
Towards Accurate Knowledge Transfer between

Transformer-based Models for Code Summarization

Chaochen Shi 1, Yong Xiang 2, Jiangshan Yu 3, and Longxiang Gao 4

1, 2 School of Information Technology, Deakin University, Australia
3 Faculty of Information Technology, Monash University, Australia

4 Qilu University of Technology (Shandong Academy of Sciences), China

Email: {shicha, yong.xiang}@deakin.edu.au, j.yu.research@gmail.com, longx.gao@gmail.com

Abstract—Automatic code summarization generates high-level

natural language descriptions of code snippets, which can benefit

software maintenance and code comprehension. Recently,

Transformer-based models achieved state-of-the-art performance

on code summarization tasks. However, there are data gaps in

neural model training for some programming languages. To fill

this gap, we propose a novel transfer learning approach to

accurately transfer knowledge between Transformer-based

models. We train a discriminator to identify which heads of the

multi-head attention module should be transferred. On this basis,

we define a transfer strategy of parameter matrices. We evaluated

the proposed transfer learning approach on four state-of-the-art

Transformer-based code summarization models. Experimental

results show that models with transferred knowledge outperform

original models up to 10.70% in BLEU, 5.36% in ROUGE-L, and

4.34% in METEOR.

Keywords-Transfer Learning; Code Summarization

I. INTRODUCTION

Automatic code summarization is a seq2seq (sequence to
sequence) task of automatically generating natural sentences to
describe a code snippet. Due to the general lack of high-quality
source code comments in software development, automatic code
summarization tools are of great significance in helping
developers understand code and improve development
efficiency. In recent years, due to the outstanding performance
of Transformer [7] on seq2seq tasks, many studies on automatic
code summarization leverage Transformer-based architectures
[1, 2, 5, 8]. These state-of-the-art studies have proven that
Transformer architecture is highly effective in capturing
dependencies between code tokens. However, such neural code
summarization models require a large number of <code,
comment> pairs as ground truth data for training. For
mainstream programming languages such as Java and Python,
there are already large public datasets such as SIT [3] and
CodeSearchNet [4] with millions of records. However, there is
a lack of available large corpus for programming languages with
smaller communities, such as Solidity that specializes in smart
contract development on blockchain platforms. It leads to the
poor performance of directly training neural models on such
programming languages.

A potential solution to the gaps mentioned above is to
transfer specific knowledge from well-trained code
summarization models to less-trained models through transfer

learning. The idea comes from the intuition that shared features
(types, syntax, object-oriented characteristics, etc.) exist in
different programming languages. As for Transformer, each
parallel attention layer (head) pays attention to an individual
subspace, which means that some heads may focus on shared
features among different programming languages. This paper
proposes a novel transfer learning approach to accurately
transfer the Transformer's multi-head attention between
programming languages. We train a discriminator D to filter
heads that focus on similar features in transform-based models
of different programming languages. Then we transfer the
corresponding model parameters from the source domain to the
target domain according to the similarity weights of heads. Next,
we train the model of the target domain to fit its dataset. Our
contributions are as follows:

• We propose the transfer learning approach dedicated to
conducting accurate knowledge transfer between
Transformer-based code summarization models, which
can improve the performance of models in the target
domain and speed up the training process.

• Taking Python and Solidity as examples, we compare
the performance with and without the proposed transfer
learning approach on four state-of-the-art Transformer-
based models. The experimental results demonstrate
the maximum improvement reaches 10.70%, 5.36%,
and 4.34% in BLEU, ROUGE-L, and METEOR,
respectively.

II. BACKGROUND AND RELATED WORK

Attention mechanism has become an integral part of
sequence modeling, allowing the model to select the more
critical information to the current task. The self-attention
mechanism is a variant of the attention mechanism, which
reduces the dependence on external information and better
captures the internal correlations of data or features. The
attention is calculated as equation 1.

𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝘛

√𝑑𝑘
)𝑉 (1)

Where Q, K, V are three tensors of the input, 𝑑𝑘 is the dimension
of Q and K. In self-attention mechanism, Q=K=V.

DOI reference number: 10.18293/SEKE2022-111

Figure 1. The feature space covered by different heads. Apparently, head 1

covers more shared features between A and B than head 2, 3.

Transformer is an encoder-decoder model relying on
attention mechanism as the main component, which enables
parallel computing and improves the feature extraction ability.
As the state-of-the-art solutions to code summarization tasks,
Transformer-based models have been widely studied. Ahmad [1]
used Transformers to extract textual and structural features from
code token sequence and AST (Abstract Syntax Tree),
respectively. Clement [2] proposed Pymt5, a Python method
text-to-text transfer Transformer, which is trained to translate
between all pairs of Python method feature combinations. Liu [5]
proposed a joint summary generation model based on improving
Transformer, adding pointer mechanism and consistency loss
function to keep the original meaning in generated sentences as
much as possible. Wang [8] designed a structure encoding
algorithm to represent hierarchical code structures. They
combined it with BERT (a Transformer-based pre-trained model)
to better extract code structural features. These mentioned works
show Transformer-based models outperform existing RNN- and
LSTM-based models by a large margin, playing the leading role
in code summarization tasks recently.

III. OUR APPROACH

The knowledge mentioned in this paper is the ability of the
model to extract features from the input. Supposing there are two
programming languages A and B, where A has a well-trained
transformer-based code summarization model 𝑀𝐴 while B has a
structurally identical but undertrained model 𝑀𝐵. Our target is
accurately transferring knowledge from 𝑀𝐴 to 𝑀𝐵 to facilitate
the training process of 𝑀𝐵. Our research questions include:

• RQ1: How to identify the knowledge (heads) we need
to transfer?

• RQ2: How to transfer the selected knowledge between
Transformer-based models?

We address RQ1 and RQ2 in section III-A and III-B,
respectively.

Figure 2. The structure and training process of the discriminator D. The left

and right half are of the same Transformer 𝑀𝐴 trained by source language A. D

receives data from the multi-head attention module and tries to identify whether

inputs are from language A or B.

A. Transferable Knowledge Identification

To address RQ1, we need a strategy to identify transferable

knowledge which fits both source domain and target domain.

For Transformer-based architectures with h heads, the model

learns vector representations 𝑧1, 𝑧2, … , 𝑧ℎ from each head. Then

the multi-head attention representation Z is calculated as

equation 2.
𝑀𝑢𝑙𝑡𝑖𝐴𝑡𝑡𝑛𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑧1, 𝑧2, … , 𝑧ℎ)𝑊

𝑂 (2)

where

𝑧𝑖 = 𝐴𝑡𝑡𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (3)

Where 𝑊𝑖
𝑄 ,𝑊𝑖

𝐾 ,𝑊𝑖
𝑉 and 𝑊𝑂 are parameter matrices of linear

layers as Fig. 3 shows. The multi-head attention module of

Transformer allows the model to jointly attend to information

from h different representation subspaces at different positions

[7]. As Fig.1 shows, some heads may focus on more shared

features between A and B than others, which means such heads

can contribute more transferable knowledge. We call them

transferable heads.

Supposing we already have a well-trained Transformer-based

model 𝑀𝐴 for A. We train a discriminator D to identify

transferable heads in 𝑀𝐴. As Fig. 2 shows, D can be regarded as

a binary classification model which receives a code

representation Z of 𝑀𝐴 's multi-head attention module and tries

to identify whether Z is from A or B. Since the code token

sequence is generally long, we use a Convolutional layer and a

Pooling layer (average pooling) to reduce the dimensionality of

the input. Then the input goes through an LSTM layer and a

Softmax layer, outputs the probability P of being classified into

the target class. The classification result is based on P with a

threshold of 0.5. The training target is to minimize the loss as

equation 4.

𝐿𝑜𝑠𝑠 = −(𝑦 ⋅ log(𝑦̂) + (1 − 𝑦) ⋅ log(1 − 𝑦̂)) (4)
Where 𝑦̂ is the probability that the model predicts the sample as

a positive example; 𝑦 is the label of the sample, which takes a

value of 1 if the sample is positive, and 0 otherwise.

The trained D identifies which programming language Z is

from. The rationale is that D captures the non-shared features

between A and B. Since the output of multi-head attention

comes from the weighted concatenate of each head, these non-

shared features also come from the subspaces of heads. Non-

transferable heads contribute more to non-shared features,

helping D distinguish A from B; Transferable heads are the

opposite. We use the F1 score to represent the predictive

performance of D since it considers both precision and recall.

𝐹1 =
2𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(5)

To evaluate the contribution of each head to D, we replace

the concatenate of h different heads as h repeated heads in the

multi-head attention module. Then the Z becomes 𝑍𝑖 for the i-

th head as equation 6.

𝑍𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑧𝑖 , 𝑧𝑖 , … , 𝑧𝑖⏞
ℎ

)𝑊𝑂 (6)

B. Transfer Process

In this way, the feature space of 𝑍𝑖 is totally contributed by
the i-th head. Since Z has the same size as Z, it can be directly
predicted by D. The strategy of selecting transferable heads is
based on the F1 score of each head. Head with a lower F1 score
means its output 𝑍𝑖 is more difficult to be predicted by D, i.e.,
this head more focuses on shared features. In this paper, we
regard the F1 score of the multi-head module as a threshold: For
heads with a lower F1 score than the threshold, we identify them
as transferable heads.

The knowledge transfer process shows as Fig. 3. According
to equation 1 and 3, the output 𝑧𝑖 of the i-th head is calculated
by linear transformations of input Q, K, V. Thus, the knowledge

transfer is to transfer the parameter matrices 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 , 𝑊𝑖

𝑉 of

linear layers. Supposing there is an undertrained multi-head
attention module of B, we transfer the linear layer of the i-th
transferable head from A to B. Then the output 𝑧𝑖

′ of the
transferred head is

𝑧𝑖
′ = 𝐴𝑡𝑡𝑛(𝑄𝑊𝑖

𝑄 , 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉)𝑡𝑖 (7)

Where 𝑡𝑖 is the transfer weight normalized from the F1 score of
the i-th head.

After 𝑀𝐵 receives n transferable heads from 𝑀𝐴, 𝑀𝐵 is able
to capture some common features between A and B as well.
However, there are domain-specific features of B that need to be
captured by 𝑀𝐵 to fit the code summarization task in its domain.
Thus, we freeze the transferred heads and train other components

(𝑊𝑖
𝑂 , feed-forward layers, and decoder) of 𝑀𝐵 on its dataset.

Supposing there are n transferred heads, the remaining h - n
heads are trained from scratch to capture domain-specific
features of B.

IV. EXPERIMENTS AND DISCUSSION

A. Dataset and Baselines

We take Python as the source domain and Solidity as the
target domain in our experiments. These two are both object-
oriented programming languages, while Solidity is used in the
blockchain area. Their shared features (types, object-oriented
characteristics, etc.) and non-shared domain-specific features are
significant, which is ideal for transfer learning.

We randomly selected 450K Python <code, comment> pairs
from the widely used corpus CodeSearchNet [4], and 45K
Solidity pairs from the corpus used in [6] to build our dataset.
We split original code texts by a set of symbols, i.e., { . ,"~' : *
() ! - (space)}. Each token written in camel-case or snake-case
shall be segmented into the original word. For example, the
token helloWorld or hello_world shall be segmented into two
separate words: hello and world. On this basis, we build our
vocabularies for sentence generation. We use four state-of-the-
art Transformer-based code summarization model [1, 2, 5, 8]
introduced in section II as baselines.

Figure 3. The knowledge transfer process. Taking head 1 as the transferable head, its parameter matrices of linear layers are transferred from 𝑀𝐴 to 𝑀𝐵.

B. Experimental Settings and Metrics

The word embedding size and multi-head attention size are
both set to be 512. The number of heads h is set to be 16. The
mini-batch size is set to be 64 with a learning rate of 0.001 for
both Transformer-based models and the discriminator. We use
10-fold cross-validation for experiments and run 10 epochs in
the training processes. All the experiments in this paper are
implemented with Python 3.7 and run on Google Colab with an
NVIDIA Tesla P100 GPU.

We evaluate the performance of code summarization task
based on three widely used metrics, BLEU, ROUGE-L, and
METEOR. These three objective metrics are close to human
evaluation criteria. BLEU is obtained by calculating the n-gram
matches between the candidate and reference sentences. We use
BLEU 1-4 as our metrics as in [8]. ROUGE-L is a metric that
matches the longest common sequence between two sentences
and returns the recall rate. METEOR combines both uni-gram
matching precision and recall rate using harmonic mean.

C. Experimental Results

Table I compares the effectiveness of proposed transfer
learning approach between four baselines on our dataset. The
transfer learning mechanism brings improvement of BLEU 1-4
ranged from 4.31% (BLEU-3 of [5]) to 10.70% (BLEU-4 of [1]);
For ROUGE-L, the range of improvement is from 2.82% ([2])
to 5.36% ([1]); For METEOR, the range of improvement is from
1.78% ([8]) to 4.34% ([2]). Overall, the performance of the four
baselines in the target domain has been significantly improved
after leveraging transfer learning.

D. Threats to Validity

Similarity between programming languages. Transfer

learning requires a high similarity between the data features of

the source and target domains. Both Python and Solidity used

in our experiments are object-oriented languages, so it is

adequate to use transfer learning. It is not applicable to transfer

knowledge between programming languages with significant

differences in structure and syntax, such as an object-oriented

language and an assembly language.

Number of transferable heads. Here is a trade-off: Fewer

transferable heads mean less knowledge would be transferred;

More transferable heads would reduce the model's ability to

learn domain-specific features because there would be fewer

trainable heads. For models with different numbers of heads,

the ideal threshold of identifying transferable heads may vary

according to experimental results.

V. CONCLUSION

We propose a transfer learning approach to accurately

transfer knowledge between Transformer-based models for

code summarization tasks. We train a discriminator to identify

transferable heads that focus more on common features between

source and target domains. Our approach only transfers

knowledge in similar feature spaces between domains, which is

more adaptive than simply copying and freezing neural layers.

We conducted experiments on a dataset built from a large public

corpus, proving the effectiveness of our approach.

REFERENCES

[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei
Chang. A transformer-based approach for source code summarization.
arXiv preprint arXiv:2005.00653, 2020.

[2] Colin B Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy,
and Neel Sundaresan. Pymt5: multi-mode translation of natural language
and python code with transformers. arXiv preprint arXiv:2010.03150,
2020.

[3] Wu Hongqiu, Zhao Hai, and Zhang Min. Code summarization with
structure-induced transformer. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics (ACL), 2021.

[4] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and
Marc Brockschmidt. CodeSearchNet challenge: Evaluating the state of
semantic code search. arXiv preprint arXiv:1909.09436, 2019.

[5] Xin Liu and Liutong Xu. A combined model for extractive and abstractive
summarization based on transformer model. In SEKE, pages 396–399,
2020.

[6] Chaochen Shi, Y ong Xiang, Jiangshan Y u, and Longxiang Gao.
Semantic code search for smart contracts. arXiv preprint
arXiv:2111.14139, 2021.

[7] Ashish V aswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is
all you need. Advances in neural information processing systems, 30,
2017.

[8] Ruyun Wang, Hanwen Zhang, Guoliang Lu, Lei Lyu, and Chen Lyu. Fret:
Functional reinforced transformer with bert for code summarization.
IEEE Access, 8:135591–135604, 2020.

TABLE I. PERFORMANCE COMPARISON (IN PERCENTAGE) OF BASELINES WITH AND WITHOUT TRANSFER LEARNING.

Language Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L METEOR

Python

[1]
[2]

[5]

[8]

43.31
40.17

41.05

39.39

38.54
35.42

36.22

35.75

35.25
31.09

33.02

34.87

31.02
26.34

28.39

27.69

39.26
33.67

34.15

38.66

17.17
14.18

15.38

16.54

Solidity

[1]

[1]+TL

27.31

33.50

23.13

30.37

19.65

28.26

14.50

25.20

21.09

26.45

9.96

13.19

[2]

[2]+TL

24.49

30.56

21.72

26.21

18.37

23.33

12.66

20.01

18.63

21.45

7.09

11.43

[5]

[5]+TL

24.99

31.87

22.37

28.08

19.45

23.76

13.78

18.44

18.56

21.96

8.34

10.85

[8]
[8]+TL

22.18
31.57

17.46
26.35

14.12
23.88

10.49
19.29

17.30
20.96

9.24
11.02

a. Python is the source domain, and Solidity is the target domain. TL is the abbreviation of the proposed transfer learning approach.

