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Abstract— Outlier explanation approaches are employed to 

support analysts in investigating outliers, especially those detected 

by methods which are not intuitively interpretable such as deep 

learning or ensemble approaches. There have been several studies 

on outlier explanation in the last years. Nonetheless, there have 

been no outlier explanation approaches for mixed-type data. In 

this paper we propose multiple approaches for outlier explanation 

on mixed-type data. We benchmark them by using synthetic 

outlier datasets and by generating ground-truth explanation for 

real-world outlier datasets. The results on the various datasets 

show that while there is no approach that dominates others for all 

types of outliers and datasets, some can offer a consistently high 

performance. 
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I.  INTRODUCTION 

Being able to understand the output of a machine learning 
model is a core requirement for its successful deployment in 
real-world applications. Outlier detection models do not always 
fulfill this requirement. To remedy this, a number of outlier 
explanation methods have been proposed in the last years [1–5]. 
Outlier explanation is important because outlier detection 
methods are often used in a more explorative context which 
makes it important for analysts to investigate the results before 
they can take action. Furthermore, outlier detection methods 
often only provide information on whether something is an 
outlier but not why it is an outlier [1, 2, 5]. More recent state-of-
the-art approaches based on deep-learning or ensemble methods 
are especially known for not being easily explainable [6]. This 
includes methods like IForest [7] as well as autoencoders [8]. 
Another aspect, which makes outlier explanation relevant, is the 
fact that all outlier detection methods employ some kind of 
statistical measure to determine the outliers. The problem with 
this is that the statistical measure might select an entry as an 
outlier that does not necessarily match the outlier definition 
within the domain the detector is used [4]. To weed out these 
potential false positives from the results, the analyst has to 
understand why an entry has been selected as an outlier. 

Despite the large number of outlier explanation methods that 
have been proposed so far, most of them have been created for 
numerical data. A few methods explicitly address categorical 
data [9, 10] and one method has been presented which claims to 
work for both numerical as well as mixed-type data but has only 
been evaluated on the former [2]. Data in real-world applications 

is often mixed-type and multiple outlier detection methods and 
adaptions for mixed-type data exist [11–13]. Finding outliers, 
including those that are only apparent when considering both 
numerical and categorical features together, is important for 
uncovering fraud or identifying cyber-attacks. The fact that no 
outlier explanations approaches exist for mixed-type data makes 
the application of state-of-the-art mixed-type outlier detection 
approaches potentially less effective and practical for these and 
other real-world applications. To address this challenge, we 
propose and evaluate multiple variations of outlier explanation 
approaches for outliers detected on mixed-type data. Overall, the 
contribution of this work includes: 

• Multiple adaptions of outlier explanation 
approaches for mixed-type data 

• Creating a benchmark for outlier explanation 
approaches for mixed-type data 

• Recommendations for which methods to use for 
mixed-type data 

The rest of this paper is organized as follows: Sec. II 
introduces related work. Sec. III presents our developed 
approaches. Sec. IV contains the evaluation as well as the 
discussion of our results and in Sec. V we conclude our work. 

II. RELATED WORK 

The first prevalent outlier explanation approach is the so-
called score-and-search approach in which subsets of the 
original full featurespace are created and then scored using a 
scoring metric. The subset featurespace in which an outlier 
receives the highest score is selected as the explaining subspace 
for that outlier. Multiple variations of this score-and-search 
approach have been proposed, focusing on reducing the number 
of subspaces to score [3, 4, 14–16] and on making the scores 
comparable between subspaces of different dimensionality [3, 
15, 16]. 

The second prevalent approach is the so-called feature 
transformation and importance approach. Most of these 
approaches work by using a classifier that is trained to 
differentiate between the inliers and the outliers to explain. Then 
a feature selection technique like Lasso is used to determine the 
importance of the individual features for this classification task 
[5, 17–19]. One technique that is similar to this approach is to 
train a classification model and to then extract an explanation 
using the general model explanation technique SHAP which was 
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presented by [20]. SHAP is a method derived from game theory 
and attributes credit to each feature for the achieved prediction. 
In outlier explanation, this credit attribution is then used as the 
feature importance. This approach is, in combination with a 
classifier, used as a benchmark for the approaches presented by 
[2] and [1]. 

The approach by [1], called ATON, determines the feature 
importance by using a neural network with self-attention that 
learns to increase the distance between outlier and inlier. They 
use a triplet-loss by using the outlier to explain and sampling 
inliers from the neighborhood of that outlier as well as random 
inliers. After training the network, the self-attention is extracted 
from the network as the feature importance. They benchmark 
their approach against other numerical explanation approaches 
with their approach achieving superior performance. 

The approach by [2], called Explainer, is an approach which 
works similar to isolation forests. It uses isolation trees which 
are built by performing splits in those leaves that contain the 
outlier. Leaves are split in such a way that the size of the 
resulting leaf containing the outlier is as small as possible [2]. At 
the end of the training, rules are extracted from the individual 
trees and the rules which are the most frequent among all trees 
are presented to the user to explain the outliers. The rule 
frequency is also used to determine the feature importance. This 
approach claims to work for mixed-type data but is not evaluated 
for it. 

One prevalent way of differentiating outliers from inliers is 
their distance [21]. This is used in the approach by [1] when 
determining the local neighborhood of an outlier to select an 
inlier to differentiate it from. Since their method is designed for 
numerical data, they utilize simple Euclidean distance. 
However, the Euclidean distance might not be suitable when 
determining distances in mixed-type data [21]. 

Multiple approaches have been suggested to make mixed-
type data usable in single-type methods. One-hot encoding is one 
of the most prevalent methods of allowing mixed-type data to be 
used in numerical methods [21]. In one-hot encoding, a set of 
binary dimensions is created for each categorical feature where 
each dimension stands for one unique feature value within the 
categorical features. 

There are numerous distance metrics which have been 
designed for numerical data such as Euclidean or Manhattan 
distance [21]. Only a few have been designed for mixed-type 
data. One metric specifically designed for mixed-type data is the 
Gower distance [22]. 

III. IMPLEMENTATION 

To develop an outlier explanation approach for mixed-type 
data, we used the currently best-performing method on 
numerical data, called ATON [1], as a foundation. We call the 
overarching family of our approaches MIXATON. We then 
designed multiple variations of this approach while 
incorporating specific adjustments for mixed-type data. The 
proposed methods are MIXATON_OE_SUM, 
MIXATON_OE_AVG, MIXATON_GD and MIXATON_EL. 

1. MIXATON_OE_SUM This approach works by first encoding 
the categorical features using one-hot encoding and joining them 
with the numerical features. The neighborhood search for 
identifying inlier samples from the neighborhood of the outlier 
is then performed on this preprocessed dataset using k nearest 
neighbor with Euclidean distance. These, together with random 
inlier samples and the outlier are subsequently used to train the 
network. Afterwards, the learned self-attention is extracted from 
the network. To obtain the feature importance for the categorical 
features from the learned self-attention, the attention is added up 
for each created one-hot encoded feature per categorical feature. 
For the numerical features, the obtained attention can be used 
directly as importance. This way, one unique feature importance 
value is obtained per feature. 

2. MIXATON_OE_AVG This variant is mostly equivalent to the 
MIXATON_OE_SUM approach. The key difference is that the 
attention for one-hot encoded categorical features is not summed 
but instead averaged to obtain the final importance of each 
categorical feature. This is done to prevent a potential 
overweighing of categorical features that could occur in the 
summing approach. 

3. MIXATON_GD This approach addresses the potential 
unsuitability of using the Euclidean distance in the neighborhood 
search on one-hot encoded data for determining samples. This is 
done by using the Gower distance, as it is a distance metric 
specifically designed for mixed-type data, on the unprocessed 
dataset for determining the training samples. Only after 
determining the samples, the data is one-hot encoded and used 
for training the network. 

4. MIXATON_EL The final variant we propose is the 
MIXATON_EL approach. In this approach, the categorical 
features are one-hot encoded in the beginning before the 
neighborhood search. To mitigate the effect of the resulting one-
hot encoded features being seen as independent [23], embedding 
layers are used in this approach. The neural network is amended 
with one embedding layer for each categorical feature. The layer 
size is chosen for each categorical feature as half its cardinality. 
After the training of the network, the importance for the 
categorical features is averaged based on the resulting 
performance for each embedding layer. 

To benchmark our developed variations, we used the only 
method which has been explicitly proposed for mixed-type data 
so far, the Explainer approach by [2] as well as XGBoost in 
combination with SHAP. 

IV. EVALUATION 

In our evaluation, we first created suitable datasets on which 
we subsequently applied the different approaches. 

A. Creating suitable datasets for evaluation 

To be able to evaluate the explanation methods, we required 
both knowledge about which entries within the dataset are 
outlying as well as which features make these entries outlying. 
To achieve this, we followed two different approaches. 

 

 



 

 

1) Synthetic outliers 
For our first method, we adapt an approach which has been 

used for creating evaluation datasets in mixed-type outlier 
detection studies [11, 12]. In this approach datasets without 
obvious outliers are used and then artificial outliers are injected 
by shifting values in numerical features and swapping categories 
in categorical features. This way both the outliers as well as the 
responsible features are available as a ground-truth. The 
approach works by randomly selecting 10% of entries in the 
dataset. We then randomly selected 30% of the features of each 
of those entries. If the feature is numeric its value gets shifted by 
two times the feature’s standard deviation. In cases in which the 
feature is categorical or binary the feature value is replaced by 
another value of that feature. The datasets we used are the 
Australian credit (a_credit), German credit (g_credit), Heart, 
Thoracic surgery (thoracic), Auto MPG and Contraceptive 
(contra) datasets from the UCI ML repository 
(https://archive.ics.uci.edu/ml/index.php). 

2) Pseudo-ground-truth for real outliers 
The advantage of using injected outliers is that it is 

objectively clear what caused the outliers but they might not 
accurately reflect what real outliers look like. To address this 
potential limitation, we created a second benchmarking dataset 
using datasets with real outliers, also from the UCI ML 
repository. 

To generate pseudo-ground-truth explanations, all feature 
subspaces of these datasets were created and the outliers were 
scored using IForest, with one-hot encoded categorical features, 
as well as SPAD [24] and MIXMAD [12] as mixed-type outlier 
detection methods. Since it is not certain whether the used 
methods are dimensionally unbiased [16], the rank of the outlier 
in each subspace is used to determine the explaining subspace. 
This way, three ground-truth subspaces are obtained for each of 
the datasets. Since all subspaces had to be created for this 
approach, we only selected datasets with a dimensionality of 15 
or less. This is done because with 16 dimensions or more over 
65,000 subspaces would have to be scored using each method 
which would have been computationally infeasible for multiple 
datasets. 

B. Conducting the evaluation 

We evaluated our proposed approaches as well as the already 
existing method by [2], called Explainer, as well as XGBoost in 
combination with SHAP on the created datasets. We used 
multiple metrics to compare the methods’ performance. All 
evaluated explanation methods return an ordered list of 
explaining features which we used, together with the ground-
truth labels, to determine the performance. For providing a fair 
comparison with the Explainer method which only returns a 
limited subset of features, we employed R-Precision as a 
measure [25]. Using this metric, the Explainer method did not 
provide good results. The rigid way of splitting for specific 
feature values on categorical data might not be able to account 
for more complex outliers and thus leads to worse performance. 

Since the Explainer method showcased the lowest 
performance and it does not return a ranking for the full 
featurespace, we are comparing the other methods on the 
complete featurespace using average precision (AP).The result 

for the synthetic outliers can be seen in TABLE I. When taking 
the whole feature set into account both the approach of summing 
the importance and the approach of averaging the importance 
seem to provide good results on the synthetic outliers. 

TABLE I.  AVERAGE PRECISION ON SYNTHETIC OUTLIERS 
 

XGBoost 

SHAP 

MIXATON_ 

OE_SUM 

MIXATON_ 

GD 

MIXATON_ 

OE_AVG 

MIXATON_ 

EL 

a_credit 0.3928 0.4091 0.4153 0.4193 0.4047 

autompg 0.4457 0.4845 0.4276 0.4468 0.4591 

contra 0.5283 0.5191 0.4954 0.5575 0.4002 

g_credit 0.4090 0.4250 0.4202 0.4237 0.4165 

heart 0.3551 0.4035 0.3521 0.4022 0.4023 

thoracic 0.3775 0.4182 0.4145 0.4098 0.3945 

avg 0.4181 0.4432 0.4208 0.4432 0.4129 

 

The result rated via the AP for the real outliers can be seen 
in TABLE II. All MIXATON approaches provide good 
performance with the method using the Gower distance achieved 
the best performance.  

TABLE II.  AVERAGE PRECISION ON REAL OUTLIERS 

Dataset 
XGBoost 

SHAP 

MIXATON

_ 

OE_SUM 

MIXATON

_ 

GD 

MIXATON

_ 

OE_AVG 

MIXATON

_ 

EL 

abalone_iforest 0.4468 0.4218 0.4162 0.4309 0.5271 

abalone_mixmad 0.5308 0.6089 0.5973 0.6308 0.6382 

abalone_spad 0.3486 0.4694 0.4747 0.4577 0.4996 

adap_iforest 0.4091 0.3486 0.3766 0.4109 0.3721 

adap_mixmad 0.4067 0.4320 0.4285 0.3569 0.3961 

adap_spad 0.3465 0.2734 0.3225 0.3400 0.2931 

credit_iforest 0.4112 0.4440 0.4297 0.3894 0.3871 

credit_mixmad 0.4522 0.4492 0.4333 0.4094 0.4115 

credit_spad 0.3438 0.3863 0.3858 0.3526 0.3460 

heart_iforest 0.3642 0.3982 0.4096 0.3881 0.3937 

heart_mixmad 0.4445 0.4498 0.4693 0.4526 0.4616 

heart_spad 0.3680 0.3923 0.4069 0.3529 0.3628 

mammography_iforest 0.6389 0.6870 0.7124 0.6327 0.5444 

mammography_mixm

ad 
0.6995 0.7406 0.7254 0.7426 0.6492 

mammography_spad 0.6483 0.6705 0.6786 0.6554 0.5889 

avg 0.4573 0.4781 0.4844 0.4669 0.4581 

 

Some of the key observations for the overall results are: 

1. No single approach is always superior or inferior. This is to 

be expected since each data set has different characteristics. 

2. Certain approaches provide consistently better 

performance on a large variety of ground truth labels and 

datasets. The MIXATON_GD, MIXATON_OE_SUM and 



 

 

MIXATON_OE_AVG approaches provide the best 

performance. This is notable, since these approaches have 

been introduced for the first time in this paper. 

3. There are some approaches that are stronger on certain 

datasets while other approaches are stronger on other 

datasets (XGBoost and SHAP, MIXATON_GD). This 

insight means that it might be possible to construct 

approaches that utilize the strength of multiple approaches 

to obtain a superior performance. 

4. The result of methods might depend on how important 

either the numerical or categorical features are for making 

a certain entry an outlier. Thus, the method 

MIXATON_OE_SUM might perform better on a dataset in 

which the categorical features are more important for 

making an outlier outlying while MIXATON_OE_AVG 

might perform better when the responsibility is evenly 

distributed between the feature types. This should be 

further investigated in future research. 

V. CONCLUSION 

In this paper, we propose multiple approaches for explaining 
outliers on mixed-type data. We also perform the first 
benchmark of outlier explanation approaches on mixed-type 
data and describe two approaches for preparing suitable 
benchmark datasets for this purpose. We show that our proposed 
approaches MIXATON_OE_SUM, MIXATON_OE_AVG and 
MIXATON_GD show good performance on various datasets and 
outperform previously introduced approaches. Using these 
methods, outlier detection can be made more useful in domains 
in which it is applied on mixed-type data. 

One important question that is raised in this comparison of 
multiple approaches is: Which explanation method is the most 
suitable for explaining my detected outliers? Our experimental 
findings suggest that there is no one best performing outlier 
explanation measure for all mixed-type datasets. Although, the 
different MIXATON variations we propose, apart from 
MIXATON_EL, all seem to provide consistently good 
performance on most datasets.  

One possible approach to mitigate the fact that different 
methods perform better on different datasets would be to 
combine explanation methods in an ensemble approach. This 
should be investigated in future research. 
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