
Algebraic Convergence to Software-Knowledge:
Deep Software Learning (TSE)

Iaakov Exman and Assaf B. Spanier
Software Engineering Department

The Jerusalem College of Engineering – JCE - Azrieli
Jerusalem, Israel

iaakov@jce.ac.il, shpanier@jce.ac.il

Abstract— It is an empirical observation that Software
Engineering and Knowledge Engineering seem to converge to a
single discipline which may be suitably called Software-Knowledge.
However, mere empirical observations are not satisfactory. These
should be justified by plausible arguments. There are three
convergence aspects, semantic, algebraic and topological, and this
paper focuses on the algebraic aspect. Linear algebra is the basis
for Linear Software Models, a rigorous theory of software systems
composition from sub-systems, recently developed. Linear algebra,
with added non-linearity, is also the basis for Deep Learning, a
successful Artificial Intelligence domain. This work suggests and
analyzes Deep Software Learning, i.e. Deep Learning specific to
Software development problems. We then conjecture on deep
reasons for Software-Knowledge convergence.

Keywords: 1 Linear Software Models; Software Composition;
Laplacian Matrix; Deep Software Learning; Software-Knowledge
Convergence; RNN; LSTM; Sequential and Structured Data.

I. INTRODUCTION

It has been observed empirically that the Software
Engineering and Knowledge Engineering disciplines seem to
converge along their relatively short histories. Convergence is
interesting theoretically and in practice. This paper analyzes
Deep Software Learning as a mutual Software and Knowledge
interaction for Software Development problems.

This work ultimate goal is to point out concrete directions to
the rationale of Software-Knowledge convergence, starting from
plausible conjectures. It offers a discussion roadmap for the
Theory of Software Engineering special session on Software-
Knowledge convergence, within the SEKE’2019 conference.

A. Concise Historical Overview

Software as a discipline starts in 1956 with Backus’ Fortran
a high-level programming language. Software Engineering
itself was coined only in the celebrated NATO 1968
conference. Software history is since then a continuous increase
in abstraction level of languages and design techniques. From
structured programming, to object-oriented languages, as Java,
to modeling languages, as UML, and model-driven-engineering

DOI: 10.18293/SEKE2019-213

up to ontologies as conceptual refinement of classes and
inheritance by subclasses.

Knowledge, an Artificial Intelligence (AI) field, started in
1950, with Shannon’s [15], and Turing’s [16] pioneer papers.
Next appear classical AI expert-systems, e.g. Dendral to resolve
chemical structural formulas. These systems separated
inference engines from knowledge bases. Ontologies resulted
from this research thread.

An early algebraic learning theory is the 1969 Perceptrons
by Minsky and Papert [13]. A neural networks sub-field
developed, remaining in research laboratories, for the lack of
computing power. They were renamed “Deep Learning” with
the industrial applications surge, due to added computing power
(e.g. GPU), big data sets, and algorithmic improvements.

B. Aspects of Software-Knowledge
Convergence

This paper is motivated by the following conjecture:

Software-Knowledge convergence consists of three aspects:
1) Semantic – the importance of concepts and

ontologies in both software and knowledge fields;
2) Algebraic – mostly linear algebra as the basis of

software composition theory and Deep Learning in
diverse knowledge domains; this paper’s focus;

3) Topological –graphs (planar or upon manifolds),
with meaningful entities in nodes linked by edges.

Semantics got prominence within Software Engineering with

the claim by Frederick Brooks in his books [1] [2] that
“Conceptual Integrity is the most important consideration for
software system design”. This has been followed by recent
research, e.g. by Jackson [8] and Exman. Semantics within
Knowledge Engineering is prevalent since classical AI research,
somewhat eclipsed by Deep Learning. Ontologies (e.g. the
Protégé tool) are an important facet of it.

Software-Knowledge Conjecture
Software Engineering and Knowledge Engineering are
converging to a single discipline which we call
Software-Knowledge.

The Algebraic Software Engineering aspect, recognizing the
importance of Software mathematical theory, e.g. that Linear
Software Models [3], [4] gradually gains traction. The Algebraic
Knowledge aspect, recognizing Deep Learning’s applied surge.

II. RELATED WORK

A. Deep Learning for/by Software
Engineering

Relevant neural networks are Recurrent Neural Networks
(RNN), proposed in 1986 by Rumelhart, Hinton and Williams
[14], and Long Short-Term Memory (LSTM) a special kind of
RNN, proposed by Hochreiter and Schmidhuber [7] in 1997.

Software Engineering applications of Deep Learning for
higher abstraction levels include: program generation from user
intention (Lili Mou et al. [12]); program comprehension, to
generate comments to Java code. (Xing Hu et al. [20]); API
functions extraction from annotated code snippets collected
from GitHub (Xiaodong Gu et al. [19]); and software modeling
for various tasks (Hoa Khanh Dam et al. [6]).

Practical tools deal with software Traceability (Jin Guo et al.
[11]), and fixing of C program errors (Rahul Gupta et al. [5]).
Wei Fu and Tim Menzies [17] combine classical AI with Deep
Learning to shorten training tasks.

B. Algebraic Software Theory: Linear
Software Models

Software composition algebraic theory formalizes Brooks’
Conceptual Integrity idea. Software is a hierarchical system,
where each level is represented by a Modularity Matrix [3], [4].
Matrix columns stand for structural units, object-oriented
classes, and matrix rows for functional units, i.e. class methods.

Brooks’ principles translated into linear algebra demand that
all matrix column vectors be linearly independent and similarly
all the row vectors be linearly independent, obtaining a square
matrix. If vector subsets are disjoint to other subsets, the matrix
displays a block-diagonal form, i.e. the modules are orthogonal.

Modularity matrices may have outliers coupling between
modules. Spectral methods for the Modularity Matrix [3], or the
respective Laplacian Matrix [4], resolve couplings. A Laplacian
obtains the same modules as the Modularity Matrix. The
Fiedler vector, fitting the lowest Laplacian non-zero eigenvalue,
allows locating outliers and splitting of too sparse modules.

III. DEEP SOFTWARE LEARNING: THE PROBLEMS

Deep Software Learning has to assume that software is a
collection of diverse assets: requirements, class diagrams,
statecharts for design, a variety of graphs, models and code.

A. Software Problems to be Solved

Software problems dealt with by Deep Learning can be
classified by their abstraction levels (Fig. 1). Higher abstraction
activities, such as API Extraction, Program Generation and
Program Comprehension depend on a suitable underlying
software modeling. Modeling is high-level abstraction, since
many activities involve translation between models.

Figure 1. Deep Learning to Software Engineering applications, classified by
abstraction levels. In between, the essential Linear Algebra Techniques.

Even lower abstraction level activities, such as correcting
program errors, as done in DeepFix [5] need modeling. Every
programmer has experience with accumulated bugs that result
from misinterpretation (by the compiler!) of only a few bugs.

Linear algebra techniques are essential for Deep Learning.
Richard Wei et al. [18], in their Compiler Infrastructure for
Deep Learning, emphasize linear algebra representation in their
system, such as a first class tensor type, algebraic operators such
as “dot” and “tanh” (a typical sigmoid-like activation function).

B. Software Characterization: Sequential but not
Consecutive, and Structured

Often program feature pairs are sequential but not
appearing in each other neighborhood. Examples are: left and
right parentheses (or braces); open and close a file; Java try
and catch. Code modeling is sequential, but not of consecutive
tokens. Dealing with such sequences, demands specific Deep
Learning (DL) networks. Software also has more complex
structures such as abstract syntax trees, dependency graphs,
design diagrams. Sequences are not enough for software DL.

IV. RECURRENT NEURAL NETWORKS

Recurrent Neural Networks (RNNs) are dedicated to
continuous data, such as text, audio and video. It reuses previous
information about a word in a sentence or video frame to
understand the next word or frame. RNNs handle tasks, like free
text comprehension and text sequences generation from scratch.
To reuse previous information to handle the next input, RNN
has recourse to persistence loops. RNNs have difficulty applying
prediction of long-distance natural language dependencies. Most
translation, voice recognition, and image classification
successes, are due to LSTM a special class of RNNs.

A. LSTM = Long Short-Term Memory

LSTMs remember information for long periods. Forgetting
must be explicitly handled. LSTMs also have a loop structure
of repeating neural network units. The main difference of a
typical LSTM unit from an RNN unit, is 4 layers instead of a
single one. A hidden state Z is the key to LSTMs functioning. It
has an input zt-1 from its predecessor, runs throughout the chain
of (unrolled loop) units, affected by controlled interactions, and
outputs zt to its successor unit. Three gates (in Fig. 2) update
the hidden state Z in each cycle, filtering the output Y parts:

• Forget gate ft – sigmoid taking yt-1 and xt and producing
a number between 0 and 1 for each zt-1 value; the part of
the hidden state Z to (fully or partially) discard;

• Input gate – has 2 layers: sigmoid it sets which values
will be updated; tanh creates a new vector of values ,
multiplied by the sigmoid output giving candidate values
actually added to Z:

• Output gate – sigmoid ot filters what will be the output
and what remains the Z output: tanh normalizes zt values
between -1 and +1, then multiplied by the sigmoid ot:
 yt = ot * tanh(zt).

Figure 2. LSTM Deep Learning Network Schematic diagram - The upper (blue)
horizontal line is the Z hidden state, with input zt-1 and hidden output zt. The
lower horizontal line passes the output yt between consecutive units. The three
vertical gates are: the (red) forget gate ft; the (green) input gate it with two
parallel layers (σσσσ and tanh); the (violet) output gate ot. (Color online)

A realistic LSTM test, keeping track of long-range attributes,
takes a large source code and randomly concatenates it into a
long file (e.g. Linux Kernel [9] about 6*106 characters). The
LSTM network is trained to predict special source code
symbols, as whitespace, quotation marks and brackets. To
predict a close bracket, the model must be aware of a matching
open bracket, appearing many time steps ago. LSTM performs
much better than other learning models due to an additional
state feature (hidden state Z) explained above, in contrast to the
standard RNN single hidden state. Results can be improved
with an attention mechanism [21] or bidirectional-LSTM [10].

V. DEEP SOFTWARE LEARNING IN PRACTICE
The Deep Learning (DL) mechanism in the Xing Hu [20]

work deals with sequential code, and Abstract Syntax Tree
(AST) structure, translating sequence-to-sequence, code to
comments. The Encoder/Decoder (both LSTMs) architecture
uses one Encoder pass to traverse the AST, learning the code
relevant to the comments. A second Encoder pass composes the
gathered comment pieces into meaningful sentences.

Rare tokens clutter a vocabulary with single instances.
Practical projects exchange numerals/strings by generic tokens
<NUM> and <STR>, and rare words by “unknowns” <UNK>.

VI. DISCUSSION

Today’s software and knowledge (DL) theories have two

important characteristics: 1- they heavily involve linear algebra;
2- the algebra is totally independent of concepts’ semantics.

Remaining issues are: The algebraic software theory is up to
now strictly linear, while Deep Learning involves non-linearity.
Will there be a convergence also in this sense? The Laplacian
matrix is central to the software theory, while not so prominent
in Deep Learning; will it be important for Deep Learning too?

References

[1] F.P. Brooks, The Mythical Man-Month, Essays on Software Engineering,

Anniversary Edition, Addison-Wesley, Boston, MA, USA, (1995).

[2] F. Brooks, The Design of Design, Essays from a Computer Scientist,
Addison-Wesley, Boston, MA, USA, 2010.

[3] I. Exman, “Linear Software Models: Decoupled Modules from
Modularity Eigenvectors”, Int. Journal on Software Engineering and
Knowledge Engineering, vol. 25, pp. 1395-1426, October 2015. DOI:
10.1142/S0218194015500308

[4] I. Exman and R. Sakhnini, “Linear Software Models: Bipartite
Isomorphism between Laplacian Eigenvectors and Modularity Matrix
Eigenvectors”, Int. Journal of Software Engineering and Knowledge
Engineering, Vol. 28, No 7, pp. 897-935, 2018. DOI:
http://dx.doi.org/10.1142/S0218194018400107

[5] R. Gupta, S. Pal, A. Kanade and S. Shevade, “DeepFix: Fixing Common
C Language Errors by Deep Learning”, Proc. 31st AAAI Conference, pp.
1345-1351, (2017).

[6] Hoa Khanh Dam, Truyen Tran and Trang Pham, “A deep language model
for software code”, arXiv:1608.02715, (August 2016).

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural
Computation, Vol. 9, pp. 1735-1780, (1997).

[8] D. Jackson, “Conceptual Design of Software: A Research Agenda”, MIT-
CSAIL-TR-2013-020, August 8, 2013.

[9] A.Karpathy, J. Johnson and L. Fei-Fei, “Visualizing and Understanding
Recurrent Networks, https://arxiv.org/pdf/1506.02078.pdf.

[10] E. Kiperwasser and Y. Goldberg, “Simple and accurate dependency
parsing using bidirectional LSTM feature representations”, Trans. Assoc.
Computational Linguistics, Vol. 4, pp. 313-327, (2016).

[11] Jin Guo, Jinghui Chang and Jane Cleland-Huang, “Semantically
Enhanced Software Traceability Using Deep Learning Techniques”,
arXiv:1804.02438 (April 2018).

[12] Lili Mou, Rui Men, Ge Li, Lu Zhang and Zhi Jin, “On End-to-End
Program Generation from User Intention by Deep Neural Networks”,
arXiv:1510.07211, (October 2015).

[13] M. Minsky and S. Papert, Perceptrons, MIT Press, Cambridge, MA, USA,
1969.

[14] D.E. Rumelhart, G.E. Hinton and R.J. Williams, “Learning internal
representations by error propagation”, in Rumelhart and McClelland
(eds.) Parallel Distributed Processing, vol. 1, pp. 318-362, MIT Press,
Cambridge, MA, USA, (1986).

[15] C. E. Shannon, “Programming a Computer for Playing Chess”, Phil.
Mag., Series 7, Vol. 41, 18 pages (March 1950).

[16] A.M. Turing, “Computing Machinery and Intelligence”, Mind, New
Series, Vol. 59, pp. 433-460, (October 1950).

[17] Wei Fu and Tim Menzies, “Easy over Hard: A Case Study on Deep
Learning”, ESEC/FSE’17, arXiv:1703.00133, (June 2017). DOI:
https://dx.doi.org/10.1145/3106237.31052546

[18] R. Wei, L. Schwartz and V. Adve, “DLVM: A Modern Compiler
Infrastructure for Deep Learning Systems, Workshop track ICLR 2018,
arXiv:1711.03016, (February 2018).

[19] Xiaodong Gu, Hongyu Zhang, Dogmei Zhang and Sunghun Kim, “Deep
API Learning”, Proc. FSE’16, arXiv:1605.08545 (2017). DOI:
http://dx.doi.org/10.1145/1235

[20] Xing Hu, Ge Li, Xin Xia, David Lo and Zhi Jin, “Deep Code Comment
Generation”, Proc. ICPC IEEE/ACM Int. Conf. Program Comprehension,
11 pages (May 2018). DOI: https://doi.org/10.475/123_4

[21] W. Yin, H. Schutze, B. Xiang and B. Zhou “Abcnn: Attention-based
convolutional network for modeling sentence pairs”, Trans. Assoc.
Computational Linguistics, Vol. 4, pp. 259-272 (2016).

