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Abstract—Automatic code summarization generates high-level 

natural language descriptions of code snippets, which can benefit 

software maintenance and code comprehension. Recently, 

Transformer-based models achieved state-of-the-art performance 

on code summarization tasks. However, there are data gaps in 

neural model training for some programming languages. To fill 

this gap, we propose a novel transfer learning approach to 

accurately transfer knowledge between Transformer-based 

models. We train a discriminator to identify which heads of the 

multi-head attention module should be transferred. On this basis, 

we define a transfer strategy of parameter matrices. We evaluated 

the proposed transfer learning approach on four state-of-the-art 

Transformer-based code summarization models. Experimental 

results show that models with transferred knowledge outperform 

original models up to 10.70% in BLEU, 5.36% in ROUGE-L, and 

4.34% in METEOR. 
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I.  INTRODUCTION 

Automatic code summarization is a seq2seq (sequence to 
sequence) task of automatically generating natural sentences to 
describe a code snippet. Due to the general lack of high-quality 
source code comments in software development, automatic code 
summarization tools are of great significance in helping 
developers understand code and improve development 
efficiency. In recent years, due to the outstanding performance 
of Transformer [7] on seq2seq tasks, many studies on automatic 
code summarization leverage Transformer-based architectures 
[1, 2, 5, 8]. These state-of-the-art studies have proven that 
Transformer architecture is highly effective in capturing 
dependencies between code tokens. However, such neural code 
summarization models require a large number of <code, 
comment> pairs as ground truth data for training. For 
mainstream programming languages such as Java and Python, 
there are already large public datasets such as SIT [3] and 
CodeSearchNet [4] with millions of records. However, there is 
a lack of available large corpus for programming languages with 
smaller communities, such as Solidity that specializes in smart 
contract development on blockchain platforms. It leads to the 
poor performance of directly training neural models on such 
programming languages. 

A potential solution to the gaps mentioned above is to 
transfer specific knowledge from well-trained code 
summarization models to less-trained models through transfer 

learning. The idea comes from the intuition that shared features 
(types, syntax, object-oriented characteristics, etc.) exist in 
different programming languages. As for Transformer, each 
parallel attention layer (head) pays attention to an individual 
subspace, which means that some heads may focus on shared 
features among different programming languages. This paper 
proposes a novel transfer learning approach to accurately 
transfer the Transformer's multi-head attention between 
programming languages. We train a discriminator D to filter 
heads that focus on similar features in transform-based models 
of different programming languages. Then we transfer the 
corresponding model parameters from the source domain to the 
target domain according to the similarity weights of heads. Next, 
we train the model of the target domain to fit its dataset. Our 
contributions are as follows: 

• We propose the transfer learning approach dedicated to 
conducting accurate knowledge transfer between 
Transformer-based code summarization models, which 
can improve the performance of models in the target 
domain and speed up the training process. 

• Taking Python and Solidity as examples, we compare 
the performance with and without the proposed transfer 
learning approach on four state-of-the-art Transformer-
based models. The experimental results demonstrate 
the maximum improvement reaches 10.70%, 5.36%, 
and 4.34% in BLEU, ROUGE-L, and METEOR, 
respectively. 

II. BACKGROUND AND RELATED WORK 

Attention mechanism has become an integral part of 
sequence modeling, allowing the model to select the more 
critical information to the current task. The self-attention 
mechanism is a variant of the attention mechanism, which 
reduces the dependence on external information and better 
captures the internal correlations of data or features. The 
attention is calculated as equation 1. 

𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝘛

√𝑑𝑘
)𝑉 (1) 

Where Q, K, V are three tensors of the input, 𝑑𝑘 is the dimension 
of Q and K. In self-attention mechanism, Q=K=V. 
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Figure 1.  The feature space covered by different heads. Apparently, head 1 

covers more shared features between A and B than head 2, 3. 

Transformer is an encoder-decoder model relying on 
attention mechanism as the main component, which enables 
parallel computing and improves the feature extraction ability. 
As the state-of-the-art solutions to code summarization tasks, 
Transformer-based models have been widely studied. Ahmad [1] 
used Transformers to extract textual and structural features from 
code token sequence and AST (Abstract Syntax Tree), 
respectively. Clement [2] proposed Pymt5, a Python method 
text-to-text transfer Transformer, which is trained to translate 
between all pairs of Python method feature combinations. Liu [5] 
proposed a joint summary generation model based on improving 
Transformer, adding pointer mechanism and consistency loss 
function to keep the original meaning in generated sentences as 
much as possible. Wang [8] designed a structure encoding 
algorithm to represent hierarchical code structures. They 
combined it with BERT (a Transformer-based pre-trained model) 
to better extract code structural features. These mentioned works 
show Transformer-based models outperform existing RNN- and 
LSTM-based models by a large margin, playing the leading role 
in code summarization tasks recently. 

III. OUR APPROACH 

The knowledge mentioned in this paper is the ability of the 
model to extract features from the input. Supposing there are two 
programming languages A and B, where A has a well-trained 
transformer-based code summarization model  𝑀𝐴 while B has a 
structurally identical but undertrained model  𝑀𝐵. Our target is 
accurately transferring knowledge from 𝑀𝐴  to 𝑀𝐵  to facilitate 
the training process of 𝑀𝐵. Our research questions include:  

• RQ1: How to identify the knowledge (heads) we need 
to transfer?  

• RQ2: How to transfer the selected knowledge between 
Transformer-based models?  

We address RQ1 and RQ2 in section III-A and III-B, 
respectively. 

 

Figure 2.  The structure and training process of the discriminator D. The left 

and right half are of the same Transformer 𝑀𝐴 trained by source language A. D 

receives data from the multi-head attention module and tries to identify whether 

inputs are from language A or B. 

A. Transferable Knowledge Identification 

To address RQ1, we need a strategy to identify transferable 

knowledge which fits both source domain and target domain. 

For Transformer-based architectures with h heads, the model 

learns vector representations 𝑧1, 𝑧2, … , 𝑧ℎ from each head. Then 

the multi-head attention representation Z is calculated as 

equation 2. 
𝑀𝑢𝑙𝑡𝑖𝐴𝑡𝑡𝑛𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑧1, 𝑧2, … , 𝑧ℎ)𝑊

𝑂 (2) 

where 

𝑧𝑖 = 𝐴𝑡𝑡𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (3) 

Where 𝑊𝑖
𝑄 ,𝑊𝑖

𝐾 ,𝑊𝑖
𝑉 and 𝑊𝑂 are parameter matrices of linear 

layers as Fig. 3 shows. The multi-head attention module of 

Transformer allows the model to jointly attend to information 

from h different representation subspaces at different positions 

[7]. As Fig.1 shows, some heads may focus on more shared 

features between A and B than others, which means such heads 

can contribute more transferable knowledge. We call them 

transferable heads. 

Supposing we already have a well-trained Transformer-based 

model 𝑀𝐴  for A. We train a discriminator D to identify 

transferable heads in 𝑀𝐴. As Fig. 2 shows, D can be regarded as 

a binary classification model which receives a code 

representation Z of 𝑀𝐴 's multi-head attention module and tries 

to identify whether Z is from A or B. Since the code token 

sequence is generally long, we use a Convolutional layer and a 

Pooling layer (average pooling) to reduce the dimensionality of 

the input. Then the input goes through an LSTM layer and a 

Softmax layer, outputs the probability P of being classified into 

 



the target class. The classification result is based on P with a 

threshold of 0.5. The training target is to minimize the loss as 

equation 4. 

𝐿𝑜𝑠𝑠 = −(𝑦 ⋅ log(𝑦̂) + (1 − 𝑦) ⋅ log(1 − 𝑦̂)) (4) 
Where 𝑦̂ is the probability that the model predicts the sample as 

a positive example; 𝑦 is the label of the sample, which takes a 

value of 1 if the sample is positive, and 0 otherwise. 

The trained D identifies which programming language Z is 

from. The rationale is that D captures the non-shared features 

between A and B. Since the output of multi-head attention 

comes from the weighted concatenate of each head, these non-

shared features also come from the subspaces of heads. Non-

transferable heads contribute more to non-shared features, 

helping D distinguish A from B; Transferable heads are the 

opposite. We use the F1 score to represent the predictive 

performance of D since it considers both precision and recall. 

𝐹1 =
2𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(5) 

 

To evaluate the contribution of each head to D, we replace 

the concatenate of h different heads as h repeated heads in the 

multi-head attention module. Then the Z becomes 𝑍𝑖  for the i-

th head as equation 6. 

𝑍𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑧𝑖 , 𝑧𝑖 , … , 𝑧𝑖⏞      
ℎ

)𝑊𝑂 (6) 

B. Transfer Process 

In this way, the feature space of 𝑍𝑖 is totally contributed by 
the i-th head. Since Z has the same size as Z, it can be directly 
predicted by D. The strategy of selecting transferable heads is 
based on the F1 score of each head. Head with a lower F1 score 
means its output 𝑍𝑖 is more difficult to be predicted by D, i.e., 
this head more focuses on shared features. In this paper, we 
regard the F1 score of the multi-head module as a threshold: For 
heads with a lower F1 score than the threshold, we identify them 
as transferable heads. 

The knowledge transfer process shows as Fig. 3. According 
to equation 1 and 3, the output 𝑧𝑖 of the i-th head is calculated 
by linear transformations of input Q, K, V. Thus, the knowledge 

transfer is to transfer the parameter matrices 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 , 𝑊𝑖

𝑉  of 

linear layers. Supposing there is an undertrained multi-head 
attention module of B, we transfer the linear layer of the i-th 
transferable head from A to B. Then the output 𝑧𝑖

′  of the 
transferred head is 

𝑧𝑖
′ =  𝐴𝑡𝑡𝑛(𝑄𝑊𝑖

𝑄 , 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉)𝑡𝑖 (7) 

Where 𝑡𝑖 is the transfer weight normalized from the F1 score of 
the i-th head. 

After 𝑀𝐵 receives n transferable heads from 𝑀𝐴, 𝑀𝐵 is able 
to capture some common features between A and B as well. 
However, there are domain-specific features of B that need to be 
captured by 𝑀𝐵 to fit the code summarization task in its domain. 
Thus, we freeze the transferred heads and train other components 

(𝑊𝑖
𝑂 , feed-forward layers, and decoder) of 𝑀𝐵  on its dataset. 

Supposing there are n transferred heads, the remaining h - n 
heads are trained from scratch to capture domain-specific 
features of B. 

IV. EXPERIMENTS AND DISCUSSION 

A. Dataset and Baselines 

We take Python as the source domain and Solidity as the 
target domain in our experiments. These two are both object-
oriented programming languages, while Solidity is used in the 
blockchain area. Their shared features (types, object-oriented 
characteristics, etc.) and non-shared domain-specific features are 
significant, which is ideal for transfer learning. 

We randomly selected 450K Python <code, comment> pairs 
from the widely used corpus CodeSearchNet [4], and 45K 
Solidity pairs from the corpus used in [6] to build our dataset. 
We split original code texts by a set of symbols, i.e., { . ,"~' : \* 
() ! - (space)}. Each token written in camel-case or snake-case 
shall be segmented into the original word. For example, the 
token helloWorld or hello_world shall be segmented into two 
separate words: hello and world. On this basis, we build our 
vocabularies for sentence generation. We use four state-of-the-
art Transformer-based code summarization model [1, 2, 5, 8] 
introduced in section II as baselines. 

  

Figure 3. The knowledge transfer process. Taking head 1 as the transferable head, its parameter matrices of linear layers are transferred from  𝑀𝐴 to  𝑀𝐵. 

 



B. Experimental Settings and Metrics 

The word embedding size and multi-head attention size are 
both set to be 512. The number of heads h is set to be 16. The 
mini-batch size is set to be 64 with a learning rate of 0.001 for 
both Transformer-based models and the discriminator. We use 
10-fold cross-validation for experiments and run 10 epochs in 
the training processes. All the experiments in this paper are 
implemented with Python 3.7 and run on Google Colab with an 
NVIDIA Tesla P100 GPU. 

We evaluate the performance of code summarization task 
based on three widely used metrics, BLEU, ROUGE-L, and 
METEOR. These three objective metrics are close to human 
evaluation criteria. BLEU is obtained by calculating the n-gram 
matches between the candidate and reference sentences. We use 
BLEU 1-4 as our metrics as in [8]. ROUGE-L is a metric that 
matches the longest common sequence between two sentences 
and returns the recall rate. METEOR combines both uni-gram 
matching precision and recall rate using harmonic mean. 

C. Experimental Results 

Table I compares the effectiveness of proposed transfer 
learning approach between four baselines on our dataset. The 
transfer learning mechanism brings improvement of BLEU 1-4 
ranged from 4.31% (BLEU-3 of [5]) to 10.70% (BLEU-4 of [1]); 
For ROUGE-L, the range of improvement is from 2.82% ([2]) 
to 5.36% ([1]); For METEOR, the range of improvement is from 
1.78% ([8]) to 4.34% ([2]). Overall, the performance of the four 
baselines in the target domain has been significantly improved 
after leveraging transfer learning. 

D. Threats to Validity 

Similarity between programming languages. Transfer 

learning requires a high similarity between the data features of 

the source and target domains. Both Python and Solidity used 

in our experiments are object-oriented languages, so it is 

adequate to use transfer learning. It is not applicable to transfer 

knowledge between programming languages with significant 

differences in structure and syntax, such as an object-oriented 

language and an assembly language. 

Number of transferable heads. Here is a trade-off: Fewer 

transferable heads mean less knowledge would be transferred; 

More transferable heads would reduce the model's ability to 

learn domain-specific features because there would be fewer 

trainable heads. For models with different numbers of heads, 

the ideal threshold of identifying transferable heads may vary 

according to experimental results. 

V. CONCLUSION 

We propose a transfer learning approach to accurately 

transfer knowledge between Transformer-based models for 

code summarization tasks. We train a discriminator to identify 

transferable heads that focus more on common features between 

source and target domains. Our approach only transfers 

knowledge in similar feature spaces between domains, which is 

more adaptive than simply copying and freezing neural layers. 

We conducted experiments on a dataset built from a large public 

corpus, proving the effectiveness of our approach. 
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TABLE I.  PERFORMANCE COMPARISON (IN PERCENTAGE) OF BASELINES WITH AND WITHOUT TRANSFER LEARNING. 

Language Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L METEOR 

Python 

[1] 
[2] 

[5] 

[8] 

43.31 
40.17 

41.05 

39.39 

38.54 
35.42 

36.22 

35.75 

35.25 
31.09 

33.02 

34.87 

31.02 
26.34 

28.39 

27.69 

39.26 
33.67 

34.15 

38.66 

17.17 
14.18 

15.38 

16.54 

Solidity 

[1] 

[1]+TL 

27.31 

33.50 

23.13 

30.37 

19.65 

28.26 

14.50 

25.20 

21.09 

26.45 

9.96 

13.19 

[2] 

[2]+TL 

24.49 

30.56 

21.72 

26.21 

18.37 

23.33 

12.66 

20.01 

18.63 

21.45 

7.09 

11.43 

[5] 

[5]+TL 

24.99 

31.87 

22.37 

28.08 

19.45 

23.76 

13.78 

18.44 

18.56 

21.96 

8.34 

10.85 

[8] 
[8]+TL 

22.18 
31.57 

17.46 
26.35 

14.12 
23.88 

10.49 
19.29 

17.30 
20.96 

9.24 
11.02 

a. Python is the source domain, and Solidity is the target domain. TL is the abbreviation of the proposed transfer learning approach. 

 


