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Abstract— It is an empirical observation that Software 
Engineering and Knowledge Engineering seem to converge to a 
single discipline which may be suitably called Software-Knowledge. 
However, mere empirical observations are not satisfactory. These 
should be justified by plausible arguments. There are three 
convergence aspects, semantic, algebraic and topological, and this 
paper focuses on the algebraic aspect. Linear algebra is the basis 
for Linear Software Models, a rigorous theory of software systems 
composition from sub-systems, recently developed. Linear algebra, 
with added non-linearity, is also the basis for Deep Learning, a 
successful Artificial Intelligence domain. This work suggests and 
analyzes Deep Software Learning, i.e. Deep Learning specific to 
Software development problems. We then conjecture on deep 
reasons for Software-Knowledge convergence. 
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I.  INTRODUCTION  

It has been observed empirically that the Software 
Engineering and Knowledge Engineering disciplines seem to 
converge along their relatively short histories. Convergence is 
interesting theoretically and in practice. This paper analyzes 
Deep Software Learning as a mutual Software and Knowledge 
interaction for Software Development problems.  

This work ultimate goal is to point out concrete directions to 
the rationale of Software-Knowledge convergence, starting from 
plausible conjectures. It offers a discussion roadmap for the 
Theory of Software Engineering special session on Software-
Knowledge convergence, within the SEKE’2019 conference. 
 

A. Concise Historical Overview 

Software as a discipline starts in 1956 with Backus’ Fortran 
a high-level programming language. Software Engineering 
itself was coined only in the celebrated NATO 1968 
conference. Software history is since then a continuous increase 
in abstraction level of languages and design techniques. From 
structured programming, to object-oriented languages, as Java, 
to modeling languages, as UML, and model-driven-engineering 
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up to ontologies as conceptual refinement of classes and 
inheritance by subclasses. 

Knowledge, an Artificial Intelligence (AI) field, started in 
1950, with Shannon’s [15], and Turing’s [16] pioneer papers. 
Next appear classical AI expert-systems, e.g. Dendral to resolve 
chemical structural formulas. These systems separated 
inference engines from knowledge bases. Ontologies resulted 
from this research thread. 

An early algebraic learning theory is the 1969 Perceptrons 
by Minsky and Papert [13]. A neural networks sub-field 
developed, remaining in research laboratories, for the lack of 
computing power. They were renamed “Deep Learning” with 
the industrial applications surge, due to added computing power 
(e.g. GPU), big data sets, and algorithmic improvements. 

B. Aspects of Software-Knowledge 
Convergence 

This paper is motivated by the following conjecture: 

 

 

 

 

Software-Knowledge convergence consists of three aspects: 
1) Semantic – the importance of concepts and 

ontologies in both software and knowledge fields; 
2) Algebraic – mostly linear algebra as the basis of 

software composition theory and Deep Learning in 
diverse knowledge domains; this paper’s focus; 

3) Topological –graphs (planar or upon manifolds), 
with meaningful entities in nodes linked by edges. 

 
Semantics got prominence within Software Engineering with 

the claim by Frederick Brooks in his books [1] [2] that 
“Conceptual Integrity is the most important consideration for 
software system design”. This has been followed by recent 
research, e.g. by Jackson [8] and Exman. Semantics within 
Knowledge Engineering is prevalent since classical AI research, 
somewhat eclipsed by Deep Learning. Ontologies (e.g. the 
Protégé tool) are an important facet of it. 

Software-Knowledge Conjecture 
Software Engineering and Knowledge Engineering are 
converging to a single discipline which we call 
Software-Knowledge. 



The Algebraic Software Engineering aspect, recognizing the 
importance of Software mathematical theory, e.g. that Linear 
Software Models [3], [4] gradually gains traction. The Algebraic 
Knowledge aspect, recognizing Deep Learning’s applied surge. 

II. RELATED WORK 

A. Deep Learning for/by Software 
Engineering 

Relevant neural networks are Recurrent Neural Networks 
(RNN), proposed in 1986 by Rumelhart, Hinton and Williams 
[14], and Long Short-Term Memory (LSTM) a special kind of 
RNN, proposed by Hochreiter and Schmidhuber [7] in 1997.  

Software Engineering applications of Deep Learning for 
higher abstraction levels include: program generation from user 
intention (Lili Mou et al. [12]); program comprehension, to 
generate comments to Java code. (Xing Hu et al. [20]); API 
functions extraction from annotated code snippets collected 
from GitHub (Xiaodong Gu et al. [19]); and software modeling 
for various tasks (Hoa Khanh Dam et al. [6]). 

Practical tools deal with software Traceability (Jin Guo et al. 
[11]), and fixing of C program errors (Rahul Gupta et al. [5]). 
Wei Fu and Tim Menzies [17] combine classical AI with Deep 
Learning to shorten training tasks. 

B. Algebraic Software Theory: Linear 
Software Models 

Software composition algebraic theory formalizes Brooks’ 
Conceptual Integrity idea. Software is a hierarchical system, 
where each level is represented by a Modularity Matrix [3], [4]. 
Matrix columns stand for structural units, object-oriented 
classes, and matrix rows for functional units, i.e. class methods.  

Brooks’ principles translated into linear algebra demand that 
all matrix column vectors be linearly independent and similarly 
all the row vectors be linearly independent, obtaining a square 
matrix. If vector subsets are disjoint to other subsets, the matrix 
displays a block-diagonal form, i.e. the modules are orthogonal. 

Modularity matrices may have outliers coupling between 
modules. Spectral methods for the Modularity Matrix [3], or the 
respective Laplacian Matrix [4], resolve couplings. A Laplacian 
obtains the same modules as the Modularity Matrix. The 
Fiedler vector, fitting the lowest Laplacian non-zero eigenvalue, 
allows locating outliers and splitting of too sparse modules. 

III.  DEEP SOFTWARE LEARNING: THE PROBLEMS   

Deep Software Learning has to assume that software is a 
collection of diverse assets: requirements, class diagrams, 
statecharts for design, a variety of graphs, models and code. 

A. Software Problems to be Solved  

Software problems dealt with by Deep Learning can be 
classified by their abstraction levels (Fig. 1). Higher abstraction 
activities, such as API Extraction, Program Generation and 
Program Comprehension depend on a suitable underlying 
software modeling. Modeling is high-level abstraction, since 
many activities involve translation between models. 

 
Figure 1. Deep Learning to Software Engineering applications, classified by 
abstraction levels. In between, the essential Linear Algebra Techniques. 
 

Even lower abstraction level activities, such as correcting 
program errors, as done in DeepFix [5] need modeling. Every 
programmer has experience with accumulated bugs that result 
from misinterpretation (by the compiler!) of only a few bugs. 

Linear algebra techniques are essential for Deep Learning. 
Richard Wei et al. [18], in their Compiler Infrastructure for 
Deep Learning, emphasize linear algebra representation in their 
system, such as a first class tensor type, algebraic operators such 
as “dot” and “tanh” (a typical sigmoid-like activation function). 

 

B.  Software Characterization: Sequential but not 
Consecutive, and Structured 

Often program feature pairs are sequential but not 
appearing in each other neighborhood. Examples are: left and 
right parentheses (or braces); open and close a file; Java try 
and catch. Code modeling is sequential, but not of consecutive 
tokens. Dealing with such sequences, demands specific Deep 
Learning (DL) networks. Software also has more complex 
structures such as abstract syntax trees, dependency graphs, 
design diagrams. Sequences are not enough for software DL. 

IV.  RECURRENT NEURAL NETWORKS 

Recurrent Neural Networks (RNNs) are dedicated to 
continuous data, such as text, audio and video. It reuses previous 
information about a word in a sentence or video frame to 
understand the next word or frame. RNNs handle tasks, like free 
text comprehension and text sequences generation from scratch. 
To reuse previous information to handle the next input, RNN 
has recourse to persistence loops. RNNs have difficulty applying 
prediction of long-distance natural language dependencies. Most 
translation, voice recognition, and image classification 
successes, are due to LSTM a special class of RNNs. 

A. LSTM = Long Short-Term Memory 

LSTMs remember information for long periods. Forgetting 
must be explicitly handled. LSTMs also have a loop structure 
of repeating neural network units. The main difference of a 
typical LSTM unit from an RNN unit, is 4 layers instead of a 
single one. A hidden state Z is the key to LSTMs functioning. It 
has an input zt-1 from its predecessor, runs throughout the chain 
of (unrolled loop) units, affected by controlled interactions, and 
outputs zt to its successor unit. Three gates (in Fig. 2) update 
the hidden state Z in each cycle, filtering the output Y parts:  



• Forget gate ft – sigmoid taking yt-1 and xt and producing 
a number between 0 and 1 for each zt-1 value; the part of 
the hidden state Z to (fully or partially) discard; 

• Input gate – has 2 layers: sigmoid it sets which values 
will be updated; tanh creates a new vector of values , 
multiplied by the sigmoid output giving candidate values 
actually added to Z:   

• Output gate – sigmoid ot filters what will be the output 
and what remains the Z output: tanh normalizes zt values 
between -1 and +1, then multiplied by the sigmoid ot: 
 yt = ot * tanh(zt).  

 

 
 

Figure 2. LSTM Deep Learning Network Schematic diagram - The upper (blue) 
horizontal line is the Z hidden state, with input zt-1 and hidden output zt. The 
lower horizontal line passes the output yt between consecutive units. The three 
vertical gates are: the (red) forget gate ft; the (green) input gate it with two 
parallel layers (σσσσ  and  tanh); the (violet) output gate ot. (Color online) 
 
 
A realistic LSTM test, keeping track of long-range attributes, 
takes a large source code and randomly concatenates it into a 
long file (e.g. Linux Kernel [9] about 6*106 characters). The 
LSTM network is trained to predict special source code 
symbols, as whitespace, quotation marks and brackets. To 
predict a close bracket, the model must be aware of a matching 
open bracket, appearing many time steps ago. LSTM performs 
much better than other learning models due to an additional 
state feature (hidden state Z) explained above, in contrast to the 
standard RNN single hidden state. Results can be improved 
with an attention mechanism [ 21] or bidirectional-LSTM [10]. 

V. DEEP SOFTWARE LEARNING IN PRACTICE 
The Deep Learning (DL) mechanism in the Xing Hu [20] 

work deals with sequential code, and Abstract Syntax Tree 
(AST) structure, translating sequence-to-sequence, code to 
comments. The Encoder/Decoder (both LSTMs) architecture 
uses one Encoder pass to traverse the AST, learning the code 
relevant to the comments. A second Encoder pass composes the 
gathered comment pieces into meaningful sentences. 

Rare tokens clutter a vocabulary with single instances. 
Practical projects exchange numerals/strings by generic tokens 
<NUM> and <STR>, and rare words by “unknowns” <UNK>.  

VI. DISCUSSION 
 
Today’s software and knowledge (DL) theories have two 

important characteristics: 1- they heavily involve linear algebra; 
2- the algebra is totally independent of concepts’ semantics. 

Remaining issues are: The algebraic software theory is up to 
now strictly linear, while Deep Learning involves non-linearity. 
Will there be a convergence also in this sense? The Laplacian 
matrix is central to the software theory, while not so prominent 
in Deep Learning; will it be important for Deep Learning too? 
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