Algebraic Convergence to Software-Knowledge:
Deep Software Learning (TSE)

laakov Exman and Assaf B. Spanier

Software Engineering Department
The Jerusalem College of Engineering — JCE - Azriel
Jerusalem, Israel
iaakov@jce.ac.jlshpanier@jce.ac.il

Abstract— It is an empirical observation that Software up to ontologies as conceptual refinement of cksard
Engineering and Knowledge Engineering seem to comg® to a jnheritance by subclasses.

single discipline which may be suitably callecoftware-Knowledge. Knowledge, an Artificial Intelligence (Al) field,tarted in
However, mere empirical observations are not satiattory. These 1950 \with Shannon’s [15], and Turing’s [16] pionempers.

should be justified by plausible arguments. There @ three \o 4 ahnear classical Al expert-systems, e.g. Dandrresolve
convergence aspects, semantic, algebraic and topgilcal, and this

paper focuses on the algebraic aspect. Linear algebis the basis f:hemlcal strgctural formulas. These systems) seghrat
for Linear Software Models, a rigorous theory of séware systems inference engines from knowledge bases. Ontologieslted
composition from sub-systems, recently developediriear algebra, from this research thread.

with added non-linearity, is also the basis for Dge Learning, a An early algebraic learning theory is the 1969 Bptmns
successful Artificial Intelligence domain. This wok suggests and by Minsky and Papert [13]. A neural networks sudefi
analyzes Deep Software Learning, i.e. Deep Learning specific to developed, remaining in research laboratories,tHerlack of
Software development problems. We then conjecturenodeep computing power. They were renamed “Deep Learninih
reasons for Software-Knowledge convergence. the industrial applications surge, due to addedpding power

Keywords. Linear Software Models, Software Composition; (e.g. GPU), big data sets, and algorithmic improeets.

Laplacian Matrix; Deep Software Learning; Software-Knowledge B. Aspects of Software-Knowledge
Convergence; RNN; LSTM; Sequential and Structured Data. Convergence

This paper is motivated by the following conjecture
I. INTRODUCTION

It has been observed empirically that the Softwar Software-Knowledge Conjecture
Engineering and Knowledge Engineering disciplineens to Software Engineering and Knowledge Engineering jare
converge along their relatively short histories.n@argence is | converging to a single discipline which we call
interesting theoretically and in practice. This @amnalyzes | Software-Knowledge.
Deep Software Learning as a mutual Software andwatge
interaction for Software Development problems.

This work ultimate goal is to point out concreteediions to
the rationale of Software-Knowledge convergenaetisg from
plausible conjectures. It offers a discussion roaplnfor the 2)
Theory of Software Engineering special session oftw@re-
Knowledge convergence, within the SEKE’2019 confees

Software-Knowledge convergence consists of thrpeds:

1) Semantic — the importance of concepts and
ontologies in both software and knowledge fields;
Algebraic — mostly linear algebra as the basis of
software composition theory and Deep Learning in
diverse knowledge domains; this paper’s focus;

3) Topological —graphs (planar or upon manifolds),

A. Concise Historical Overview with meaningful entities in nodes linked by edges.

Software as a discipline starts in 1956 with Batkustran

a high-level programming language. Software Engineering Semantics got prominence within Software Enginegviith
itself was coined only in the celebrated NATO 196B8e claim by Frederick Brooks in his books [1] [Hat
conference. Software history is since then a caotis increase“Conceptual Integrity is the most important considien for
in abstraction level of languages and design tegres. From software system design”. This has been followed régyent
structured programming, to object-oriented langsage Java, research, e.g. by Jackson [8] and Exman. Semaniitsn
to modeling languages, as UML, and model-driveniezying Knowledge Engineering is prevalent since classitakesearch,
somewhat eclipsed by Deep Learning. Ontologies. (thg
Protégé tool) are an important facet of it.

DOI: 10.18293/SEKE2019-213

The Algebraic Software Engineering aspect, recoggithe
importance of Software mathematical theory, e.gt thinear
Software Models [3], [4] gradually gains tractidrhe Algebraic
Knowledge aspect, recognizing Deep Learning’s ap@urge.

II. RELATED WORK

A. Deep Learning for/by Software
Engineering

Relevant neural networks are Recurrent Neural Nedsva

(RNN), proposed in 1986 by Rumelhart, Hinton andlig/ms
[14], and Long Short-Term Memory (LSTM) a speciaick of
RNN, proposed by Hochreiter and Schmidhuber [7]967.

Software Engineering applications of Deep Learnfog
higher abstraction levels include: program genenatiom user
intention (Lili Mou et al. [12]); program comprelsan, to
generate comments to Java code. (Xing Hu et al);[20PI
functions extraction from annotated code snippeiiected
from GitHub (Xiaodong Gu et al. [19]); and softwanedeling
for various tasks (Hoa Khanh Dam et al. [6]).

Practical tools deal with software Traceabilityn(Buo et al.
[11]), and fixing of C program errors (Rahul Gugtaal. [5]).
Wei Fu and Tim Menzies [17] combine classical AthwiDeep
Learning to shorten training tasks.

B. Algebraic Software Theory: Linear
Software Model's

Software composition algebraic theory formalize®dks’
Conceptual Integrity idea. Software is a hierarahisystem,
where each level is represented by a Modularityrid$3], [4].
Matrix columns stand for structural units, objedeated
classes, and matrix rows for functional units, i.e. classthods.

Deep Software

/ Techniques
‘ Higher Abstraction Levels f
- Linear Algebra
‘ Program Comprehension ‘ Techniques ‘ Lower Abstraction Levels |

‘ Program Generation ‘ L) -
‘ Traceability ‘
\ API Extraction | - L
7y ‘ Fixing Language Errors ‘

‘ Software Modeling ‘

Figure 1. Deep Learning to Software Engineeringliegtions, classified by
abstraction levels. In between, the essential lriddgebra Techniques.

Even lower abstraction level activities, such asresing
program errors, as done in DeepFix [5] need modelivery
programmer has experience with accumulated bugdsréisalt
from misinterpretation (by the compiler!) of onlyfew bugs.

Linear algebra techniques are essential for Deegnireg.
Richard Wei et al. [18], in their Compiler Infrastture for
Deep Learning, emphasize linear algebra represamtet their
system, such as a first class tensor type, algebparators such
as “dot” and “tanh” (a typical sigmoid-like activat function).

B. Software Characterization: Sequential but not
Consecutive, and Structured

Often program feature pairs are sequential but not
appearing in each other neighborhood. Exampleslefteand
right parentheses (or braces); open and closeeaJiéva try
and catch. Code modeling is sequential, but nabokecutive
tokens. Dealing with such sequences, demands Ep&&ep
Learning (DL) networks. Software also has more demp

Brooks’ principles translated into linear algebeathnd that structures such as abstract syntax trees, dependgaphs,

all matrix column vectors biénearly independent and similarly

all the row vectors be linearly independent, obtejra square
matrix. If vector subsets are disjoint to othersmtb, the matrix

displays a block-diagonal form, i.e. the modulescathogonal.
Modularity matrices may have outliers coupling betw

design diagrams. Sequences are not enough foraseftl.

IV. RECURRENTNEURAL NETWORKS

Recurrent Neural Networks (RNNs) are dedicated to
continuous data, such as text, audio and videeukes previous

modules. Spectral methods for the Modularity Mal8 or the information about a word in a sentence or videan&ato
respective Laplacian Matrix [4], resolve couplingsLaplacian understand the next word or frame. RNNs handlestdste free
obtains the same modules as the Modularity Matfike t€Xt comprehension and text sequences generatondcratch.
Fiedler vector, fitting the lowest Laplacian norrezeigenvalue, 1© réuse previous information to handle the neguin RNN

; ; e has recourse to persistence loops. RNNs haveutffiapplying
allows locating outliers and splitting of too spamodules. L ; .
W ing outl PIHing = ! prediction of long-distance natural language depenigs. Most

translation, voice recognition, and image clasatfon
successes, are due to LSTM a special class of RNNs.

lll. DEEPSOFTWARELEARNING: THE PROBLEMS

Deep Software Learning has to assume that softigaee
collection of diverse assets: requirements, claggrams,

statecharts for design, a variety of graphs, moatetscode. A. LSTM = Long Short-Term Memory

LSTMs remember information for long periods. Fotiget

A. Software Problems to be Solved must be explicitly handled. LSTMs also have a |sticture

Software problems dealt with by Deep Learning can &f repeating neural network units. The main diffee of a
classified by their abstraction levels (Fig. 1)ghir abstractiontypical LSTM unit from an RNN unit, is 4 layers tead of a
activities, such as AP| Extraction, Program Gemematand single one. A hidden state Z is the key to LSTMscfioning. It

Program Comprehension depend on a suitable undgrlyias an inpug., from its predecessor, runs throughout the chain
software modeling. Modeling is high-level abstraction, sincef (unrolled loop) units, affected by controlleddéractions, and
many activities involveransation between models. outputsz to its successor unit. Three gates (in Fig. 2)atmd
the hidden state Z in each cycle, filtering thepotity parts:

e Forget gate f; — sigmoid taking/..; andx; and producing Remaining issues are: The algebraic software th&onyp to
a number between 0 and 1 for eachvalue; the part of now strictly linear, while Deep Learning involvesmlinearity.
the hidden state Z to (fully or partially) discard; Will there be a convergence also in this sense? LHpacian

e Input gate — has 2 layerssigmoid i; sets which valuesmatrix is central to the software theory, while sotprominent
will be updatedtanh creates a new vector of valugs in Deep Learning; will it be important for Deep leag too?
multiplied by the sigmoid output giving candidat@ues
actually added to Z: T =firn Hilek; References

* Output gate — sigmoida filters what will be the output [1] F.P. Brooks,The Mythical Man-Month, Essays on Software Engineering,

and what remains the Z outptanh normalizesz; values Anniversary Edition, Addison-Wesley, Boston, MA, Aig1995).
between -1 and +1, then multiplied by the signid [2] F. Brooks,The Design of Design, Essays from a Computer Scientist,
Addison-Wesley, Boston, MA, USA, 2010.

=0 *tanh(z).

Y=o f(t) [3] 1. Exman, “Linear Software Models: Decoupled Moduldrom
Modularity Eigenvectors”, Int. Journal on SoftwakEngineering and
Knowledge Engineering, vol. 25, pp. 1395-1426, ®eto2015. DOI:
10.1142/S0218194015500308

[4] 1. Exman and R. Sakhnini, “Linear Software ModelBipartite
Isomorphism between Laplacian Eigenvectors and Néoity Matrix
Eigenvectors”, Int. Journal of Software Engineeriagd Knowledge
Engineering, Vol. 28, No 7, pp. 897-935, 2018. DOI:
http://dx.doi.org/10.1142/S0218194018400107

N

\ 2N

Ve-1 Ve [5] R. Gupta, S. Pal, A. Kanade and S. Shevade, “Dgepiing Common
(C Language Errors by Deep Learning”, Proc® ABAI Conference, pp.
Xt / 1345-1351, (2017).

]] T [6] Hoa Khanh Dam, Truyen Tran and Trang Pham, “A daeguage model
Figure 2. LSTM Deep Learning Network Schematic chag - The upper (blue) for software code”, arXiv:1608.02715, (August 2016)

horizontal line is the Z hidden state, with ingut and hidden output;.. The 7] S. Hochreiter and J. Schmidhuber, “Long short-tenemory”, Neural
lower horizontal line passes the outgubetween consecutive units. The thre[e Cbmputation vol. 9 'pp. 1735-1780. (1997). ’

vertical gates are: the (ref)rget gate f; the (green)nput gate i; with two .
. h : [8] D. Jackson, “Conceptual Design of Software: A RefeAgenda”, MIT-
parallel layers & and tanh); the (violet) output gate:.. (Color online) CSAIL-TR-2013-020, August 8, 2013.

[9] A.Karpathy, J. Johnson and L. Fei-Fei, “Visualiziagd Understanding
. . . Recurrent Networkshttps://arxiv.org/pdf/1506.02078.pdf
A realistic LSTM test, keeping track of long-rangtributes, [10] E. Kiperwasser and Y. Goldberg, “Simple and aceurdependency

takes a large source code and randomly concateitdtés a parsing using bidirectional LSTM feature represtos”, Trans. Assoc.
long file (e.g. Linux Kernel [9] about 6*fcharacters). The Computational Linguistics, Vol. 4, pp. 313-327, {8).

LSTM network is trained to predict special sourcede [11] Jin Guo, Jinghui Chang and Jane Cleland-Huang, 4Béoally
symbols, as whitespace, quotation marks and brackes Enhanced Software Traceability Using Deep Learnirgchniques”,
predict aclose bracket, the model must be aware of a matchigg] arxiv:1804.02438 (April 2018).

: : [Lili Mou, Rui Men, Ge Li, Lu Zhang and Zzhi Jin, “O&nd-to-End
open bracket, appearing many time steps ago. LSTM Fmgo Program Generation from User Intention by Deep Bledtetworks”,

much better than other learning models due to atitiadal arxiv:1510.07211, (October 2015).
state feature (hidden state Z) explained aboveoitrast to the [13] m. Minsky and S. Papert, Perceptrons, MIT Pressil@iige, MA, USA,
standard RNN single hidden state. Results can lprowad 1969.

with an attention mechanism [21] or bidirectioh&TM [10]. [14] D.E. Rumelhart, G.E. Hinton and R.J. Wiliams, “beiag internal
representations by error propagation”, in Rumelramt McClelland

V. DEEPSOFTWARE LEARNING IN PRACTICE (eds.)Parallel Distributed Processing, vol. 1, pp. 318-362, MIT Press,
Cambridge, MA, USA, (1986).

The Deep _Leaming (DL) mechanism in the Xing Hu][ZHS] C. E. Shannon, “Programming a Computer for Play@tgess”, Phil.
work deals with sequential code, and Abstract Syrteee Mag., Series 7, Vol. 41, 18 pages (March 1950).

(AST) structure, translating sequence-to-sequero@Ele to [16] AM. Turing, “Computing Machinery and IntelligengeMind, New
comments. The Encoder/Decoder (both LSTMs) ardhitec Series, Vol. 59, pp. 433-460, (October 1950).

uses one Encoder pass to traverse the AST, leathingode [17] Wei Fu and Tim Menzies, “Easy over Hard: A Casedgton Deep
relevant to the comments. A second Encoder paspases the ~ -83Ming’, ESEC/FSEL7, arXiv:1703.00133, (June 201 DOI:

hered . . inaful https://dx.doi.org/10.1145/3106237.31052546
gathered comment pieces into meaningful sentences. [18] R. Wei, L. Schwartz and V. Adve, “DLVM: A Modern @wpiler

Rare tokens clutter a vocabulary with single instmsn Infrastructure for Deep Learning Systems, Workstragk ICLR 2018,
Practical projects exchange numerals/strings bemgenokens arxiv:1711.03016, (February 2018).

“ » [19] Xiaodong Gu, Hongyu Zhang, Dogmei Zhang and Sundfim, “Deep
<NUM> and <STR>, and rare words by “unknowns” <UNK> "% /0 ™ i ™ Broc. FSE'16, arXiv:1605.08545 (21 DOI:

http://dx.doi.org/10.1145/1235

[20] Xing Hu, Ge Li, Xin Xia, David Lo and Zhi Jin, “DeeCode Comment
Generation”, Proc. ICPC |EEE/ACM Int. Conf. Pragr&omprehension,

Today's software and knowledge (DL) theories hawe t 11 pages (May 2018). DOttps://doi.org/10.475/123 4
W. Yin, H. Schutze, B. Xiang and B. Zhou “Abcnn:téttion-based

important characteristics: 1- they heavily involirear algebra; (21] ! ! '
. . . convolutional network for modeling sentence pairtans. Assoc.
2- the algebra is totally independent of conceptmantics. Computational Linguistics, Vol. 4, pp. 259-272 (8p1

VI. DISCUSSION

