the others automatically adjust itself. Strictly
speaking, the natural order, which would be to inform the
probability distributions with numbers and update the bar
chart, is subverted so that users can interact and evaluate
probability distributions by reasoning in terms of proportion
rather than numerical terms, if they so wish. The sliders
shown in Fig. 3 behave the same way.

A commonly employed strategy by domain experts is
to first set up the bar relative to the state that they have
greater confidence in estimating, and adjust the other states
accordingly. To apply this strategy, the users can lock
or unlock states by clicking over it, as shown with an
arrow in Fig. 2, so that changes in other states do not
modify the locked states. In short, the domain experts are
able to provide the input data to the “Simulated Expert”,
reasoning in terms of proportion, in which case they ignore
the numerical information of the prototype, or reasoning
directly in numerical terms, in which they use the elements
presented in Fig. 3.

That been established, let us consider a simple case in
which we have a child node C with two parent nodes, A
and B, all having three states each (e.g., “low”, “medium”
and “high”). To generate the child node’s NPT, the domain
expert needs to assess four probability distributions as
shown in Table 2. The Table 2 is basically a truth table
composed by all the combinations of extreme states of the
parent nodes.

In this case, each row in Table 2 is filled with data
from the interaction of the domain experts with the
components presented in Fig. 2 and 3. In other words,
the domain experts inform four probability distributions,
which constitutes a subset of the child node’s NPT. This
subset is them used as input for the “Simulated Expert”
to estimate the optimal parameters for the RNM algorithm.
The weighted expression is defined using production rules
as proposed in [5].



Table 2. Truth table for a node with two
parents.

Rows
Parents Child

A B
C

Low Medium High
1 Low Low 1 0 0
2 Low High 0 0.3 0.7
3 High Low 0 0.3 0.7
4 High High 0 0 1

3.2 Simulated Expert

The Simulated Expert is an algorithm that receives as
input the target probability distributions and a weighted
expression to estimate the most suitable parameters (i.e.,
variance and set of weights of the parents) for the RNM
algorithm to generate the NPTs.

The algorithm can be divided into three steps: (i)
search for the most likely range of the optimal variance;
(ii) identify the combination of weights of the parent
nodes; and (iii) estimate the optimal variance parameter, as
detailed below.

Step (i):

1. generate a variance vector V in range 5.0E−4 to 0.2
with step 5.0E−4;

2. set the weight of all parent nodes to 5;

3. define a “resolution” constant δ = 10 in which the
desired accuracy is inversely proportional to its value;

4. calculate the step s = |V |
δ to perform the search for the

most probable interval of the optimal variance;

5. traverse V and at each s, define the variance of the
child node using the current variance (e.g., shaded
boxes in Fig. 4), calculate the NPT and its relative
score. Do that until there is no room for improvement
(e.g., row 5 in Fig. 4) or until it reaches the end of V ;

6. when the score starts decreasing return to the previous
used variance index and calculate a = index − |V |δ
and b = index + |V |

δ , the most likely interval where
the optimal variance must be (e.g., row 7 in Fig. 4).

Step (ii):

1. set the variance of the child node using the median
variance in v ∈ V (i.e., v = V [a : b]), the interval at
which the optimal variance is more likely to be (e.g.,

Table 3. Truth table approximation from the
Simulated Expert.

Rows
Parents Child

A B
C

Low Medium High
1 Low Low 0.9965 0.0035 0
2 Low High 0 0.2995 0.7005
3 High Low 0 0.2995 0.7005
4 High High 0 0.0035 0.9965

Result obtained with the Simulated Expert for the child node C using the
weighted expression WMAX with the following parameters: σ2 = 0.062;
weight 4 for all parent nodes; BS = 3.94E−06.

output of (i) illustrated in Fig. 4 row 7 in which it
would be the variance located in index 5);

2. runs all combinations of weights of the parent nodes
and stores the optimal set of weights.

Step (iii):

1. using the optimal set of weights obtained in previous
step, traverse the subset v (e.g., row 7 in Fig. 4)
performing the same actions as in item 5 from step (i).

Figure 4. Illustration of the execution of the
algorithm from step (i).

For each execution of the RNM algorithm, a score of the
estimated probabilities relative to the target probabilities is
computed using the Brier Score, but any other similarity
measure can be used (e.g., euclidean distance, Kullback-
Leibler divergence).
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Figure 5. BN used in the experiment.

4 Empirical Validation

An experiment was conducted with undergraduate
students that work as junior software developers at the
Embedded Lab – a software development lab located at the
Federal University of Campina Grande, Brazil. The purpose
of the experiment was to validate the proposed approach.

In the experiment, 10 developers quantified a BN
(adapted from the model proposed in Freire et al. [8])
using the proposed approach and two others methods:
the Weighted Sum Algorithm (WSA) and a variation of
the WSA, here named WSAAHP, that employs indirect
probability elicitation by means of pairwise comparisons
between states in which the domain experts compare the
likelihood of states using a verbal and numerical scale.

Each domain expert also manually defined NPTs that
served as benchmark for comparing the methods. A
Randomised Complete Block Design (RCBD) was adopted
in the experiment. The methods were compared in terms
of accuracy. The accuracy is defined here as how well
the NPTs generated represent the mode of probability
distributions in the benchmark NPTs.

We focused on the following research question and null
hypothesis:

RQ1: Does the use of the SBNE approach to the RNM
method maintain, improve or degrades expert-driven
BNs accuracy?

H0: The proposed approach to RNM is less accurate
than the other methods.

The BN used in the experiment is presented in Fig. 5.
The domain experts built 40 NPTs. Nevertheless, only the
three parent nodes NPT was considered in the analysis (i.e.,
the one associated with the child node self-management),
since it is the most complex. All the NPTs are available in
an online repository2.

2https://github.com/SEKE2019/SBNE

Table 4. Tukey simultaneous tests for
differences of means

Difference of
Method Levels

Difference
of Means

SE of
Difference

Simultaneous
95% CI T-Value Adjusted

P-Value
WSA-RNM -0.1267 0.0414 (-0.2323; -0.0211) -3.06 0.018
WSAAHP-RNM -0.1602 0.0414 (-0.2658; -0.0546) -3.87 0.003
WSAAHP-WSA -0.0335 0.0414 (-0.1391;0.0721) -0.81 0.702

Individual confidence level = 98%.

An analyse of variance (ANOVA) was performed, which
indicated that there is statistically significant difference (p-
value = 0.003) between the accuracy of the methods with a
significance level of 0.05. Tukeys HSD post hoc test was
performed to determine which methods are in fact different
in regards to accuracy level.

The Table 4 summaries the Tukey simultaneous test for
differences of means. As can be seen in the Table 4, the
confidence interval for the difference between the means
of WSA-RNM and WSAAHP-RNM do not include zero,
which indicates that the difference is statistically significant
between these methods. The results show that RNM is 13%
and 16% (i.e., rounded values) more accurate than WSA
and WSAAHP, respectively. Therefore, H0 was rejected.

5 Threats to Validity

Despite the results obtained with the proposed approach,
the comparison with different methods poses as a threat
to internal validity. Nevertheless, the method WSA can
be considered as a good benchmark because it has been
mathematically and empirically validated in the literature
[6, 2]. Moreover, the external validity may be limited,
considering that the participants of the experiment were
undergraduate students who work as software developers
and that the experiment is bound to a specific context.

6 Conclusions

Despite recent popularity, the construction of BNs is still
challenging. One of the challenges refers to defining the
NPTs for large-scale BN. It is possible to automate this
process using batch learning when there is a database with
enough information. In practice, this is not common. The
other option is to elicit data from experts, which becomes
unfeasible for large scale BN. Fenton et al. [7] presented
a solution based on ranked nodes. However, to apply this
solution a BN expert is usually necessary.

In this paper, we complement the work of Fenton et al.
[7] and Silva et al. [5] by presenting a novel approach to
apply the RNM without relying on BN experts. The solution
is named Simulated Bayesian Network Expert (SBNE) and
it consists of eliciting a subset of the NPT from the domain



experts, which is used as input to estimate the optimal
parameters (without relying on RNM experts) for the RNM
to generate the NPTs.

Nonetheless, this approach can be used by RNM experts,
reducing their effort to identify the optimal parameter
for the RNM algorithm. We compared the proposed
approach to the RNM with two other methods and the RNM
outperformed them, reaching a mean accuracy of 75.78%
against 63.12% of WSA and 59.77% of WSAAHP. These
results are promising and validate our approach, which
makes RNM accessible to a wider range of users.

Notwithstanding, it is not our goal to state which method
is the best. For such a purpose, more experiments would
be needed to investigate the matter. That said, it is our
belief that future works in this area should concentrate on
examining the proposed approach against BNs derived from
RNM experts and comparing multiple methods using well
known BN models from the literature such as ALARM [3]
and Hailfinder [1].
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