
Risk Analysis for Collaborative Systems during

Requirements Engineering

Abstract- Risk, a potential occurrence of some undesirable

event, can be dangerous if not adequately identified and dealt

with early on during software development. However,

identifying risks can be difficult, hence oftentimes resulting in

a particular software system that is unable to address risks,

especially critical ones adequately. This paper proposes an

ontology-based framework for performing risk analysis with

the Augmented Reference Model - The Reference Model

augmented with risk analysis. The Reference Model

emphasizes that the user requirements are met through the

collaboration between the system and the events occurring in

its environment - i.e., not by the system alone, hence the term

"collaborative system." We also offer an activity-oriented

ontology to carry out risk analysis by identifying risks from

negating the events in the environment and system. Such

negations of the requirements, specifications, and domain

events generate a graph-like representation, called Risk

Analysis Graph (RAG), to help perform risk analysis. To

validate our framework, we have performed two experiments

using questionnaires to identify risks and use the risk analysis

tool to generate RAG for performing risk analysis. We feel

that at least these experiments show that RAG helps identify

risks - especially the critical and uncommon ones that we

would not have thought of.

Keywords- Risk; Risk Analysis; Ontology; The Reference

Model (WRSPM Model); Requirements Engineering

I. INTRODUCTION

 Risk, which is defined as a situation or event where
something of human value (including humans themselves)
has been put at stake and where the outcome is
uncertain"[10], is a phenomenon faced or caused by the
agent (e.g., User, Software or Hardware). If the
requirements do not address critical risks as fundamental
potential problems, the projected system may lead to grave
consequences [1]. For instance, in building a smartphone
app for helping blind people navigate indoors, it might not

DOI reference number: 10.18293/SEKE2021-192

be too evident to requirements engineers that a blind person
may not be able to walk straight in line or figure out where
to turn. This is just one example of, among many such
potential risks.

 Risks involving the user and the system may arise
due to the system malfunctioning or the user misusing the
system. For example, a blind person has to walk ten steps
before making a right turn. What if the smartphone
application asks the blind person to turn earlier or later after
walking ten steps? Or what if the user ignores the
instructions and fails to turn at the right spot? Addressing
these kinds of scenarios by the requirements engineers and
the software developers before developing the application
would help plan with risk minimization and mitigation
strategies.

 The Reference Model (WRSPM Model) [3]
emphasizes that the user requirements are satisfied by the
collaboration between the user and the events in its
environment. Since it involves both the system and the
user, the term collaborative system is used (e.g., a

smartphone app, Theia1 for helping blind people navigate
inside one of our campus buildings). Keeping Murphy's
Law in mind which states, anything that can go wrong will
[2], we perform risk analysis by extending the Reference
Model that we adopted into the Augmented Reference
Model.

 Negating the events in the Reference model gives us
the possible negative things (risks) that may arise in a
particular environment. Using these possibilities, a graph-
like structure called the Risk Analysis Graph (RAG) is
generated. We use a highly activity-oriented ontology to
identify the most important/critical risks obtained by the
RAG in performing risk analysis. We have carried out
experimentation in two parts and compared the total
number of risks obtained/ignored by the students who
performed both these experiments. Through this
experimentation, we have observed that simple yet
important risks, such as walking in a straight line, etc., can
be overlooked.

1 Theia is the Greek goddess of sight

Kirthy Kolluri, Robert Ahn, Lawrence Chung

Department of Computer Science

The University of Texas at Dallas

Richardson, TX, USA

{kirthy.kolluri, robert.sungsoo.ahn, chung}@utdallas.edu

Tom Hill

 Fellows Consulting Group

Dallas, TX, USA

tom@fellowsconsultinggroup.com

Running example: An indoor navigation app (Theia) for
helping blind people is used as the running example to
illustrate the fundamental concepts of the risk analysis
framework. For ease of understanding, we use the example
of a blind person (Stevie) navigating indoors using the
smartphone application (Theia). Stevie is a blind person
(student) who wants to navigate in the campus building. He
uses the smartphone application, Theia, to navigate from
his current location

 Section II describes the related work. Section III
describes the proposed approach for performing risk
analysis. Section IV describes the experimentation and the
observations of the experimentation. Section V includes
the overall observation and threats to validity. In the end, a
summary of the paper is described, along with some future
work in Section VI.

II. RELATED WORK

The Reference model draws attention to the vital
concept of satisfying the user's requirements through the
collaboration between the environment and the system
through events. The environment comprises everything
associated with the users (designators), the activities
performed by the designators, surrounding infrastructure
(e.g., buildings, things, etc.), and the environment
events (e) are those that are associated with the
environment. The system comprises the software system,
the actions performed by the software system, and the
programming concepts related to the software system. The
system events (s) are those associated with the system.
These events are classified as visible and hidden events –
i.e., events visible and hidden to the environment and the
system - (𝑒ℎ, 𝑒𝑣) and (𝑠ℎ, 𝑠𝑣) respectively [3, 4]. These
environment events and the system events help satisfy the
requirements.

In the area of Requirements Engineering, the Reference
Model [3, 4] emphasizes collaboration and focuses on
applying formal methods to the user requirements and
reducing them to the system specification. We adopt and
extend the Reference Model into the Augmented Reference
Model to perform risk analysis in this work.

In the area of Risk Analysis, the work discussed in [1]
proposes a Goal-Risk (GR) framework for modeling risks
during the requirements engineering phase. They model
goals, events, and treatments in three layers. The work
discussed in [11] builds upon the framework proposed in
[1] and provides multi-object optimization; hence more
queries related to risk. Some similarities between our work
and the work addressed in [1] are the risk analysis
performed in the requirements engineering phase and an
ontology provided, which analyzes risks. Our framework
uses the Augmented Reference Model to perform risk
analysis by negating the events (requirements,
specification, and domain). The approach proposed in our
paper aims to systematically obtain risks that can and
cannot be obtained by logical negation.

 CORAS [5] is a risk analysis framework that
models, analyzes risks, and handles them. Each risk is
analyzed in this framework by asking questions and
prioritizing risks. Our framework provides an activity-
oriented, risk-oriented ontology that addresses critical risks
identified while performing risk analysis using the
Reference Model and the Risk Analysis Graph. The work
discussed in [6, 7, 8] explains obstacle analysis which
explains decomposing the goals. They also provide a set of
rules, including negation. There is some similarity in the
approach, but we use only functional requirements in our
work and use negation for obtaining risks.

 The ontology of risk discussed in [9] is regarding
its relationship with value, unlike our ontology, which is
strongly tied to identifying risks that the agents face. We
adopt the ontological components addressed in
Requirements Modelling Language (RML) [12] and add
another ontological concept, "Risk," to the existing work to
tie the concept of Risk to Action and Agent.

III. A FRAMEWORK FOR PERFORMING RISK
ANALYSIS

To help find and analyze risks, the risk analysis framework

described in this paper uses an activity-oriented ontology.

This process transforms the Reference Model into the

Augmented Reference Model. The Risk Analysis Graph is

generated by using negation which is explained in detail in

the following steps. A tool to help generate a Risk Analysis

Graph (RAG) was also developed.

Figure 1. High-level ontology of the Risk Analysis Framework

A. Step 1: Obtain Overall Ontology:

 It is essential to explicitly represent high-level

concepts such as Agents, Risks, Actions, Requirements,

Specification, Domain in a domain-independent approach

to avoid omissions and commissions of risks while

transforming the Reference Model into an augmented

Reference Model and generating risks. Additionally, some

concepts may be incorporated from a domain-dependent

ontology as well. All the concepts and the relationships

between them can be found in Fig. 1.

 This ontology is independent of the domain and can be

used for various domains which use any kind of

collaborative system. In this step, we want to identify the

domain-level concepts involved to help the requirements

engineers/ developers to generate risks. This is an activity-

oriented ontology that addresses risks associated with each

activity performed by the Agent. The ontology is also used

to identify the most critical risks obtained from the risk

analysis outcome after step 5.

B. Step 2: Acquire and Decompose Requirements:

 The proposed approach uses the functional requirements

R from the Reference Model, represented in the form i →

t. This acquired requirement is AND-decomposed into

sub-requirements: 𝑅𝑖𝑓 and 𝑅𝑡ℎ𝑒𝑛. Requirements are

decomposed to broaden the scope of the risk generation.

Each of these sub-requirements can be further decomposed

if there exists an i → t relation.
 Instance-level requirements, specification, and domain

were used throughout this paper for facilitating simplicity
in understanding the risk analysis process.

For instance,

R: When Stevie indicates his destination as room 3.415,

Theia shall ask Stevie to walk 10 steps forward

 is AND-decomposed into

𝑹𝒊𝒇: Stevie indicates his destination as room 3.415

𝑹𝒕𝒉𝒆𝒏:Theia shall ask Stevie to walk 10 steps forward

C. Step 3: Generate Specification and Domain:
Using this proposed approach, it is possible to partially

automate the specification and domain using the Ontology-
based approach, which is discussed further in Step 3. As
shown in the Reference Model, since every requirement
has a specification and domain, all sub-requirements have
sub-specifications and sub-domains, respectively. The
specification and domain can be further decomposed if it is
of the form i → t or if an (AND) or (OR) or (,) or (.) are
present. For instance, after decomposing R into 𝑅𝑖𝑓 and

𝑅𝑡ℎ𝑒𝑛, we obtain the 𝑆𝑖𝑓, 𝑆𝑡ℎ𝑒𝑛, 𝐷𝑖𝑓 and 𝐷𝑡ℎ𝑒𝑛 respectively.

Considering the sub-requirement 𝑅𝑡ℎ𝑒𝑛 (due to space
limitation), we obtain

𝑫𝒕𝒉𝒆𝒏: The smartphone's speaker is switched on and is in

working condition

𝑺𝒕𝒉𝒆𝒏: If the microphone receives a voice input signal,

Theia notifies using the speaker with a voice instruction to

walk 10 steps forward
The events associated with 𝐷𝑡ℎ𝑒𝑛 and 𝑆𝑡ℎ𝑒𝑛 are checked for
further refinements and are decomposed based on the
satisfaction of the criteria. Since 𝑆𝑡ℎ𝑒𝑛 is in the form i → t,
𝑆𝑡ℎ𝑒𝑛 is decomposed into 𝑆𝑡ℎ𝑒𝑛_𝑖𝑓 and 𝑆𝑡ℎ𝑒𝑛_𝑡ℎ𝑒𝑛.

𝑺𝒕𝒉𝒆𝒏_𝒊𝒇: The microphone receives a voice input signal

Figure 2. Transformation of the Reference Model into the Augmented Reference Model depicted using an instance-level example

𝑺𝒕𝒉𝒆𝒏_𝒕𝒉𝒆𝒏: Theia notifies using the speaker with a voice

instruction to walk 10 steps forward

D. Step 4: Perform Augmentation

 When considering the Reference Model and

transforming the equations from the Reference Model, the

phenomenon (𝜱) which takes place is a union of the

environment events ‘e ‘and the system events ’ s’ [3] .

Hence,

Φ = 𝑒 ∪ 𝑠 (1)

𝑒 = 𝑒ℎ ∪ 𝑒𝑣 , 𝑒ℎ ∩ 𝑒𝑣 = 𝜙 (2)

𝑠 = 𝑠ℎ ∪ 𝑠𝑣 , 𝑠ℎ ∩ 𝑠𝑣 = 𝜙 (3)

there are four events associated with it (normal case), i.e.,

𝑒ℎ , 𝑒𝑣 , 𝑠ℎ , 𝑠𝑣 [3, 4]. In this piece of work, we call them

normal case events, hence represented by the notation

𝑒ℎ𝑛𝑜𝑟𝑚𝑎𝑙
, 𝑒𝑣𝑛𝑜𝑟𝑚𝑎𝑙

, 𝑠ℎ𝑛𝑜𝑟𝑚𝑎𝑙
, 𝑠𝑣𝑛𝑜𝑟𝑚𝑎𝑙

. Augmenting

the Reference Model is about adding risks (negating) to

the normal events. The events associated with risks are

𝑒ℎ𝑟𝑖𝑠𝑘 , 𝑒𝑣𝑟𝑖𝑠𝑘 , 𝑠ℎ𝑟𝑖𝑠𝑘 , 𝑠𝑣𝑟𝑖𝑠𝑘 . Therefore, in the

Augmented Reference Model we have eight events

associated with it, both the normal case events and risk

events namely. By substituting the normal and risk case

events we get,
𝑒ℎ𝐴𝑢𝑔

= 𝑒ℎ𝑛𝑜𝑟𝑚𝑎𝑙
 ∪ 𝑒ℎ𝑟𝑖𝑠𝑘

 (4)
𝑒𝑣𝐴𝑢𝑔

= 𝑒𝑣𝑛𝑜𝑟𝑚𝑎𝑙
 ∪ 𝑒𝑣𝑟𝑖𝑠𝑘

 (5)

Similarly, the system events can be obtained as shown in

equations 4 and 5. Transformation of the environment and

the system events into negated events is done by

substituting in equation 2.,
𝑒𝐴𝑢𝑔 = (𝑒ℎ𝑛𝑜𝑟𝑚𝑎𝑙

 ∪ 𝑒ℎ𝑟𝑖𝑠𝑘
) ∪ (𝑒𝑣𝑛𝑜𝑟𝑚𝑎𝑙

 ∪ 𝑒𝑣𝑟𝑖𝑠𝑘
) (6)

(𝑒ℎ𝑛𝑜𝑟𝑚𝑎𝑙
 ∪ 𝑒ℎ𝑟𝑖𝑠𝑘

) ∩ (𝑒𝑣𝑛𝑜𝑟𝑚𝑎𝑙
 ∪ 𝑒𝑣𝑟𝑖𝑠𝑘

) = 𝝓 (7)

Similarly, for transforming the system events, we

substitute the normal and risk cases in equation 3 which is

not shown here due to space limitation. The augmentation

process is shown in Fig. 2. with a detailed instance-level

example.

E. Step 5: Obtain Risks by generating the Risk analysis

Graph (RAG)
 In this paper, we propose the generation of

Risk Analysis Graph (RAG), shown in Fig. 3, by the
systematic generation of risks that are hard to find. For
this systematic generation of risks, we perform logical
negation of AND, OR, Implication, etc., as the starting
point. Due to the space limitation, we will present the
process of obtaining risks by negating the logical
implication (i → t) and another particular case (¬ i Λ t). For
this work, we have implications in the requirements,
specification, and domain as well. We have worked on all
possible combinations to obtain various risks from a set of
requirements. However, we will be illustrating only the
implications associated with the R in the running example
due to space limitation. The requirement is of the form i →
t. i → t can also be written as ¬ i ∨ t. For instance, P1: i →
t can be written as

P1: ¬ (Stevie indicates his destination as room 3.415) ∨

(Theia shall ask Stevie to walk 10 steps forward)

which is equivalent to

(Stevie does not indicate his destination as room 3.415) ∨

(Theia shall ask Stevie to walk 10 steps forward)
 Stevie does not indicate his destination as room

3.415 is a risk (when the destination he wants to go to

Figure 3. Risk Analysis Graph (RAG) explained with an instance-level example

3.415). This risk might have many cases, such as indicating
the wrong room number as his destination, not indicating
any room number after turning the app on, an unclear
indication of his destination, etc. To identify different
possibilities of risks, we negate P1 represented as P2,

 P2: ¬ [(Stevie does not indicate room 3.415 as his

destination) ∨ (Theia shall ask Stevie to walk 10 steps

forward)]

Negation yields P3, which is

P3: [(Stevie indicates his destination as room 3.415) Λ ¬
(Theia shall ask Stevie to walk 10 steps forward)]

which would lead to P4

P4: [(Stevie indicates his destination as room 3.415) Λ

(Theia shall not ask Stevie to walk 10 steps forward)]

which indicates a risk. This case of risk where Theia shall
not ask Stevie to walk ten steps forward can be analyzed.
Multiple cases could be associated with this risk, such as
Theia may ask Stevie to walk eight steps or may ask him
to walk 12 steps, etc. How can we try to alleviate this risk?
Risk mitigation mechanisms can be designed based on the
risks obtained. For instance, to make sure that Stevie walks
the correct number of steps, a screen-tapping mechanism
can be introduced, where Stevie taps the screen for every
step taken to keep a count on the steps taken.

 Not all risks can be addressed by logic, and there
are some shortcomings as well. Considering the truth
values for i → t, if ‘i’ is false, irrespective of whether ‘t’ is
true or false, the statement i → t is always true [13]. This
analysis will help us find a few risks which a simple
negation of i → t could not find. For instance, t: Theia shall
ask Stevie to walk 10 steps forward makes the truth value
false, but if Stevie does not indicate his destination as
room 3.415, this entire statement is true according to logic,
but in reality, it is not. Similarly, if ‘i’ is false and ‘t’ is false
(negated), the entire statement would still be true.
Secondly, after analyzing the possibility for risks apart
from the logical negation of i → t, which is (¬ i V t), it is
found that (¬ i Λ t), which cannot be obtained by the
logical negation of implication, pulls in risk(s).

Risk Analysis Tool: We developed a risk analysis tool to

generate the RAG for performing risk analysis. The formal

strategies addressed in step 5, namely ¬ (i → t), (¬ i Λ t),

(i Λ ¬ t), etc. are used as templates for semi-automation of

risks using the requirements, specifications, and domains

obtained in Step 2, Step 3 and Step 4 and use the ontology

captured in Step 1 to identify the most important risks

obtained in the semi-automation process. The tool's images

are not shown here due to space limitation, but the results

have been discussed briefly.

IV. EXPERIMENTATION

We have experimented in two parts to validate our risk
analysis process through 1) group projects of several
undergraduate, graduate-level, PhD.-level requirements

engineering courses, which one of the coauthors has been
teaching for more than 12 years 2) generating the RAG to
obtain risks and analyze them. Most of the students
involved in the experimentation for both parts of the
experiments were majoring in Computer Science. Students
learned about the concepts related to the Reference Model,
Ontology, etc., as a part of their coursework and applied
this knowledge along with using Murphy's Law to perform
both parts of the experiment, respectively.

 For experiment 1, the problem domain for all the
projects was to develop a smartphone app for helping blind
people navigate indoors that was not the same. We have
selected around 30 projects, with approximately four
students on average in each project. They developed a
questionnaire for identifying the risks that may arise while
the blind person navigates indoors before developing the
actual application.

Figure 4. Graph depicting the risks found using questionnaires vs. RAG

 This study has shown that students could find out
risks but lacked identifying critical and uncommon risks.
The Teaching Assistant (TA), one of this paper's coauthors,
has carried out a detailed review and analyzed different
kinds of risks obtained by the teams. The questionnaires
were able to identify some risks. Since the questionnaires
developed were at a graduate-level, their analysis was
restricted to being very basic and shallow. The risks
identified by the teams were at a brainstorming-level when
compared to the risks identified by developing the RAG.

 For the second part of the experiment, 30 PhD. and
30 senior-level graduate students volunteered to help us
experiment. Every student was provided with the initial
version of the tool required to generate the RAG. The
students were given the set of functional requirements,
including the running example. They had the liberty to test
their own functional requirements, choose the branches of
specification or domain for which risk analysis should be
performed, and when to stop the risk analysis. The students
followed the process described in Section III to generate
the RAG.

 The students provided their feedback regarding the
ease of use, accuracy of the automation, usability,
including a list of risks classified into critical, important,

unimportant, uncommon risks, etc. The questionnaires'
results were compared to the results obtained from the Risk
Analysis Graph, as shown in Fig. 4.

V. DISCUSSION

A. Overall Observation: We have observed that the
students who used RAG were not only able to find common
risks such as missing route, walking in the wrong direction,
etc., unimportant risks such as warnings which ask them to
increase the volume, increase screen brightness, etc., but
also were able to identify some critical risks such as falling
down, bumping into people, colliding against walls,
unexpected object running into the user, etc. and
uncommon risks such as oil on the floor, banana peel on
the way, etc. while some students who developed and used
the questionnaires to find risks have ignored a few critical
risks such as low battery indication, faulty voice input due
to background noise, walking in a zig-zag fashion in a
straight corridor, etc. which we were able to find out by
generating multiple RAG’s using different sets of
requirements.
B. Threats to Validity: Our evaluation is based on human
knowledge, and the decision to generate the RAG using the
semi-automated tool may not be accurate all the time. The
results of the experimentation included are not real
software projects (questionnaires). As our evaluation can
be subjective and incomplete, it should be expanded with
various subjects (developers, requirements engineers, etc.).
Furthermore, the range of experiments and the data
obtained was also limited. To try a more diverse range of
domains, we do not have sufficient guiding ontology for
customizing the model.

VI. CONCLUSION

This paper has presented an ontology-based framework
for performing risk analysis by using a Risk Analysis
Graph (RAG). The Augmented Reference Model obtained
by transforming the Reference Model is illustrated by using
a collaborative system as a reference application to validate
the strengths and weaknesses of the Risk Analysis
framework. More specifically, this paper has presented 1)
an ontology, which incorporates crucial concepts such as
Agents, Risks, Requirements, Specifications, etc.; 2) the
Augmented Reference Model, obtained by transforming
the Reference Model to perform risk analysis by negating
the events in the environment; 3) A Risk Analysis Graph
(RAG) to identify and analyze risks by the negation of
logical implication and a couple of cases to identify risks
which cannot be obtained by negation. The
experimentation, we feel, shows that our approach
facilitates the detection of several kinds of risks (common,
uncommon, critical, etc.). Apart from these, we feel that we
could find critical and unexpected risks using RAG.

 There are several lines of future work that we would
like to work on. We plan on adding risk prevention and risk

mitigation strategies to the risks identified using the RAG.
We also plan to develop a constructing algorithm for
developing the RAG. There are other domains, such as the
Auto-drive domain for Autonomous vehicles, etc., that we
would like to extend our work to. We would also
investigate more ontologies pertaining to other domains as
well. The tool is in its first phase of implementation, and
work is being done on adding more features for performing
risk identification, risk prevention, and mitigation
techniques. For engineers to develop and design their own
graphically oriented Risk Analysis Graph (RAG) for
identifying risks is also underway. We also plan to include
safety and timeliness softgoal and extend our work using a
goal-oriented approach.

REFERENCES

[1] Asnar, Y., Giorgini, P. Mylopoulos, J., “Goal-driven risk assessment

in requirements engineering. Requirements”, Eng 16, 101{116
(2011). https://doi.org/10.1007/s00766-010-0112-x

[2] Murphy's Law, https://en.wikipedia.org/wiki/Murphy%27s_law.
Last accessed 29 September 2019

[3] Gunter, C. A., Gunter, E. L., Jackson, M. Zave, P., "A reference
model for requirements and specifications," in IEEE Software, vol.
17, no. 3, pp. 37-43, May-June 2000, doi:10.1109/52.896248.

[4] Zave, P., Jackson, M.(1997)., “Four dark corners of requirements
engineering’, ACM Trans. Softw.Eng. Methodol. 6, 1 (Jan. 1997),
1{30.DOI:https://doi.org/10.1145/237432.237434

[5] R. Fredriksen, M. Kristiansen, B. A. Gran, K. Stølen, T. A. Opperud,
and T. Dimitrakos, “The coras framework for a model-based risk
management process”, in Computer Safety, Reliability and Security,
ser. Computer Safety, Reliability and Security. Springer Science +
Business Media, 2002, pp. 94– 105

[6] Lamsweerde, A. V., “Risk-driven Engineering of Requirements for
Dependable Systems", Engineering Dependable Software Systems
(2013).

[7] Cailliau, A. Lamsweerde, A. V., "A probabilistic framework for
goal-oriented risk analysis",(2012). 20th IEEE International
Requirements Engineering Conference (RE). Chicago, IL, 2012, pp.
201-210. doi: 10.1109/RE.2012.6345805.

[8] Cailliau, A., van Lamsweerde, A, “Assessing requirements-related
risks through probabilistic goals and obstacles”, Requirements Eng
18, 129{146 (2013). https://doi.org/10.1007/s00766-013-0168-5

[9] Sales T.P., Bai~ao F., Guizzardi G., Almeida J.P.A., Guarino N.,
Mylopoulos J. (2018), “ The Common Ontology of Value and Risk.
In: Trujillo J. et al. (eds) Conceptual Modeling”, ER 2018. Lecture
Notes in Computer Science, vol 11157. Springer, Cham.
https://doi.org/10.1007/978-3-030-00847-5 11

[10] Rosa, E., “Metatheoretical foundations for post-normal risk."
Journal of Risk Research 1 (1998): 15-44.

[11] F. Başak Aydemir, P. Giorgini and J. Mylopoulos, "Multi-objective
risk analysis with goal models," 2016 IEEE Tenth International
Conference on Research Challenges in Information Science (RCIS),
Grenoble, France, 2016, pp. 1-10, doi:
10.1109/RCIS.2016.7549302.

[12] Greenspan, S., Mylopoulos, J. Borgida, A., 1994, “ On formal
requirements modeling languages: RML revisited”, In Proceedings
of the 16th international conference on Software engineering (ICSE
'94). IEEE Computer Society Press, Washington, DC, USA, 135-
147.

[13] Implication, https://en.wikipedia.org/wiki/Material_conditional.
Last accessed 25 February 2020

https://doi.org/10.1007/s00766-010-0112-x
https://en.wikipedia.org/wiki/Material_conditional

