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Abstract—Modeling and verification of real-time reactive sys-
tems is getting greater concern in industrial field, especially
in safety-critical applications. As a representative language for
modeling real-time reactive systems, Lustre has been extensively
used in the development of control systems in vehicles and
aircraft. Existing model checking tools for Lustre like Kind2
and JKind have good support for verifying safety properties,
but they lack explicit support for liveness properties. Thus we
present NKind, an SMT-based infinite-state model checker, which
accepts models and properties written in Lustre and is capable of
verifying both safety and liveness properties. NKind is inspired
by many existing model checker and adds liveness support based
on their common techniques, which provides more flexibility. It is
written in Java, providing good compatibility, and lays emphasis
on modularity and extensibility. The results and performance of
NKind on benchmark examples demonstrate that it is competitive
comparing to other existing tools.

Index Terms—Lustre, Model Checking, Liveness Property

I. INTRODUCTION

As one of the most important measures of ensuring that
software meets the expected requirements, model checking
is becoming increasingly important in the development of
modern systems, especially real-time reactive systems. Many
industrial standards like DO-178C, EN50128, ISO26262 etc.
require to use formal verification in software design and
development for high safety assurance, which demonstrate the
bright prospect of wide application of model checking tools
in industrial field. As a representative language for modelling
real-time reactive systems, Lustre [1] has been extensively
used in the development of safety-critical systems like avionic
systems and power plant monitoring systems.

Kind2 [2] and JKind [3] are two most popular model
checking tools for verifying Lustre programs. Kind2 is a
multi-engine model checker and lays emphasis on invariant
checking. It uses an extension to Lustre as modelling language,
and converts the given model into a state transition system. The
property is proved by checking that it holds in all reachable
states of the system. JKind provides similar functionalities.
It mainly focuses on post-processing and proposes features
like inductive validity cores (IVC) and smoothing. JKind and
Kind2 support different Lustre language features. For example,
JKind lacks the support for automaton structure.

It is worth mentioning that these tools are mostly concen-
trated on proving safety properties and ignore the liveness
properties. This leads to a gap in verifying liveness properties
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for Lustre. nuXmv [4] is a model checker capable of both
finite-state and infinite-state systems. As the successor of
NuSmv, it reads models in SMV format extended with infinite-
state support. Although nuXmv support liveness property
checking, currently there is no available way to make it support
Lustre models directly.

The main contributions of the paper can be summarized as
follows:

• We present NKind, a model checker for Lustre supporting
the verification of liveness properties which existing tools
for Lustre do not support.

• When verifying liveness properties, the performance gap
between NKind and mainstream tools is not significant.

In this paper, we present NKind, an SMT-based infinite-
state model checking tool, which is mainly used for proving or
disproving properties of synchronous reactive system models
written in Lustre. NKind mainly relies on the powerful SMT-
solver Z3 [5] to validate or invalidate the properties. For
properties that are proved to be invalid, a counterexample
will be returned. NKind is inspired by several existing model
checkers for Lustre like Kind2 and JKind, and uses similar
architecture and techniques. In the mean time, it provides
enough extensibility and makes it rather easy to support
new features. NKind is written in Java, which offers better
multi-platform compatibility and is easy to be integrated to
a larger framework as a model checking service provider.
To fill the gap in liveness property checking in Lustre, in
addition to safety properties, NKind has the capability to
verify liveness properties which can have finite-time violations
but will finally hold forever. NKind is free to be used for
research and evaluation purposes and can be downloaded from
https://nkindmodelchecker.github.io.

The rest of the paper is organized as follows. Section II
briefly introduces some preliminary concepts involved in
NKind. Section III describes the design architecture of NKind
and introduces the main algorithms that are used for veri-
fication. Section IV provides the capabilities of NKind and
is emphasized on the liveness extension. Section V conducts
performance benchmarks for NKind and makes comparison
with other existing model checking tools Finally, conclusion
and future work is given in Section VI .
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II. PRELIMINARIES

A. Lustre language

Real-time reactive systems refer to the systems that contin-
uously accept input and react to the environment in a timely
manner. Since the inputs are constantly changing and the
systems are expected to respond quickly to the inputs [6],
synchronous languages were designed to effectively describe
reactive systems. Lustre is a synchronous dataflow language
which is widely used in safety-critical control systems like
vehicles and aircraft.

Different from imperative languages, dataflow languages
focus on data and represent them as infinite sequences of
values, i.e. dataflows. This fits well with the usage scenario
of real-time reactive systems, which in many cases need to
read data from multiple sensors at a fixed frequency as inputs
and then calculate the outputs, and the dataflow model can
represent this behaviour well. Each dataflow is associated with
a clock, and the specific value of a dataflow at a clock time
can be uniquely determined by using the clock value as index.

Lustre use a node as a minimal functional module, which
has a finite group of inputs and outputs as interface and allows
local flow to save its internal state. Functionally speaking,
a Lustre node can be regarded as a mapping from an input
set to an output set [6], and the outputs are calculated from
the current and previous input/output or local flows according
to the flow definition. Readers can refer to [1] for detailed
grammar of Lustre language.

B. L2SIA-WFR

In comparison with safety properties which have coun-
terexamples of finite length, liveness properties often have
counterexamples of infinite length, making it more difficult to
verify liveness properties to a large extent. Algorithms like
liveness-to-safety [7] and k-Liveness [8] were proposed to
solve this problem, but these solutions were mainly restricted
in finite-state systems, which were not sufficient to work in
infinite-state systems like Lustre. Then an extended version
of liveness-to-safety called L2SIA-WFR [9] was presented to
handle the infinite state space.

A counterexample of liveness property in the form of
FG ¬p is often lasso-shaped, which consists of a path starting
from the initial state (i.e. stem) and a loop containing at least
one state satisfying p. So liveness-to-safety tries to prove the
absence of a lasso-shape counterexample as an invariant by
ensuring there is no loop paths violating the property. L2SIA-
WFR first extend the algorithm by using implicit abstraction. It
uses a set of assignments to the predicates to identify multiple
concrete states, therefore abstracting the infinite state space to
finite state space. Like the idea of CEGAR [10], if spurious
counterexamples are found, they will be used to refine the
abstraction for next iteration by adding extracted predicates
from counterexamples to the predicate set. In order to handle
the situations that an abstract loop can be executed finite times,
which will not violate the property but prevent the algorithm
from terminating, well-founded relations are calculated as a

termination proof. In the cases where well-founded relations
are available, these relations provides more information of the
model for better refining the abstraction and lead to a better
performance.

III. NKIND ARCHITECTURE

Fig. 1: NKind architecture

The overall architecture of NKind is shown in Fig. 1. It
consists of Lustre parser, simplifier, and a controller equipped
with several verification engines.

Since there are different dialects of Lustre with different
syntax, for scalability reasons, an improved version of visitor
pattern is used in the design which provides more flexibility
to handle syntactic structures of Lustre and therefore makes it
easy to extend functionality.

The traditional version of Lustre, namely Lustre v4, consist
of a set of elements which is basic enough and could be
considered as Core Lustre. Many features added in more recent
versions or dialects can be translated to Core Lustre. For
instance, automaton structure, which is available in Kind2 and
SCADE [11], introduces a concept similar to state machine
and provides the ability to change the behaviour pattern based
on external inputs or internal events, allowing a dataflow to
have multiple definition in different states. However, such
structure can be simulated by converting each state into
corresponding nodes without changing the semantics. With
this in mind, the Lustre simplifier is used to translate all
the complex structure in the given Lustre program before
it is converted to transition system and make it possible to
leave the process of making transition system unchanged when
adding support for new features. It is suitable for implementing
syntactic sugar like array iterator introduced in SCADE.

Like several existing model checking tools for Lustre which
rely on the expressivity and reasoning capabilities of modern
SMT solvers, NKind converts input Lustre program into a
transition system with the same semantics in the form of SMT
formula. As the core representation of the given model, the



transition system is then handed over to solving engines to
verify the properties.

NKind follows the practice of many model checkers and
uses a set of solving engines which run in parallel for veri-
fication. The solving engines of NKind are mainly composed
of Bounded Model Checking (BMC), k-Induction, Invariant
Generation and Property Directed Reachability (PDR, or IC3).

1) BMC [12] engine checks for counterexamples by un-
rolling transition relation T step by step. It also provides
the proof of base step for k-Induction engine in the mean
time.

2) k-Induction [13] is the enhanced form of normal in-
duction. It tries to find a value of k such that the
property p holds for all states reachable from initial
state I in first k steps (base step) and is preserved
by continuous transitions of length k (induction step),
i.e. ∀i ≤ k · I ∧ T0 ∧ T1 ∧ · · · ∧ Tk ⇒ pk and
∀n ≥ 0 · Tn ∧ pn ∧ Tn+1 ∧ pn+1 ∧ · · · ∧ Tn+k ⇒ pn+k.
If such k exists, it follows inductively that the property
holds in all reachable states.

3) Invariant Generation automatically generates some vali-
dated auxiliary invariants based on predefined invariant
templates [14] according to the given transition relations
and are proved by k-Induction. The generated invariants
are mainly used for helping the verification process of
k-Induction engine in case the given property is not k-
inductive.

4) PDR [15] is based on an idea similar to CEGAR to make
an over-approximation of the property and iteratively
strengthen the approximation until it becomes inductive
or meets a counterexample. The original PDR algorithm
is only capable of handling finite-state problem, and in
order to make it work in infinite-state system, implicit
abstraction proposed in [16] to abstract the states into
finite ones. The abstraction itself is refined by extracting
new predicates from the Craig interpolants of spurious
counterexamples.

Once a property is proved or disproved, other engines will
be informed to make use of the result. If the verification
process is interrupted or the backend SMT solver encounters
an error, the property will be marked unknown and returned
to user.

IV. MAIN FEATURES

A. Safety Property

One of the main functionalities of NKind is to verify safety
properties of reactive system modelled in Lustre language.
Like Kind2, JKind or other Lustre model checkers, NKind
attempts to prove that the given properties are invariants in
the given system with a set of model checking engines which
are described in the previous section, and tries to give a
counterexample in case of failure.

B. Liveness Property

Apart from the traditional safety property checking, NKind
also introduces some new techniques for liveness property

checking, which, to the best of our knowledge, makes NKind
the first model checker for Lustre that support liveness prop-
erties. In general, if we use Linear Temporal Logic (LTL)
to summarize the property that NKind is able to handle,
properties in form of G p are supported to enable traditional
safety property checking. In addition, properties in form of
FG p are also supported due to the liveness extension. In
other words, apart from checking properties that hold forever,
properties which have finite-time violations can be allowed as
long as the properties will finally holds forever.

1) Liveness Usage: With the liveness support, Lustre be-
comes more expressive when specifying property. For instance,

Fig. 2: Example Lustre program with liveness property

the lustre program shown in Fig. 2 mainly contains three
dataflow.

1) N is a constant flow with value 20.
2) x self-increases by 1 per cycle.
3) f indicates the property that either the value of x in the

previous cycle is less than 1 or greater than that of N .
It is clear that the property is violated when 1 ≤ i ≤ 20. By

specifying the property type using keyword ”Live”, NKind can
be informed to not simply use invariant proving techniques but
to encode the property first. As is mentioned in the previous
section, the encoded property is to prove the absence of a loop
continuously violating the original property. In this case, after
x is increased to 21, x will never be less than N and thus
proving the original property.

As a result, the constraints of traditional safety properties
can be loosen, and it will be easier to specify qualitative
property without giving an explicit value. For example, the
program listed in Fig. 3 describes a system where y will
finally catch up with x. If we use safety property to specify
this property, an explicit gap is needed and thus a counter is
introduced. However, we can write a more general property if
we use the liveness extension which is displayed in Fig. 4.

It will also be suitable for specifying the system that will
enter a stable state after several temporary transition caused
by input events from sensors, which is common in various
industrial control systems.

2) Liveness implementation: As is mentioned before, the
verification process of NKind revolves around the state transi-
tion system converted from the given Lustre program. L2SIA-
WFR algorithm [9] provides a method to encode liveness prop-
erties as safety properties at the level of state transition system.



Fig. 3: Specifying property with safety property

Fig. 4: Specifying property with liveness property

This commonality in structure makes it possible to introduce
support for liveness property in the original framework.

Fig. 5: Embedding liveness extension to PDR process

Since the method monotonically strengthens the original
transition system and is a good complement to PDR process
[9], the liveness extension in NKind is embedded in PDR
engine like Fig. 5 and mainly refers to ic3ia [17], an open-
source implementation of the L2SIA-WFR algorithm.

More specifically, a liveness property is first encoded as a
safety property using L2SIA algorithm and then put into PDR
process. If a counterexample is found and normal refinement
of the PDR process failed to make more precise abstraction,
Live Refiner will try more liveness-specific methods to make
refinement like proving the spuriousness of the counterexam-
ple by unrolling the transition relation or attempting to get
new ranking relations. Readers can refer to [9] for algorithm
details.

Since abstraction refinement in PDR process depends on
the calculation of Craig interpolation, an SMT solver which
supports such calculation is needed as the backend of the
algorithm. For example, JKind chooses to embed SMTInter-
pol [18], a solver which is devoted to produce interpolants.
However, as the input constraints becoming bigger and more
complex, this solver may encounter performance degradation.
This shortcoming becomes more significant in the liveness
extension because the transition system is strengthened mono-
tonically by adding more constraints due to the design of the
algorithm, which may lead to variable explosion. Taking the
simple Lustre program shown in Fig. 2 as an example, after
being translated into transition system, it contains 35 symbols.
But after the first liveness encoding, it grows to 284 symbols.
Such increment will obviously impose a greater burden on the
solver.

Due to the lack of SMT solvers supporting interpolation,
it is not easy to simply switch to another solver with higher
performance. However, we mentioned the fact that the de-
pendence on interpolation is limited to the part of abstract
refinement, which inspired us to use another efficient solver
in the main framework of PDR process. Referring to PDR
implementation proposed in [19], we use z3 [5] as the main
backend SMT solver, and leave the calculation to SMTInterpol
only when interpolation is needed by doing a bi-directional
conversion between the two solver.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate NKind with both safety and
liveness benchmarks. The experiments were all conducted on
a 64-bit Linux machine running Ubuntu 20.04 with a 20-core
Intel Core i9-10900K processor and 32GB of memory.

A. Safety Evaluation

We use a test suite containing 864 Lustre programs from
Kind [20], which was also used in the benchmark of Kind2.
Two existing and mature tools, Kind2 and JKind, were tested
together as a comparison group. The default options for each
tool were used and the timeout threshold was set to 300
seconds for each problem.

Fig. 6: Verification results on safety property benchmark



The benchmark result is shown in Fig. 6 and the numbers in
parentheses represent how many problems were solved in the
benchmark. Although there are about 20 programs that cannot
be proved or disproved within 5 minutes, the result shows
that NKind was capable of proving or invalidating most of the
problems in the test suite and had a similar performance to
JKind. Relatively speaking, although NKind takes more time
when verifying small problem due to the JVM start time, it
still has a competitive performance.

B. Liveness Evaluation

Since infinite-state liveness property checking is not as
widely supported as safety property is, we first turned to the
benchmarks provided together with ic3ia [9]. However, as we
have mentioned before, ic3ia accepts a more general form of
transition system written in its own vmt format, an extension
of the SMT-LIB language. That means not all problems in
that benchmark can be translated to a Lustre program with
the same semantic, thus making it difficult to accept Lustre
program. Due to the lack of effective tools to translate vmt
file into Lustre program, we therefore chose 20 tests from the
benchmark and converted them in to Lustre programs by hand.
Some parameters in the test file were modified to a bigger
value to demonstrate the performance of problems in a larger
state space.

In order to reflect the effectiveness of the optimizations
mentioned in the previous section, a version of NKind using
SmtInterpol as backend solver was tested together with the
z3 version. Since Kind2 and JKind do not support liveness
property, we used ic3ia as a comparison group. The default
option and a timeout limit of 300 seconds was used to run the
benchmark.

We present some representative test results in detail in
Table. I. From the test result, it is clear that the optimization
is effective and has a significant performance improvement on
most of the test case comparing to the SMTInterpol version.
We can see that ic3ia is still the fastest tool in this test, but
the gap between ic3ia and NKind is not very significant.

Test name ic3ia NKind-z3 NKind-SMTItp
any-down-live 35.77 1.59 25.51
parallel-live 51.68 11.24 32.09
binary-live 0.09 0.8 1.68

piecewise-live 0.11 1.33 2.32
count-nested-live 0.37 1.86 4.42

stabilize-live 5.16 6.57 13.21
count-down-live 1.05 3.81 7.61
swap-dec-live 1.53 3.89 39.37

count-up-to-sym-live 5.84 13.75 3.95
refine disj problem Timeout Timeout Timeout

TABLE I: Representative verification results on liveness prop-
erty benchmark

In order to test with more complex test cases that are closer
to the real industrial applications, we leveraged the cases of
Kind used as the safety benchmark by converting all the safety
properties into liveness properties. Due to the difficulties in

conversion from Lustre program to vmt format, we finally use
a set of 253 test cases as the benchmark. Fig. 7 shows the
benchmark result.

Fig. 7: Verification results on more complex liveness property
benchmark

From the benchmark result, NKind is effective in solving
liveness properties for Lustre and is able to determine majority
of the test cases whether the their properties are valid or not.

However, there is no denying that NKind still has a certain
gap compared with the performance of ic3ia. This problem
may be caused by the following reason:

1) Due to the use of Java, the JVM start up may consume
some time. Since static checking and the translation from
Lustre to transition system will be performed before the
verification, even small models has a rather long start-up
time.

Fig. 8: Lustre program ”count-up-to-sym-live”

2) Since the liveness extension is mainly based on implicit
abstraction version of PDR, we notice that the perfor-
mance is highly influenced by abstract model. Taking
”count-up-to-sym-live” in the previous benchmark as an
example, which is shown in Fig. 8. The model will be
verified quickly if the abstraction divide the state space
with predicate x ≥ 40, but will be rather slow if the
predicates are x ≤ 1, x ≤ 2, · · · , x ≤ 40. However, we
notice that currently the abstraction and the refinement
mainly depend on the counterexample returned by the



SMT solver, which is non-deterministic. This may also
be the reason why NKind solves less problems. A more
guided refinement may be helpful for the performance
which need further research.

In general, in spite of such overhead, NKind is capable of
handling regular safety properties as well as the liveness ones,
which is still believed to be competitive.

VI. CONCLUSION

In this paper, we presented NKind, an SMT-based model
checker for Lustre. Although there are a number of other tools
that solve infinite-state model checking problems, NKind inte-
grated their advantages and made the difference. We described
its design architecture and functionalities, and emphasized on
its extensibility and the support for liveness properties. As
far as we know, our liveness extension made NKind the first
model checker for Lustre that support both safety and liveness
properties, bridging the gap in liveness property checking in
Lustre. In the preliminary benchmarks, NKind is proved to be
suitable for property verification of industrial control systems,
and is rather competitive comparing to the existing model
checking tools. Future work includes performing more in-
depth optimizations for NKind and improve its performance
of model checking by using more guided techniques.
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