
FCEP: A Fast Concolic Execution for Reaching
Software Patches

Meng Fan1,2, *Wenzhi Wang1,2, Aimin Yu1, Dan Meng1

1Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences

Beijing, China
{fanmeng,wangwenzhi,yuaimin,mengdan}@iie.ac.cn

* Corresponding Author: wangwenzhi@iie.ac.cn

Abstract—Software updates that bring new features to the
users or that fix old errors can easily introduce new errors, which
makes it necessary for users to repeatedly consider whether to
update the software to the latest version. Therefore, the security
testing for updated software is indispensable before its releasing.
State-of-the-art increasing number of researchers have been de-
voting to develop new techniques that can automatically generate
high-coverage test suites and detect software errors introduced by
patches. In this paper, we proposed a technique based on concolic
execution to ensure the correctness and reliability of a patch.
Our method generates test inputs to cover the changed lines
of the patch and the relevant function by using a target-based
search strategy which combines the selector based on the mapped
address and the selector based on the priority. A prototype system
called FCEP was implemented and evaluated with 5 C-programs.
The experimental results demonstrated that our method reaches
the new code introduced by patches quickly and achieves a high
coverage.

Index Terms—concolic execution, patch testing, Search strate-
gies

I. INTRODUCTION

The extensibility of software is both a blessing and a
curse. On the one hand, one can easily add new functionality
or patches to fix incorrect behavior. On the other hand,
any software changes may introduce unexpected errors and
security vulnerabilities, which are disasters for users and make
users hesitate to update their software. As matter of fact,
many people prefer to not upgrade their software to the latest
version [1], [2], but rely on earlier versions which also usually
contain serious errors and reduced functionality. Therefore,
it is very necessary to perform a comprehensive test of the
updated software. However, software testing is expensive and
time-consuming as it involves writing a large numbers of
manual test suites to validate various paths. This is a tedious
process that requires an immense amount of work and a good
understanding of the tested system. Some recent testing effort
focuses on code that has changed from one version to the next
[3]–[7].

Patches, as a typical form of software changes, ideally,
should be comprehensively tested, but this level of testing is
still far from being achieved in practice [8]. State-of-the-art
some studies [6], [9], [10] test the patches based on concolic

DOI reference number: 10.18293/SEKE2021-018.

execution [11], [12], which is a program analysis technique
that provides the ability to generate inputs to form high-
coverage test suites. Concolic execution has proved to be a
good choice to comprehensively test real software [13], [14],
with its ability to systematically explore different program
paths. Most of the work on concolic execution is focused on
whole program tests, in which all parts of the program are
treated equally. However, the number of execution paths in
a program is usually exponential in the number of branches,
exploring all possible execution paths is infeasible. That is,
concolic execution faces challenges of path explosions [11],
[15]. An efficient search strategy of concolic execution is very
important to overcome the path explosions challenge in testing
patches. Despite recent progress, the studies still far from
reaching the goal of fast and automatically generating test
cases that contain code changes in the actual program.

In this paper, we have developed an automated testing
method called FCEP based on concolic execution to ensure the
correctness and reliability of patches, which takes advantages
of both static and dynamic analysis to generate test inputs
to cover the changed lines in patches. Instead of exploring
all branches in the candidate list, FCEP searches priorities
branches according to the distance between the uncovered
statements and the targets (e.g. lines in patch). FCEP combines
the exploration of the patch with the exploration of the
function where the patch is located and dynamically adjusts
the search target to conduct a more comprehensive test of the
patch-related functions.

This paper mainly makes following contributions:
• FCEP ensures the reliability and security of software

updates by using a target-based search strategy to test the
patch and the relevance function quickly, which combines
the selector based on the mapped address and the selector
based on the priority, to test the patch and its relevant
function quickly.

• The selector based on the mapped address reaches the
patch quickly by calculating the shortest distance between
candidate states and targets (e.g. lines in patch). The
selector based on the priority comprehensively tests the
relevant function of the patch as soon as possible by
assigning priority to the related states.

• FCEP reduces the false negative by comprehensively

testing the relevant function of patches and modifying
the CFG (Control Flow Graph) in real-time based on
the results of concolic execution. For example, guiding
the path search in dynamic analysis only according to
the results of static analysis cannot cover relevant paths
containing indirect jumps.

• We performed experiments on 5 C-programs. FCEP cov-
ered more than 90% of the patch lines and found 34 out of
39 bugs in 5 tested software in the least amount of time.
The experiments showed that FCEP can cover more lines
of code in patches, and can quickly find bugs introduced
by patches.

The rest of the paper is organized as follows: Section II
introduces concolic execution and describes several representa-
tive search strategies found in the literature; Section III details
our approach; Section IV shows the evaluation plan and the
experimental results; Section V discusses related work, and
Section VI concludes.

II. BACKGROUND

a) Concolic Execution: Concolic execution is an auto-
matic test generation techniques based on symbolic execution,
a program analysis technique that can systematically explore
paths through a program. The key idea behind symbolic
execution is to run the program with symbolic values instead
of concrete ones. Then, whenever an encountered branch is
directly or indirectly dependent on the symbolic input, execu-
tion determines the feasibility of both sides of the branch, and
creates two new independent symbolic states which are added
to a worklist to follow each feasible side separately. Finally,
whenever a path terminates or hits an error, the constraints on
that path are solved to produce a concrete input that exercises
the path. Since the number of execution paths in a program is
usually exponential in the number of branches, exploring all
possible execution paths is infeasible. To address this problem,
concolic execution relies on the search heuristic to steers
concolic execution in a way to maximize code coverage in
a given limited time budget [11].

b) Search strategies: Since enumerating all paths of a
program can be very expensive, in many software engineering
projects related to testing and debugging, the search is pri-
oritized by looking at the most promising paths first. Depth-
first search (DFS) and breadth-first search (BFS) are the most
common strategies. DFS expands a path as much as possible
before backtracking to the deepest unexplored branch, while
BFS expands all paths in parallel. DFS is often adopted
when memory usage is at a premium. The breadth-first search
(BFS) strategy traverses the execution tree according to a
BFS order. The BFS strategy prefers branches that appear
early in the execution paths, therefore generating new input
vectors is easier because a smaller number of constraints will
be involved for those branches. Hence, in spite of the higher
memory pressure and of the long time required to complete
the exploration of specific paths, some tools resort to BFS. In
theory, both DFS and BFS strategies can cover all execution
paths in the execution tree. However, as described in the

previous section, real world programs have a nontrivial number
of execution paths and neither strategy scales to even medium-
sized programs [11], [12], [16]. Another popular strategy is
random path selection [14], which has been refined in several
variants.

III. SYSTEM DESIGN AND IMPLIMENTATION

In this section, we first show an overview of FCEP. We
then explain the address mapping technology an the strategy
of path selection.

A. Overview

Fig. 1 demonstrates an overview of FCEP. The inputs of our
technique are: 1) the new version of program and the patch,
and 2) the inputs selected from the test suite. The output is
a set of inputs that trigger crash bugs or cover the code of
patch.

On the one hand, FCEP uses the disassembler to generate
the CFG and the CG (Call Graph) of the new version program.
FCEP marks the position in the CFG for each target which is a
line of the patch, and generates a list of function address ranges
based on the CG. On the other hand, the executor creates a new
state when it encounters a branch. And at the same time, the
address finder searches the address of the next instruction in
the generated CFG for both states. After mapping the new state
to the address of the next instruction, FCEP puts the newly
generated state into the candidate pool to wait for the next
time selecting of the selector to complete concolic execution.

When the path entered with the initial value has executed,
FCEP selects a new execution state by adopting a target-
based search strategy in the candidate pool to perform concolic
execution. Concolic exploration that focuses on target-based
search provides inputs for a crashing path. Our search strategy
infers the paths which are not covered by patches to avoid
exploring large numbers of paths, and to direct the search
towards the paths covered by patch.

Once there is a state that triggers the function where the
patch is located, the target-based search strategy chooses the
new state which falls into the state of the target function
as much as possible. This is mainly because for the testing
of patch, we believe that only covering the line of patch
is far from meeting the testing requirement of ensuring the
security of the patch. At the same time, FCEP uses the concolic
execution to correct the paths which through indirect jumps
or the function pointer calls in the statically generated CFG.
Once indirect jumps or function pointer calls are encountered
in the tested paths, FCEP will splice the related indirect jump
blocks to find more paths.

B. Address Mapping

a) Generate CFG&CG: The first step of our analysis is
determining the differences between the new program version
and its previous version, (i.e. the patch). Theoretically, each
line in the patch is a potential target to our FCEP. Whereas,
many lines can be overlooked in practice because the source
code contains many non-executable lines (e.g., declarations,

Fig. 1. A high-level overview of our execution.

comments, blank lines, or lines not compiled into the ex-
ecutable). The patch is divided into several sets according
to the functions they belong to, and each set is processed
separately in the subsequent steps. FCEP selects a line of the
patch in each set as a core target, and this line represents the
core modification of the function as much as possible. FCEP
statically analyzed the new version program using IDA Pro
toolset to establish a control-flow graph (CFG) and a call graph
(CG). FCEP uses a core target to mark possible execution
paths in CFG, and marks the corresponding function call paths
in CG. Note that considering that indirect jumps and pointers
may cause inaccuracy in static analysis, FCEP dynamically
corrects the CFG and CG in real-time in subsequent steps.

b) Build mapping: Concolic Executor uses the initial in-
put to test the new version program. When the path encounters
a branch, executor generates a new path state and notifies the
address finder to find the address of the next instruction for
the new state in the statically generated CFG. FCEP maps the
new state to this instruction address and puts the new state
into the candidate pool so that it can be used in subsequent
path selection. The program to be tested must be translated
into intermediate language to interpret and execute. When a
branch is encountered during the concolic execution, it adds
the newly generated branch state to the execution tree. FCEP
constructs the execution tree following the same method in
static analysis, putting the true branches in the branch state
in the left sub-tree and the false branches in the right sub-
tree. As the true branches and the false branches of the state
have been adjusted to be consistent with the CFG generated
in static analysis while creating the new state, the address of
next instruction corresponding to each branch can be queried
quickly.

c) Dynamically modify CFG&CG: What we need to pay
attention to is that because the static analysis cannot accurately
infer indirect jumps or the function pointer calls, there is a
false negative when using static analysis methods to guide
the concolic execution. If FCEP encounters indirect jumps
or the function pointer calls during concolic execution, it
dynamically modifies the CFG and CG to obtain more accurate
information of path.

C. The Target-based Search Strategy

a) Selector based on the mapped address: New states are
generated where the conditional branch is located by executor,
and FCEP put them into a candidate pool for subsequent
selecting. The selector selects a new state from the candidate
pool following a search strategy to continue the concolic
execution when the execution of a path is finished. Since
the search strategy usually affects the coverage of concolic
execution, careful selection of the algorithm can help to
achieve the desired goal.

Before the start of the test, FCEP has obtained the address
range of each function from the CG, and has selected a path
marked in the CFG which can execution from the function
main to the selected core target. When the execution of the
initial state is finished, FCEP determines whether the state
newly generated hits the target function by the address of the
next instruction, in other words, whether the address is within
the range of the target function. If it hits, FCEP selects the
path closest to the core target to continue running. If there is
no state hits the target function, FCEP looks for the caller of
the target function and confirm whether there is a state hits
the caller. By analogy, FCEP selects the closest one among
states which hit the caller to continue execution. Since it has
been confirmed whether the new state previously generated
hits the target function or its callers, FCEP gives priority to
the new states derived from the current running state to confirm
whether they fall into the target function.

As we all know, code addresses of a program are not com-
pletely continuous, but they are continuous in a same function
of a program. Therefore, when selecting the closest state,
FCEP calculates distance between the new state and the target
using the formula Di = |statei addr − target addr|. For
the target function, the target is a line of patches determined
before running the program, and for other functions in the
call chain of the target function, the target is the line of the
function call.

b) Selector based on the priority: When a new branch
state is generated, FCEP determines whether its next instruc-
tion address hits the target function (that is, the function where
the patch is located). If it hits, FCEP gives priority to the state.
When a path hits the core target code (that is, one line of the

Fig. 2. An example of our search strategy.

patch), FCEP continues to select the state that hits the target
function to perform the concolic execution until there is no
state hits the target function or the expected time runs out. In
this step, FCEP only needs to execute the state with priority
until all the states with priority have been executed.

After that, it continues to perform all the above steps for
the next core target code. The purpose of running the states
that hit target function is to test as much code near the patch
as possible. Because for the security testing of patches, only
paying attention to the path covered by the patch code itself
is often unable to meet the requirements. The code near the
patch is often associated with the patch, so it is necessary to
test the function where the patch is located.

D. An Example of Search Strategy

Fig. 2 is an example of the search strategy, and it is a
combination of CFG and CG. Assume that the address range
of each function obtained from CG is FunA(0x00, 0x2F),
FunB(0x40, 0x6F) and FunC(0xA0, 0xAF). The core tar-
get selected in the target function FunC is located at node
n12, and a path sequence selected in the function call chain
passing through the core target is {n0, n4, n5, n10, n12}.
FCEP determines the sequence of the function call node and
its address as {n5 (0x12)}. The execution tree is empty when
the concolic execution starts. Suppose state 0 is the initial
state and it corresponds to the sequence of {n0, n1, n2, n7,
n8} when FCEP runs the program with the initial inputs.
At the same time, this state creates three new branch states
{state 1, state 2, state 3} in the concolic execution. FCEP
queries the address of the next instruction for the three new
states in the CFG (that is, the address of the next block in
the CFG) and puts them into the candidate pool. Assuming
that the address of the next instruction of state 1 is 0x80,
the address of state 2 is 0x06, and the address of state 3 is
0x4F .

When the state state0 is executed, the selector selects a
new state from the candidate pool. FCEP first determines
whether the addresses of the next instruction in the three

newly generated states hit the target function FunC. If there are
some states in the range of the target function, FCEP selects
a state closer to the core target node to continue the concolic
execution. If there is no such state, the address funder queries
whether there are states in the range of the caller function(e.g.
the function FuncA). As shown in the Fig. 2, the three states
do not hit the target function FunC, but there are two states
{state 1, state 2} hit the upper function of FunC, that is,
FuncA. The node n5(0x12) is the point that the FuncA calls
the FunC. FCEP calculates all the distances between the
states and the address of node n5, that is, D1 = 4, D2 = 6,
so it chooses the state 1 which has a smaller distance as the
next execution state.

Assuming the execution path of the state1 is {n0, n4, n5,
n10, n11}. It generates two new states {state 4, state 5},
and their addresses are 0x1F and 0xAE. FCEP gives priority
to judge whether the newly generated states hit the target func-
tion and finds the state 5 has located in the target function,
so this state is selected as the next execution state. After that,
FCEP continues to select the state derived from state 5 in the
target function to complete the concolic execution.

E. Implementation

We implemented the proposed FCEP as a plugin of S2E
[17] which is a general concolic execution framework. This
plugin is mainly composed of three custom modules:

a) Automatic constructing CFG&CG: This module
builds CFG and CG for the tested program and marks the
selected target and path.

b) Address finder and mapping: This module finds the
address of the next instruction in the CFG for the new state
when the executor creates a branch state, and puts the mapped
address into the candidate pool. When indirect jumps or
function pointer calls is executed, this module dynamically
corrects CFG and CG.

c) The target-based selector: This module uses the
target-based search strategy to select a new state to continue
concolic execution after a path is finished. This module
combines the exploration of the patch with the exploration of
the function where the patch is located to dynamically adjust
the search target.

IV. EVALUATION

We evaluated FCEP experimentally with real-world appli-
cation binaries, answering the following research question:

• Effectiveness of generated heuristics: Can FCEP generate
effective search heuristics? What is the coverage for
patches?

• Bug detecting ability: Does FCEP generate effective
search heuristics and how faster FCEP detect target bugs
than the current concolic execution techniques?

We conducted all of the experiments on a computer running
Ubuntu 18.04 64-bit, equipped with a 3.4 GHz Intel Core i7-
6700 CPU and 24 GB of RAM. We evaluated FCEP with
software patches from GNU Coreutils application suite. We
only tested 8 programs that contain errors in the Coreutils

TABLE I
INFORMATION OF PATCHES AND BUGS

Targets Lines Func. Target
bugs

Patches Patches
(LoC) (Func)

Coreutils-6.10 4570 93 8 34 8
Grep-2.0 5956 132 6 53 6

Make-3.75 28715 555 10 109 10
Sed-1.17 4085 73 3 71 2
Vim-5.0 66209 1749 12 262 16

Sum 109535 2602 39 529 42
Average 21907 520 7.8 105.8 8.4

TABLE II
LINE COVERAGE FOR PATCHES OF EACH TARGET

Targets LoC of Patch S2E KATCH FCEP
related func. Line cov. Line cov. Line cov.

Coreutils 234 44.80% 69.71% 88.90%
Grep 353 41.61% 58.15% 94.67%
Make 909 53.27% 63.49% 89.07%
Sed 171 29.89% 55.36% 87.63%
Vim 1262 48.52% 70.04% 91.03%

Average 505.8 43.62% 63.35% 90.26%

test set, including: paste, pr, tac, mkdir, mkfifo, mknod, ptx
and seq. Furthermore, we collected real-world bugs (shown in
TABLE I) from SIR [18] C programs which were fixed by the
original developers from Dec 1996 to July 2018. TABLE I
shows the detail of the 8 tools in Coreutils and the 4 software
(Grep, Make, Sed and Vim).

A. Effectiveness

In order to determine the effectiveness of heuristics, we ran
S2E, KATCH [6] and FCEP with the above test software and
patches for 100 hours respectively. The results are displayed
in TABLE II. The second column of the table is the total
number of lines of the function where the patches are located.
FCEP achieved an average line coverage of 90.26%, which is
1.42 (90.26/63.35) times larger than that of KATCH and 2.07
(90.26/43.62) times larger than that of S2E. Because FCEP
not only tests the line of the patch itself, it also tests other
codes in the function where the patches are located, so its
coverage is much higher than other testing tools. Experiment
shows that in the same time, FCEP can concentrate resources
on comprehensive testing where the patches are located.

As a matter of fact, some patches are macro-defined code
blocks which were not compiled in our compiled environment,
so that some patches were not covered. Dynamic symbol exe-
cution for a macro-defined code blocks is a common problem
for they may not be compiled. Some patches are referenced
header files and newly defined variables. For newly defined
variables, the location where the variable is referenced can be
tested. New variable definitions and new header files do not
cause problems because they are reflected in the code which is
really changed and are tested by that code. In our experiments,
the macro-defined code described above is excluded whereas
the remained patches were covered.

TABLE III
TARGET BUGS DETECTED BY AND THE EXECUTION TIME

Targets Bugs T(h) S2E KATCH FCEP* FCEP
Coreutils 8 94 3 6 7 8

Grep 6 92 2 3 5 5
Make 10 126 2 4 5 8
Sed 3 62 2 2 3 3
Vim 12 202 3 6 9 10
Sum 39 576 12 21 29 34

Average # # 48 27.43 19.86 16.94

B. Bug Detecting Ability

Coreutils-6.10 contains 8 vulnerabilities (paste, pr, tac,
mkdir, mkfifo, mknod, ptx and seq) and there are 6, 10,
3, and 12 bugs in Grep, Make, Sed, and Vim, respectively.
TABLE III summarize the number of detected bugs and the
time spending for the three methods. The third column in the
table is the running time of each program. In particular, the
sixth column of the table (FCEP*) lists the data obtained when
the target patches is covered, and does not include the data of
a comprehensive search for the function where the patch is
located.

For a same software, FCEP successfully detected more bugs
than the other two. KATCH found 21, S2E found only 12,
whereas FCEP detected 34 over 39 bugs in total, showing
much higher bug detect rate for patches. Notably, some bugs
are not crash errors so that platform is difficult to detect these
bugs without adding assertions to the code. So FCEP still
missed 5 errors. FCEP found 34 bugs in 576 hours, while
KATCH took 576 hours to find 21 bugs and S2E found 12
bugs. The time period required for FCEP to detect a bug is
16.94 (576/43) on average, whereas those for KATCH and
S2E are 27.43 (576/21) and 48 (576/12) respectively. FCEP*,
which only tests the line where the patch is located and does
not fully test the corresponding function, the time for finding
each bug is 19.86(576/29).

Compared with S2E, FCEP finds more bugs in the same
time. This is because it can reach the code block where the
patch is located more quickly and concentrate resources to
test the location of the target to reduce the exploration of
redundant paths. Compared with KATCH, FCEP can correct
the CFG obtained by static analysis in real time to detect
the corresponding paths which through indirect jumps or the
function pointer calls. Compared with FCEP*, which only
detects the patch code line, FCEP can find more bugs in the
same time because it can perform a more comprehensive test
on the function where the patch is located.

V. RELATED WORK

In recent years, there has been a lot of research on bug
search in programs based on patches, but the technical meth-
ods used are also different. SPAIN [19] is a patch analysis
framework to automatically learn the security patch patterns
and vulnerability patterns, and identify them from the program
binary executables. But SPAIN focus on patches in which only

one function is modified for one patch, but do not support
patches where multiple functions are changed for one patch.

Based on derived operation semantic and constraint formula
from patched differences, PVDF [20] computes the semantic
of patches for privilege elevation vulnerabilities. This work is
similar to SPAIN, but it assumes the availability of patches,
and only focuses on one particular vulnerability type. Dif-
ferently, SPAIN attempts to summarize patterns for different
vulnerability types, and only requires the binary programs but
not the patches.

Shadow symbolic execution [10] is a novel technique for
generating inputs that trigger the new behaviors introduced by
software patches. However, Shadow is not fully automatic,
while many of the annotations added could be automated,
manual assistance might still be needed.

Several heuristic-based approaches have been proposed to
guide an execution toward a specific branch. KATCH [6] is a
technique for patch testing that combines symbolic execution
with several novel heuristics based on program analysis that
effectively exploit the program structure and existing program
inputs. Compared with manual testing, despite the increase in
coverage and the bugs found, KATCH was still unable to cover
most of the targets. Because it does not handle with the paths
which through indirect jumps or function pointer calls.

VI. CONCLUSION

Software updates are easy to introduce bugs, so a full test of
the software patch is indispensable, but extremely expensive
and time costing. In this paper, we develop a method called
FCEP to ensure the reliability and security of software updates
by using a target-based search strategy to test the patch and the
relevance function quickly, which search strategy combines the
selector based on the mapped address and the selector based
on the priority. In addition, FCEP reduces the false negative
by comprehensively testing the relevant function of the patch
and modifying the CFG in real-time based on the results of
concolic execution.

Experiments initially show that FCEP can lead to significant
improvements in reducing the number of path to explore and
the time-cost to reach the patch-related code. So it can exclude
uninteresting parts of code during analysis and focuses on
those paths most relevant to the patches. At present, FCEP
can only solve part of the problems of indirect jumps and
function pointer calls. In the future, we will further study the
automatic identification of them.

ACKNOWLEDGMENT

This work is supported by the strategic Priority Re-
search Program of Chinese Academy of Sciences, Grant
No.XDC02010400.

REFERENCES

[1] Zhongxian Gu, Earl T Barr, David J Hamilton, and Zhendong Su. 2010.
“Has the bug really been fixed?” In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, Vol. 1. IEEE, 55–64.

[2] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and
Lakshmi Bairavasundaram. 2011. “How do fixes become bugs?” In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. ACM,
26–36.

[3] Domagoj Babi´c, Lorenzo Martignoni, Stephen McCamant, and Dawn
Song. 2011. “Statically-directed dynamic automated test generation,” In
Proceedings of the 2011, International Symposium on Software Testing
and Analysis. ACM, 12–22.

[4] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and Michael Hicks.
2011. “Directed symbolic execution,” In International Static Analysis
Symposium. Springer, 95–111.

[5] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid.
2011. “Directed incremental symbolic execution,” In Acm Sigplan
Notices, Vol. 46. ACM, 504–515.

[6] Paul Dan Marinescu and Cristian Cadar. 2013. “KATCH: high-coverage
testing of software patches,” In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering. ACM, 235–245.

[7] Kunal Taneja, Tao Xie, Nikolai Tillmann, and Jonathan De Halleux.
2011. “eXpress: guided path exploration for efficient regression test
generation,” In Proceedings of the 2011 International Symposium on
Software Testing and Analysis. ACM, 1–11.

[8] Paul Marinescu, Petr Hosek, and Cristian Cadar. 2014. “Covrig: A
framework for the analysis of code, test, and coverage evolution in
real software,” In Proceedings of the 2014 International Symposium on
Software Testing and Analysis. ACM, 93–104.

[9] David A. Ramos and Dawson R. Engler. “Under-constrained symbolic
execution: Correctness checking for real code.” In Proceedings of the
24th USENIX Conference on Security Symposium (SEC’15). USENIX
Association, pp. 49–64, 2015.

[10] Tomasz Kuchta, Hristina Palikareva, and Cristian Cadar. 2018. “Shadow
symbolic execution for testing software patches,” ACM Transactions on
Software Engineering and Methodology (TOSEM) 27, 3 (2018), 10.

[11] Cristian Cadar and Koushik Sen. 2013. “Symbolic execution for software
testing: three decades later,” Commun. ACM 56, 2 (2013), 82–90.

[12] Ting Chen, Xiao-song Zhang, Shi-ze Guo, Hong-yuan Li, and YueWu.
2013. “State of the art: Dynamic symbolic execution for automated
test generation,” Future Generation Computer Systems 29, 7 (2013),
1758–1773.

[13] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011.
“Parallel symbolic execution for automated real-world software testing,”
In Proceedings of the sixth conference on Computer systems. ACM,
183–198.

[14] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. “KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for Com-
plex Systems Programs,” In OSDI, Vol. 8. 209–224.

[15] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Deme-
trescu, and Irene Finocchi. A Survey of Symbolic Execution Techniques.
ACM Comput. Surv. 51, 3, Article 50 (May 2018), pp.50:1 39, 2018

[16] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra
B. Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold,
and Phil Mcminn. 2013. “An orchestrated survey of methodologies for
automated software test case generation,” J. Syst. Softw. 86, 8 (August
2013), 1978–2001.

[17] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011.
“S2E: A platform for in-vivo multi-path analysis of software systems.” In
ACM SIGARCH Computer Architecture News, Vol. 39. ACM, 265–278.

[18] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Support-
ing Controlled Experimentation with Testing Techniques: An Infrastruc-
ture and Its Potential Impact. Empirical Software Engineering 10, 4 (Oct.
2005), 405–435.

[19] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and
Fu Song.2017. “SPAIN: security patch analysis for binaries towards un-
derstanding the pain and pills,” In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, 462–472.

[20] S. Letian, Fu Jianming, Chen Jing and Peng Guojun, ”PVDF: An
automatic Patch-based Vulnerability Description and Fuzzing method,”
2014 Communications Security Conference (CSC 2014), Beijing, 2014,
pp. 1-8.

