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Abstract—With the explosive growth of the information on the
Internet, the evaluation of the quality and credibility of web
content has become more important than ever before. In this
work, we focus on the quality assessment of texts. Recently,
various methods have been proposed for the automated text
scoring task and obtained competitive results. However, few
studies have focused on both relevance and coherence, which are
two important factors in evaluating text quality. To improve the
scoring task, we propose two auxiliary tasks using negative sam-
pling and integrate them into a multi-task learning framework.
The first auxiliary task is relevance modeling and the other one
is coherence modeling. We evaluate our model on the Automated
Student Assessment Prize (ASAP) dataset. Experimental results
show that our model achieves higher Quadratic Weighted Kappa
(QWK) scores with an improvement of 1.5% on average.

Keywords—automated essay scoring, multi-task learning, nat-
ural language processing

I. INTRODUCTION

Web2.0 accelerates the transition to Web3.0, and global
data storage presents explosive growth. The Internet is flooded
with all kinds of information. Organizations with poor website
quality or inefficient service may establish a bad image and
weaken the status of the organization. Therefore, it is necessary
to develop effective Web content quality control. Research
shows that if visitors find the site pleasant, they are more
likely to visit the site again. Accordingly, we explore utilizing
neural network models to assess the quality of texts.

Automated text scoring (ATS) aims to predict scores related
to the quality of a text. Evaluating texts is time-consuming,
and different evaluators may grade different scores to the
same text. In this case, the computer-based automatic text
scoring system can effectively overcome the inadequacies of
manual scoring [1]. Typically, researchers use a combination
of Natural Language Processing (NLP) and machine learning
to perform this task.
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Existing ATS models can be divided into two types: fea-
ture engineering-based and neural networks-based methods.
The approach based on feature engineering uses handcrafted
features (e.g., text length) to score texts. For example, the
Enhanced AI Scoring Engine (EASE) is a typical model that
has been shown to work well [2]. These models are highly
interpretable but require additional engineering. To address
the issues, the neural networks-based approach automatically
extracts features (e.g., lexical features) from texts for the
final grading. Recently, these approaches have achieved high
performance. For example, Taghipour and Ng [3] innovatively
used Recurrent Neural Network (RNN) and Convolutional
Neural Network (CNN) to learn text features. Dong et al.
[4] adopted Recurrent Convolutional Neural Network (RCNN)
with an attention mechanism to model this task and grade the
texts automatically.

The automated text scoring task is usually evaluated on
the ASAP dataset. However, few studies have focused on the
relevance of essays and prompts as well as the coherence of
sentences in the essay. Note that the prompt refers to the topic
of the essay, which usually consists of reading materials and
task descriptions. Relevance is how an essay fits the topic and
coherence is what makes multi-sentences of text logical and
syntactical. To capture the relevance between the essay content
and the prompt, Chen et al. [5] incorporated the similarity
between the essay and the prompt into the final representation
to grade the text. To further obtain the relevance between each
sentence and the source materials, Zhang et al. [6] introduced
the co-attention based neural network to model the similarity
between them. Besides, the coherence of sentences in the
essay is also one of the important criteria for scoring. To
our knowledge, a well-written essay is more coherent than a
random combination of sentences. Based on this point, Mesgar
et al. [7] introduced a local coherence model to obtain the flow
of content that semantically connects adjacent sentences in the
essay. Li et al. [8] employed the self-attention mechanism to
learn the relationship between long-distance words in the essay



to estimate coherence scores.
In this work, we propose a multi-task learning framework

for automated text scoring. In our framework, two auxiliary
tasks are introduced including relevance modeling task and
coherence modeling task. The relevance modeling task aims
to enhance the ability to extract prompt-specific features.
Specifically, we mix all the essays under different prompts
together and feed them into the model, and then predict
which prompt the essay belongs to. The coherence modeling
task aims at enhancing the ability to capture the discourse
coherence of essays. In our model, this task can be regarded
as a binary classification task. We randomly select three
consecutive sentences as a group and make some modifications
to the group-based data to construct negative samples, and
then predict whether the essay is coherent or not. Finally, we
integrate these two auxiliary tasks with the scoring task into
a multi-task learning framework for final scoring.

To verify the effectiveness of our multi-task learning
framework, we conduct experiments on the ASAP dataset.
Experimental results show that our method achieves better
performance than previous methods, which demonstrates that
our proposed method is effective for automated text scoring.
Our work also shows that auxiliary tasks can enhance the
performance of the BERT model on downstream tasks.

II. RELATED WORK

The discussion of related work is divided into two sub-
sections: ATS-related and MTL-related. In our model, we
apply multi-task learning to the task of automated text scoring.
There is a long history of automated essay scoring and multi-
task learning, and in this chapter, we concisely review some
common methods.

A. Automated Essay Scoring

Automated essay scoring is an important application of
natural language processing (NLP) in education. Previous
methods were mainly based on feature engineering, in which
the ATS task was considered as a classification or regression
problem. In the case of the former, the classifier directly
outputs the label that represents the score. In the latter case,
the output is in the range of the golden score. The feature-
engineering methods require handcrafted features, which in-
clude some statistical features such as essay length, number
of spelling errors, etc. These approaches include e-rater [9],
PEG [10], and EASE [2]. In the PEG, more than thirty writing
quality factors are considered. Besides, Cozma [11] combined
string kernels and word embeddings to capture text features,
namely the bag-of-super-word-embeddings (BOSWE). Das-
calu et al. [12] implemented an automated essay scoring
system for Dutch by integrating features such as lexical and
semantics features.

To avoid the need for feature engineering, researchers begin
to explore the application of neural networks to the automated
essay scoring task. Taghipour and Ng [3] innovatively com-
bined CNN and Long Short-Term Memory (LSTM) to learn
text representations for final scoring and obtained competitive
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Figure. 1. An overview of our multi-task learning architecture. It first adopts
BERT as the shared encoder. Then, three task-specific layers are connected
behind the encoder, sharing the text representation learned from the BERT
layer.

results. Dong et al. [4] adopted ConvNet and LSTM to learn
sentence representation and text representation respectively.
Mesgar et al. [7] employed the RNN layer for the words in the
sentence to integrate contextual information. Yang et al. [13]
introduced the BERT model to learn text representations.

B. Multi-task Learning

Multi-task learning was firstly proposed in 1994 by Caru-
ana [14] to improve the generalization ability of the model. It
is an inductive transfer mechanism that shares parameter in-
formation between multiple tasks [15]. Compared with single-
task learning, multi-task learning refers to learning multiple
tasks simultaneously, which can achieve better performance.
In multi-task learning, the main task and auxiliary tasks
learn from each other and jointly enhance the generalization
ability [16]. For auxiliary tasks, a basic assumption is that
auxiliary tasks should be related to the main task and can
promote the learning of the main task.

Multi-task learning has been widely used across applications
of machine learning, from natural language processing [17]
and speech recognition [18] to computer vision [19]. Liu et
al. [20] introduced Two-Stage Learning Framework for ATS
where semantic score, coherence score, and prompt-relevant
score are computed at the first stage and they are combined
with handcrafted features in the second stage. Nadeem et al.
[21] used natural language inference and discourse marker
prediction as auxiliary tasks for capturing discourse charac-
teristics of essays.

III. METHOD

In this section, we demonstrate the main steps of our
proposed model. It consists of a shared encoder and three task-
specific layers including the scoring task, relevance modeling



task, and coherence modeling task. The overview of our pro-
posed model is shown in Fig.1. In the following subsections,
more details of each module will be introduced.

A. Shared Encoder

Large pre-trained language models (e.g., BERT [22],
GPT [23], and XLNet [24]) have shown the remarkable ability
of representation and generalization in many tasks. These pre-
trained language models achieve great success in learning text
representations with deep semantics. In our framework, we
choose BERT as the shared encoder to better capture the
semantics of the given essay.

BERT is trained on enormous corpora with more than
3000M words. It has two target tasks, including the masked
language model and next sentence prediction. Many NLP
downstream tasks, such as sentence classification and ques-
tion answering, have gained benefits by utilizing pre-trained
BERT to learn text representation. Specifically, we adopt
RoBERTa [25] as the encoder to get better performance. The
self-attention mechanism [26] is the key to the success of
BERT, in which a sequence calculates the word weights with
itself. The attention process is defined as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where Q, K, and V are the matrix transformed from the input.
dk denotes the hidden dimension of matrix K.

Given an input essay E = {w1, w2, ..., wN}, where N
is the length of the essay, we add a special token [CLS]
at the beginning of the sequence and get a new sequence
E′ = {[CLS], w1, w2, ..., wN}. Then, we send the sequence
E′ into a pre-trained BERT and take the hidden state of the
[CLS] token as the text representation:

H = BERT (E′) (2)

R = H[CLS] (3)

where H denotes the final hidden state sequence of BERT,
and R is the text representation.

B. The Scoring Task

The main task of our method is the scoring task, which
aims to predict a score for each essay. Following other ATS
methods [3], [20], [21], [27], we utilize a dense layer to
compute the score with the text representation R as:

ps = sigmoid(WsR+ bs) (4)

where Ws is the weight matrix, bs is the bias initialized with
the mean score of the essays, and sigmoid is the activation
function to normalize the calculated score into [0,1]. In this
part, we select mean square error (MSE) as the loss function:

LS =
1

m

m∑
i=1

(ys − ps)
2 (5)

where ys is the true target, and ps is the prediction result for
the scoring task.

C. Relevance Modeling Task

To our knowledge, there is a close relevance between the
essay content and the topics. ATS systems may give a high
score to an unrelated but well-written essay. However, a human
rater will give higher scores to those essays related to the
topics, and lower scores to those essays that are not relevant
to the topics. To exploit the prompt-specific knowledge, we
design this auxiliary task named relevance modeling. Since
high-scoring essays always stick to the prompt, we first mix
up the top 40% essays of all prompts, and their labels are
the prompt they belong to. After that, we feed the latent text
representation R learned from BERT into a dense layer to
predict the prompt:

prm = softmax(WrmR+ brm) (6)

where Wrm is the weight matrix, brm is the bias, and soft-
max is the activation function for the multi-classifier. In this
module, we optimize this auxiliary task with the cross-entropy
loss as:

LRM = −
∑

yrm ∗ log(prm) (7)

where yrm is the true target, and prm is the prediction result.

D. Coherence Modeling Task

Language learners may have learned to make both mean-
ingful and grammatical sentences but do not know how to
organize the sentences together to construct a good essay.
Coherence is what makes a multi-sentence text meaningful,
both logically and syntactically. In this work, our coherence
modeling task is used to better capture the discourse coherence
of essays.

In this task, we regard the coherence modeling task
as a binary classification task. The vanilla essay is with
the label ”1” while the others are with the label ”0”. To
construct negative samples, we perform three operations on
the essays. Note that each negative sample is prompt-related
but incoherent. For an input essay, we randomly select three
consecutive sentences as a group. There are three ways to
construct negative samples: 1) delete operation—removing the
selected group; 2) replace operation—replacing the selected
group with a new group from another essay of the same topic;
3) inserting operation—appending a group from another essay
under the same prompt to the beginning or end of the selected
group. For example, given an essay E consisting of k sentences
E = {s1, ..., si−1, si, si+1, si+2, si+3, ..., sk}, the one with
delete operation is formed as E∗ = {s1, ..., si−1, si+3, ..., sk}.
The one with replace operation is denoted as
E∗ = {s1, ..., si−1, s

′

j , s
′

j+1, s
′

j+2, si+3, ..., sk}.
The one with inserting operation can be E∗ =
{s1, ..., si−1, s

′

i, s
′

i+1, s
′

i+2, si, si+1, si+2, si+3, ..., sk} or
E∗ = {s1, ..., si−1, si, si+1, si+2, s

′

j , s
′

j+1, s
′

j+2, si+3, ..., sk}.
After that, we send negative samples and positive samples
into the model for training. Moreover, to reduce the deviation
caused by imbalanced samples, we mix the positive sample
and the negative sample evenly. Our approach is based on the



TABLE I
STATISTICS OF THE ASAP DATASET.

Prompt Essay Type #Essays Avg length Scores
1 Argumentative 1,783 350 2-12
2 Argumentative 1,800 350 1-6
3 Source-Dependent 1,726 150 0-3
4 Source-Dependent 1,772 150 0–3
5 Source-Dependent 1,805 150 0–4
6 Source-Dependent 1,800 150 0–4
7 Narrative 1,569 250 0–30
8 Narrative 723 650 0–60

assumption verified in Lin et al.’s work [28] that the original
article is always more coherent than the changed one.

In this module, we feed the hidden states H obtained
from BERT into a Bi-LSTM network to model the semantic
relationships among sentences:

ht = Bi-LSTM(ht−1, Hi) (8)

where Hi is the i-th output of the BERT layer and ht is
the hidden state of the Bi-LSTM at time t. We concatenate
the forward and backward output together and obtain the last
hidden state hN . Then, a fully connected layer is adopted to
predict whether the essay is coherent or not:

pcm = sigmoid(WcmhN + bcm) (9)

where Wcm is the weight matrix, bcm is the bias, and sigmoid
denotes the activation function for the binary classification
task. We then train this task with the binary cross-entropy
loss as:

LCM = −ycm ∗ log(pcm)− (1− ycm) ∗ log(1− pcm) (10)

where ycm is the true target and pcm is the prediction result.
While training, we alternatively optimize the scoring task

with LS in Equation (5), the relevance modeling task with
LRM in Equation (7), and the coherence modeling task with
LCM in Equation (10). The ‘mix ratio’ of the three tasks is
set as λS : λRM : λCM = 0.6 : 0.2 : 0.2.

IV. EXPERIMENT

In this section, we introduce the ASAP dataset and experi-
ment settings firstly. Then the evaluation metric is illustrated.
In addition, baseline models, results of the experiment, and
analyses are displayed.

A. Experiment Settings

We use a common dataset for the ATS task, which is from a
Kaggle competition. There are 8 prompts of different genres,
and the number of essays in the dataset is 12976. In Table I,
we list some statistics of the ASAP dataset.

We implement our model using Pytorch and the BERT
comes from HuggingFace [29]. Since the average length of
the essay in prompt 8 is 650, we truncate the essays with
the max length of 512 words. For the BERT model, we use

https://www.kaggle.com/c/asap-aes/data
https://github.com/huggingface/transformers

the uncased BERTbase model with 12 layers, 768 hidden
units, and 12 heads. We use the pre-trained parameters and
fine-tune the parameters with the learning rate set to 1e-
5. Following previous works, we also utilize 5-fold cross-
validation to evaluate our model with a 60/20/20 split for train,
validation, and test sets.

B. Evaluation Metric

QWK is the official evaluation metric in the ASAP competi-
tion, which measures the agreement between ratings assigned
by humans and ratings predicted by ATS systems. Following
previous works, we adopt QWK as the evaluation metric. The
quadratic weight matrix is calculated as follows:

Wi,j =
(i− j)2

(N − 1)2
(11)

where i and j are gold scores and calculated scores respec-
tively. N is the number of possible ratings. The QWK value
is defined as:

κ = 1−
∑

Wi,jOi,j

Wi,jEi,j
(12)

Where O is the observed score matrix and E is the expected
score matrix. Oi,j denotes the number of essays that receive
rating i by human rater and j by ATS system. E is calculated
as the outer product of histogram vectors of the two (reference
and hypothesis) ratings.

C. Baselines

In this section, we introduce several baseline models. En-
hanced AI Scoring Engine (EASE) is a statistical model based
on hand-crafted features such as length-based features and
part-of-speech tags. After feature extraction, support vector
regression (SVR) and bayesian linear ridge regression (BLRR)
are used to build the model [2]. Cozma et al. [11] pro-
posed HISK+BOSWE, which combined string kernels and
word embeddings to extract text features on both low-level
character n-gram features and high-level semantic features.
Wang et al. [30] proposed RL1, which is a reinforcement
learning framework incorporating quadratic weighted kappa
as guidance to optimize the scoring system. Taghipour and
Ng [3] proposed to assemble CNN and LSTM. Dong et
al. [4] introduced hierarchical neural networks with attention
mechanisms to learn the representation of essays. Tay et al.
[31] proposed SKIPFLOW LSTM, where there is a mechanism
to simulate the relationship between hidden states in the LSTM
network during reading, so as to learn the characteristics of
text coherence. Yang et al. [13] proposed R2BERT that utilized
a pre-trained language model to get the scores and used mean
square error loss and the batch-wise ListNet loss with dynamic
weights to constrain the scores simultaneously.

https://github.com/edx/ease



TABLE II
QWK SCORES OF DIFFERENT METHODS ON THE ASAP DATASET (* DENOTES STATISTICAL MODEL). IN THIS TABLE, RM DENOTES THE RELEVANCE

MODELING TASK AND CM DENOTES THE COHERENCE MODELING TASK.

Methods Prompt1 Prompt2 Prompt3 Prompt4 Prompt5 Prompt6 Prompt7 Prompt8 Average
EASE(SVR)* 0.781 0.621 0.630 0.749 0.782 0.771 0.727 0.534 0.699
EASE(BLRR)* 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705
HISK+BOSWE* 0.845 0.729 0.684 0.829 0.833 0.830 0.804 0.729 0.785
RNN 0.687 0.633 0.552 0.744 0.744 0.757 0.743 0.553 0.675
RL1 0.766 0.659 0.688 0.778 0.805 0.791 0.760 0.545 0.724
LSTM 0.780 0.697 0.683 0.787 0.795 0.767 0.758 0.651 0.740
CNN+LSTM 0.821 0.688 0.694 0.805 0.807 0.819 0.808 0.644 0.761
LSTM-CNN-att 0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764
SKIPFLOW 0.832 0.684 0.695 0.788 0.815 0.810 0.800 0.697 0.765
R2BERT 0.817 0.719 0.698 0.845 0.841 0.847 0.839 0.744 0.794
BERT 0.815 0.720 0.730 0.814 0.820 0.824 0.833 0.730 0.786
BERT+CM 0.838 0.731 0.733 0.816 0.826 0.845 0.836 0.742 0.796
BERT+RM 0.831 0.728 0.741 0.838 0.834 0.853 0.829 0.733 0.798
BERT+RM+CM 0.842 0.733 0.746 0.842 0.836 0.857 0.842 0.747 0.806

D. Results

In this part, the performance of the baselines and our method
on the ASAP dataset are analyzed in detail. Table II shows the
QWK scores of different methods on each prompt.

In general, neural network-based methods have achieved
better results than statistical-based methods. Even so, the
statistical model HISK+BOSWE gain a better QWK score
on Prompt 1, reaching 0.845. To some degree, it shows that
when the handcrafted features can adequately represent the
information in the original text, better results can be obtained.
We notice that EASE performs better than RNN which also
shows well-designed handcrafted features are more effective
than simple neural networks. Among the methods based on
neural networks, the performance of RNN and LSTM is not
as good as R2BERT. This is because that there are hundreds
of words making it difficult to learn long-term dependencies.
Meanwhile, we observe that CNN+LSTM, SKIPFLOW, and
LSTM-CNN-att outperform LSTM models, which means that
the ensemble model can make up for the shortage of simple
neural networks. Additionally, BERT based model outperforms
all other neural models on the average QWK score, which in-
dicates the pre-trained language model does well in capturing
deep semantic features.

Compared with other baseline models, the average QWK
scores on eight prompts show that our model achieves the
best results. Our model outperforms R2BERT by 1.5% in the
average QWK score. The result demonstrates that through
the multi-task learning framework, our model can capture
more coherence and relevance information for the final score
evaluation. On Prompt 4 and 5, R2BERT achieves higher
results, indicating that combining complementary objectives
via dynamic weights can effectively enhance the performance
of the scoring system. In particular, BERT with auxiliary
tasks outperforms R2BERT on each prompt except Prompt
4 and 5, which shows the effectiveness of the auxiliary tasks
and the success in improving the performance of BERT on

downstream tasks. Overall, BERT+RM+CM gains a higher
average QWK score compared with the aforementioned neural
models as well as the latest statistical model HISK+BOSWE.

E. Discussion

To further verify the effectiveness of our proposed auxiliary
tasks, we conduct ablation experiments with different settings.
The relevant results are illustrated in Table II.

We can see that both the auxiliary tasks improve the
automated essay scoring performance remarkably. Compared
with the baseline BERT, employing the coherence modeling
task (BERT+CM) yields a result of 0.796 in averaged QWK
score, which brings a 1.3% improvement. Meanwhile, em-
ploying the relevance modeling task (BERT+RM) individually
outperforms the baseline by 1.5%. The two tasks behave
differently on different prompts. The RM task performs better
on Prompt 3 to Prompt 6, while the CM task does on the
others. The results may be due to differences in the genre and
guidelines of the essay. For example, In Prompt 5, students
were asked to describe the mood created by the author in the
memoir and use the relevant information in the source material
to support the answer. Therefore, for Prompt 5, a high-scoring
essay is expected to contain specific information about the
memoir, and the details of the memoir mentioned in the written
essay are more important than the coherence of the sentence.
For Prompts 7 and 8, the type of essay is narrative. The
guidelines for these two prompts require human raters to give
the highest score to essays that are coherent and engage the
reader’s attention through telling a story. Accordingly, the CM
task shows better performance as it captures the sequence of
semantic changes. When we integrate the two auxiliary tasks
together (BERT+RM+CM), the performance further improves
to 0.806 in the QWK score on average. It is obvious that these
two auxiliary tasks have brought great benefits to the scoring
task.



V. CONCLUSION

In this work, we introduce an approach based on two
auxiliary tasks to assess the quality of texts. We integrate
the auxiliary tasks into a multi-task learning framework to
benefit the scoring task. To verify the effectiveness of our
proposed method, we compare our model with several methods
on the ASAP dataset. Experimental results show that our
model outperforms previous methods. Our work also shows
that auxiliary tasks can enhance the performance of the BERT
model for downstream tasks. For future work, we plan to
explore more dimensions for the automated text scoring task.
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