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Abstract

Software metrics are usually used for quantification,
not giving the necessary support for decision making. To
increase their usefulness, it is necessary to give them
meaning through the definition of significant thresholds.
Despite its importance, the state of the art on threshold
derivation is mostly based on data-driven approaches. This
paper presents a systematic approach to define thresholds
for metrics in the absence of data and based on eliciting
knowledge from experts. The proposed approach is based
on identifying context factors that influence the thresh-
olds for a given metric and is supported by fuzzy logic
concepts to model the crisp value (i.e., collected data)
into a linguistic variable (i.e., interpreted information). We
present context factors elicited from three experts for the
metrics code coverage, static code analysis warnings count
and defect count. Further, we present cases on how to
implement the proposed approach. As a result, we conclude
that the approach is promising.

Keywords—Software metrics; Software thresholds; Fuzzy
logic.

I. Introduction

Despite their potential advantages, software metrics are
usually used only for quantification purposes, not giving
adequate support for decision-making [1]. For this purpose,
it is necessary to give meaning (i.e., semantics) to the
metrics through the definition of reference values (i.e.,
thresholds). Thresholds are values used to set ranges of
desirable and undesirable states and indicate anomalies.
The absence of thresholds for many software metrics is
one of the main reasons for them to not be effectively
used in the industry [4].

There are several solutions to calculate software met-
rics thresholds proposed in the literature [1], [18], [17],
[8], [4], [23], [15], [13], [14], [5]. We summarize their
characteristics and limitations in Section II. As far as our
knowledge, all the proposed solutions are data-driven and
focus on source code metrics. For instance, recently, two
empirical studies were published comparing the existing
data-driven thresholds models to predict faults on open
source software [2] and fault proneness [3]. Therefore,
if an organization needs to define thresholds for popular
management metrics such as team velocity, build status and
lead time [9], the literature is scarce in guiding them on
how to define representative thresholds for their context.
For this purpose, in practice, organizations use expert
knowledge to define thresholds using ad hoc processes. For
instance, for the metric code coverage, many development
groups require 85% coverage to achieve quality targets as
the status quo [20]. On the other hand, there are several
factors that might influence coverage target for a given
project, such as product complexity, project criticality, and
cost of evolution.

To complement the current state of the art on software
metrics threshold derivation, we present a systematic ap-
proach to define thresholds for metrics in the absence of
data and based on eliciting knowledge from experts. The
goal is to support managers when making decisions re-
garding the interpretation (i.e., semantics) of the collected
metrics by developing models that mimics the thought
process of humans when making decisions regarding the
thresholds.

The proposed approach is based on identifying context
factors that influence the thresholds for a given metric and
is supported by fuzzy logic concepts to model the crisp
value (i.e., collected data) into a linguistic variable (i.e.,
interpreted information). For instance, consider that the
metric code coverage is used to decide if enough tests
have been executed and, given that the defect count is



low enough, the product can be delivered to the customer.
The crisp value of code coverage lies in [0, 100]. So, for
instance, we could map the value 85 to the linguistic
variable OK, which means that, given this metric, the
product should be released. Conversely, we could map the
value 50, meaning that the product should not be released.

The research question that we address in this paper is:
How can we define thresholds for software metrics in

the absence of data and when the organization context
cannot be reduced to an experimental setup?

Our contributions include: (1) a systematic approach
for deriving software metrics thresholds in the absence
of data; (2) an empirical cyclic process to continuously
refine thresholds; and (3) context factors that influence
the definition of popular metrics such as code coverage,
static code analysis warnings count and defect count. Our
systematic approach is demonstrated through the definition
of thresholds for popular software metrics.

The remaining of the paper is organized as follows: in
Section II, we present works related to deriving thresholds
and discuss them in light of our approach, the proposed
process; in Section III, we present the proposed approach;
and in Section IV, we present our final remarks and future
work.

II. Related work

The effective use of software metrics is hampered by
the lack of significant thresholds [1]. In the literature,
few metrics have defined thresholds. Furthermore, many
researchers have proposed different approaches to define
them [1], [4], [5], [13], [15], [17], [18], [23].

Alves et al. [1] present a method that determines
threshold empirically from measurement data (i.e., bench-
marking). The method is based on statistical properties of
the metric such as scale and distribution. To evaluate their
approach, they collected data from 100 object-oriented
software systems to calculate thresholds, which were suc-
cessfully used to assist on software analysis, benchmarking
and certification. The main risk of such a solution is to use
thresholds to assist decision-making that were calculated
for a different context.

In the works of Oliveira et al. [15], [13], the con-
cept of relative thresholds is proposed as well as a tool
for extracting these thresholds. Their approach handles
the heavy-tailored distribution of source code metrics by
complementing absolute thresholds with a percentage of
software code entities that must follow it. The technique is
validated with an industrial case study. As Alves et al. [1],
its limitation is that the calculated threshold and percentage
might be dependent on the context.

Ferreira et al. [4] used the EasyFit tool to define the
probability distribution with the best fit for the distribution

for a given metric. Therefore, if the defined probabil-
ity distribution had a representative mean value, it was
used as the reference value. Otherwise, the distribution is
quantified as bad, good or moderate. By analyzing data
of forty open source projects, they defined the thresholds
for six metrics: LCOM (Lack of Cohesion of Methods),
DIT (Depth in Tree), COF (Coupling Factor), afferent
couplings, number of public methods, and number of
public fields.

In Foucault et al. [5], a solution based on statistical
methods was presented. This approach is based on (i)
double sampling [19] to randomly selects projects sam-
ples, and (ii) bootstrap to estimate the thresholds based
on quartiles. Despite the potential of this approach, the
validation process was limited to a test to identify the best
configuration for the approach itself since, according to the
authors, the two statistical methods are widely used.

In Shatnawi [17], a solution based on logarithmic
transformation was presented. In this approach, initially,
the data is transformed using the natural log, leaving
the symmetric data thus closer to a normal distribution.
Afterward, a temporary reference value (T ′) is collected
using the mean (M ) and standard deviation (SD) so that
T ′ = M + SD or T ′ = M − SD. Finally, the T ′ is
converted to the original distribution by using the exponent
function of T ′, generating the final reference value.

All the presented studies are data-driven and most of
them focus on source code metrics. The motivation of
our work is to define a systematic process that guides
engineers in defining metrics thresholds in the absence of
data. In this context, Marinescu [10] presents a guideline
to define semantical filtering to support the analysis of
source code metrics in the context of detecting design flaws
based on the derivation of thresholds. They define two
types of thresholds-related filters: marginal and interval.
For a marginal filter, it is necessary to define the threshold
value and direction, which specifies whether the threshold
value is an upper or lower bound. The thresholds are
described as design rules or heuristics (e.g., a class should
not be coupled with more than 6 other classes). Interval
filters are defined as an interval such as “between 20 and
30”. Even though Marinescu [10] describes the use of
thresholds as a key component on the proposed solution,
he does not present a systematic approach to define it. As
shown in Section III, we use the classification of thresholds
presented in Marinescu [10] and complement their work
by proposing a systematic approach to define them.

III. Threshold definition strategy

In this section, we present the proposed approach with
running examples. The examples are a result of a pi-
lot study executed at a Brazilian software development



company in which we collected data from 3 project
managers, all of them with over 5 years of experience
managing projects with support of software metrics. The
most important decision they had was defining if a version
of the product had enough quality to be released. The
three main metrics they used for this purpose were code
coverage, static code analysis warnings count and defect
count. Code coverage was used to indicate if enough tests
were performed, which gave them confidence that few
defects would be detected only in operation. Static code
analysis warnings count was used as a measure of the
internal quality of the product. The defect count, which
was only representative if code coverage was high enough,
gave a snapshot of the current quality of the product. As a
status quo on the company, all projects had a lower bound
threshold of 80% for code coverage, 10 for static code
analysis warnings count, and 5 for defect count.

The main goal of the proposed approach is to provide
software engineers with a systematic mechanism to enable
them to work with software metrics in a more abstract
level through the definition of thresholds in the absence of
historical data. Since the goal of using metrics is to support
decision-making, this is closer to the real intention in using
metrics. An assumption of the proposed approach is that
the metrics are valid for their intended purposes [12].

The proposed expert-driven threshold definition strategy
is cyclic and composed of three main steps, namely: (i)
thresholds characterization, (ii) thresholds modeling, and
(iii) thresholds evaluation. An overview of the approach is
shown in Figure 1. Our approach can be used to elicit
data from a single or multiple experts. There are two
main roles: threshold designer and domain experts. The
threshold designer is responsible for leading the planning
and execution of the threshold definition process by the
elicitation of knowledge from the domain experts. The
domain experts are responsible for actively participating
in the process of defining the thresholds models (steps i
and ii) and evaluating the models (steps iii). The domain
experts might include the project manager, development
lead, test lead, product manager or quality assurance man-
ager.

In what follows, we present details regarding each of
the steps of the proposed approach.

A. Step i: thresholds characterization

On the first (i) step, the goal is to characterize the
thresholds through the identification of the relevant con-
text factors and the type of the threshold, as defined in
Marinescu [10]. First, it is necessary to define the decision
scale to be used.

Definition 1 (Metric semantics scale) A metrics se-
mantic scale is the scale to be used to represent the
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Fig. 1. Proposed approach overview.

semantics of a given metric.
The possible types of scale are Boolean and ordinal. For

instance, one may use a Boolean scale for code coverage
with the values: OK and NOT OK. Another possibility is
to use an ordinal scale: Bad, Moderate and Good.

Afterwards, the type of threshold must be defined:
marginal or interval. If a marginal threshold is se-
lected, there are two possible types: HigherThan(Θ) and
LowerThan(Θ), where Θ is the reference value. If an
interval threshold is selected, by definition is of the type
Between(α,β), which is equivalent to HigherThan(α) ∧
LowerThan(β), where α is the lower bound and β is the
upper bound.

Next, the context factors must be identified. Context
factors are attributes from key entities of the process that
might influence the threshold. There are two types of
context factors: diminishing factors and enhancing factors.
The diminishing factors influence the thresholds values to
be lower, and the enhancing factors influence the thresh-
olds values to be higher. For instance, for code coverage
metric, we elicited the following factors from the experts:
product complexity and project criticality as enhancing
factors, while team experience and impact on evolution
cost as diminishing factors. For static analysis warnings
count and defect count, project criticality is the enhancing
factor. Finally, the factors are ranked in order of relative
magnitude of their influence on the thresholds’ values.

It is important to notice that the context factors are fac-
tors that influence the semantics of the metrics and not the
value itself. For instance, one might reason that the factor
“volatile requirements” influences the threshold of “defect



count”, because the more volatile are the requirements,
less time will be available for testing and, consequently,
lower will be the “defect count” in the testing phase (not
necessarily, the “defect leakage”). On the other hand, even
though this might be true, the reference value for the given
metric should not be lower, which discards this factor.

In the case that multiple domain experts are involved
in the process, the threshold designer must execute the
described tasks with each one individually to avoid bias.
Afterwards, with all the domain experts together, he
presents the identified possibilities of threshold types and
context factors and executes a meeting like the Planning
Poker [7], in which each expert holds two cards: Agree and
Disagree. The threshold designer mediates the meeting by
enabling a structured discussion regarding a consensus of
the threshold types and context factors to be considered
in the models. As in a Planning Poker meeting, candidate
solutions must be individually voted by experts, by turning
their card simultaneously, until a consensus is reached by
all the experts.

B. Step ii: thresholds modeling

After defining the type of threshold and rank the context
factors, the experts will have a better understanding regard-
ing the semantics of the given metrics. Since our approach
is based on concepts of fuzzy logic, the thresholds are
modeled as a linguistic variable, which is “a variable whose
values are words or sentences in a natural or artificial
language” [22]. For this purpose, we map the metric
semantic scales defined in step i as the term set to be used
for the linguistic variable. So, for instance, we could have
the linguistic variable code coverage (c) composed of the
terms {OK, Not OK}, in the case of a Boolean scale.

The main goal of this step is to fuzzify the crisp values
of a metric into fuzzy linguistic terms. For this purpose, it
is necessary to define the membership functions. There are
several types of membership functions that can be used.
In Figure 2, we show six popular types of functions.

A membership function must be defined for each term
in the given linguistic variable. So, for a metric with a
Boolean scale, two membership functions must be defined.

The main challenge is to define the parameters for
the membership functions. For this purpose, given the
type of function and the magnitude of the impact of the
context factors identified in step i, the threshold designer
might show the experts possible shapes for the membership
functions to guide them. For instance, if the threshold is
marginal, probably the experts could choose a z-shape,
sigmoid, or s-shape as a reference. If the threshold is
interval, the experts could choose triangular, trapezoidal or
Gaussian. For instance, for the code coverage, we could
use the Gaussian shape.

Fig. 2. Six types of fuzzy membership func-
tions: (A) triangular, (B) z-shape, (C) trape-
zoidal, (D) s-shape, (E) sigmoid and (F) Gaus-
sian, [6].

TABLE I. “What if” scenarios for Code coverage
with a verbal scale

Code coverage crisp value Not OK OK
10 Certain Impossible
20 Certain Impossible
30 Certain Impossible
40 Probable Improbable
50 Expected Uncertain
60 Fifty-fifty Fifty-fifty
70 Uncertain Expected
80 Improbable Probable
90 Uncertain Expected

100 Probable Improbable

Afterwards, the experts should use their experience
from past projects to define “what-if” scenarios to guide
them in configuring the functions, in which for a set of
values, they would indicate the probability of it being
mapped to each of the possible terms. For this purpose,
instead of directly defining the probabilities, they could
use a verbal scale such as the one presented in Renooij
and Witteman [16]. For instance, for code coverage, the
scenarios shown in Table I could be used:

Afterwards, the verbal scale is converted to a numer-
ical scale following the rules presented in Renooij and
Witteman [16]. As a result, we have the values presented
in TableII.

Given this, an algorithm can be used to fit the data
elicited from the experts for each linguistic term into
the appropriate distribution. For instance, in Figure 3, we
present a fit for the membership function for the term Not
OK using the Akima Cubic Spline. Finally, the expert can
analyze visually the resulting distribution and judge if the
reflects his intuition (i.e., face validity). Otherwise, they
must reflect on the inconsistencies and the step should
restart.



TABLE II. “What if” scenarios for Code coverage
with a numerical scale

Code coverage crisp value Not OK OK
10 100 0
20 100 0
30 100 0
40 85 15
50 75 25
60 50 50
70 25 75
80 15 85
90 25 75

100 85 15

Fig. 3. Curve fit for Code Coverage’s linguistic
term Not OK.

As a rule of thumb, it is preferable to set thresholds
that are more conservative, since it is better to get more
false positive results, rather than missing an important issue
due to a very strict threshold value. The threshold can be
refined during the empirical cycle which is executed on
step iii.

As in step ii, this step should be, initially, executed
individually with each expert. Afterwards, consensus must
be achieved between all the experts in a Planning Poker-
style meeting.

C. Step iii: thresholds evaluation

At this point, the thresholds models are defined, but as
in other expert-driven processes [11], [21] it is necessary to
have an empirical cycle in which decisions based on the
thresholds are analyzed to evaluate the models. For this
purpose, the threshold designer should schedule meetings
according to the project’s context. For agile projects with
short-term releases, a meeting could be held every iteration
or two. During the meeting, along with the threshold
designers, the domain experts that participated on steps
i and ii should participate to discuss the results of using
the models.

Assuming that the metrics are valid for their intended
purposes, if the model’s results are not consistent with the
reality, there are three possible outcomes: (1) exception
case, (2) scope limitation, and (3) model needs refinement.
For the first outcome, it is possible that, for instance,

the developed model indicates with 90% that the product
should be released, but the release is a failure. This might
occur due to a rare case for the given organization, which
might be the case of an unexpected success of the product
causing overload on the server. In this case, the experts
could decide that the model is reliable, and the bad decision
was caused by the uncertainty inherent in the process.

For the second possible outcome, a bad decision of
releasing a product might have been caused by a failure
of requirements elicitation such as missing an important
non-functional requirement (e.g., number of requests per
second). For this case, the experts can assume that the
decisions based on the model assume that the product’s
requirements are complete and that this case is out of the
scope of the model.

For the third case, the experts might decide that the
model needs refinement, because they failed to, for in-
stance, consider an important context factor or a better
suited membership function. Independent of the outcome,
the execution of step iii should be considered a mandatory
activity in the measurement program.

IV. Conclusions

In this paper, we presented a systematic process to de-
fine thresholds for metrics in the absence of data and based
on eliciting knowledge from experts. The proposed ap-
proach is based on identifying context factors that influence
the thresholds for a given metric and is supported by fuzzy
logic concepts to model the crisp value (i.e., collected data)
into a linguistic variable (i.e., interpreted information). It
is cyclic and composed of three main steps, namely: (i)
thresholds characterization, (ii) thresholds modeling, and
(iii) thresholds evaluation.

Our contributions are threefold: (1) a systematic ap-
proach for deriving software metrics thresholds in the
absence of data; (2) an empirical cyclic process to con-
tinuously refine thresholds; and (3) context factors that
influence the definition of popular metrics such as code
coverage, static code analysis warnings count and defect
count.

For further research, we will expand the proposed
approach to handle the case of having multiple metrics
used for a single decision. Furthermore, we will execute a
case study to empirically evaluate the proposed approach
in terms of practical utility.
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