
Auto-Encoding GAN for Reducing Mode Collapse
and Enhancing Feature Representation

Xiaoxiang Lu, Yang Zou*, Xiaoqin Zeng, Xiangchen Wu, Pengfei Qiu
Institute of Intelligence Science and Technology, School of Computer and Information,

Hohai University, Nanjing, China
{luxx0824, yzou, xzeng, wxc}@hhu.edu.cn

Abstract—Generative Adversarial Nets (GAN) has been a popular
research topic in processing of images, speech, texts, and videos,
and many other fields. However, GAN still has some drawbacks
such as unstable training and mode collapse. To address these
challenges, this paper proposes an auto-encoding GAN, which is
composed of a set of generators, a discriminator, an encoder and a
decoder. A set of generators is responsible for learning different
modes, accelerating the convergence of the model and preventing
model collapse. The discriminator is used to distinguish between
real samples and generated ones. In order to improve feature
representation of the encoder and prevent multiple generators
from covering a certain mode, an approach consisting of three
phases is proposed accordingly. First, a clustering algorithm is
presented to perceive the distribution of real and generated
samples. Then, cluster center matching is utilized to keep
consistency of the distribution of real and generated samples.
Finally, the encoder and decoder are jointly optimized by the
generated and real samples. Therefore, the encoder can map the
generated and real samples to the embedding space so as to encode
distinguishable features, and the decoder can distinguish from
which generator the generated samples come and from which
mode the real samples come. Experiments are conducted on image
datasets to verify effectiveness of the auto-encoding GAN for
reducing mode collapse and enhancing feature representation.

Keywords-GAN; mode collapse; feature representation; cluster

I. INTRODUCTION

GAN [1] is a generative model proposed by Goodfellow, and
it has a wide range of applications in data generation, style
transfer, image inpainting, etc. [2,3,4,5]. However, GAN suffers
from several problems such as unstable training, blurred images
and mode collapse, etc. Among them, mode collapse has been a
crucial problem that needs to be addressed for GAN. Mode
collapse means that GAN only generates some of all modes, and
others are missing. In order to reduce mode collapse, researchers
have made a number of improvements, which can be
summarized in the following four classes.

1) Adding constraints: Unrolled GAN [6] stabilizes the
training of GAN by K-step cyclic training to avoid the generator
falling into a single mode. CGAN [7] strengthens the
relationship between input and output data by using conditional
information, forcing the generator to learn different modes.

InfoGAN [8] maximizes the mutual information between the
input data and the hidden code to obtain interpretable and
distinguishable features and avoid mode collapse. Mixture
Density GAN [9] encourages the discriminator to conform to
Gaussian mixture distribution in the embedded space, which
ensures that the generator fits Gaussian mixture distribution as
much as possible, covering different modes.

2) Adding generators: The typical models are MADGAN
[10] and MGAN [11]. Unlike GAN, their discriminators not only
need to distinguish between real samples and generated samples,
but also distinguish from which generator the generated samples
come.

3) Modifying loss function: WGAN [12] uses the EM
distance to measure the difference between generated
distribution and real distribution, avoiding the problem of
gradient disappearance of the generator, and making sure the
generated distribution is as close to real distribution as possible
to cover multiple modes.

4) Imposing gradient penalty: DRAGAN [13] imposes a
gradient penalty on the training samples to the discriminator, and
tries to construct a linear function on the training samples to find
the global optimal solution.

In classes 1) and 2), the discriminator only considers the
distribution of the generated samples, but neglects the
distribution of the real samples, which may lead to a problem
that multiple generators cover different parts of a certain mode,
resulting in mode collapse. As for 3) and 4), although the
generator can cover multiple modes, it still retains the
characteristics of continuous mapping in GAN, which may cover
the blank area between modes and generate poor samples,
resulting in training instability.

In order to address the issues of modes collapse and training
instability, this paper proposes an auto-encoding GAN, which
consists of a set of generators, a discriminator, an encoder and a
decoder. The network architecture is shown in Fig. 1, where a
set of generators is responsible for covering different modes, and
the discriminator, like GAN, is used to distinguish between real
samples and generated samples, ensuring that the generated
distribution does not deviate from real distribution. In order to
prevent multiple generators from covering different parts of a
certain mode, different from the above-mentioned multi-
generator model, a clustering algorithm is introduced to perceive *Corresponding author: yzou@hhu.edu.cn (Y. Zou)

DOI reference number: 10.18293/SEKE2022-152

the distribution of real samples and generated samples, and an
algorithm of cluster center matching is presented to keep
consistency of the distribution of real and generated samples.
Then, the encoder and decoder are jointly optimized by the
generated and real samples. Therefore, the encoder can map
generated samples and real samples to the embedding space so

as to encode distinguishable feature, and the decoder can
distinguish from which generator the generated samples come
and from which mode the real samples come. Experimental
results show that the trained auto-encoding GAN can not only
reduce mode collapse, but also have preferable capability in
feature representation.

... ...

Distinguishing from which mode
the real samples come

Distinguishing from which generator
the generated samples come

Figure 1. Architecture of Auto-Encoding GAN.  0,1z N is input to different
1 2
, , ...,

k
G G G in equal amounts. The generated samples    

 1i i kG z  and real samples

x are input to the discriminator and encoder-decoder respectively, and the discriminator distinguishes the real and the fake and the encoder extract features. The pseudo

labels datay and
iGy of real and generated samples are determined by the cluster center matching algorithm. The decoder distinguishes from which generator the

generated samples come and from which mode the real samples come by cross-entropy loss.

The technical contributions of the paper are summarized as
follows:

1) From the perspective of data distribution, it verifies that
adding generators is an effective way to tackle training
instability and mode collapse.

2) An algorithm for cluster center matching is proposed to
keep consistency of the distribution of real and generated
samples, prevent multiple generators from covering different
parts of a certain mode and reduce mode collapse.

3) The encoder and decoder are jointly optimized by
generated samples and real samples, which reduces the mode
collapse of generator and enhancing the feature representation of
encoder.

II. AUTO-ENCODING GAN

This section elaborates on the auto-encoding GAN’s
network architecture, objective function and algorithm of cluster
center matching in detail.

A. Adding Generators to Reduce Training Instability and
Mode Collapse

The training instability of GAN means that the learning
processes of generator G and discriminator D are difficult to
converge together. From the perspective of data distribution, the
reason is that the complexity of the real samples’ distribution
affects the speed of G and D convergence. If the real samples
are a single-mode simple distribution, G and D converge
together soon. If the real samples are a multi-mode complex
distribution, G and D are difficult to converge together, as
shown in the Fig. 2 and Fig. 3.

Figure 2. Left is mode coverage of GAN on single-mode simple distribution,
where blue and red points represent real and generated samples, respectively.
Right is the loss curve of G and D of GAN on the single-mode distribution.

Figure 3. Left is mode coverage of GAN on four-mode complex distribution,
where blue and red points represent real and generated samples respectively.
Right is the loss curve of G and D of GAN on the four-mode distribution.

As shown in Fig. 3, it can be seen from the loss curve of four-
mode complex distribution that the training of G and D is
unstable and difficult to converge together. However, in Fig. 2,
G and D of GAN converge easily together for single-mode
simple distribution. Obviously, if one generator is used to learn
multiple modes, it will be difficult to converge and the training
is unstable. Therefore, if a set of generators is employed to learn
multiple modes, trying to ensure that a single generator covers a
single mode, the training instability of GAN can be effectively

settled, as shown in Fig. 4. Accordingly, it can be seen from Fig.
3 and Fig. 4 that the generators and discriminator of auto-
encoding GAN converge and tend to be stable much more
quickly than that of GAN.

Figure 4. Left is mode coverage of Auto-Encoding GAN on four-mode complex
distribution, where blue points represent real samples, and others represent
generated samples in which samples generated from different generators are
denoted by different colors. Right is the loss curve of G and D of Auto-
Encoding GAN on the four-mode distribution.

The mode collapse of GAN refers to that GAN tends to
concentrate continuously mapped values on a single mode
during the training process. The main reason for the
phenomenon is GAN can only approximate continuous mapping,
on the contrary, but the multi-mode distribution belongs to the
discrete distribution that is not continuous, so GAN is difficult
to cover discrete multi-mode distributions with continuous map.
If a continuous map is forced to cover all modes, the values of
the continuous map will inevitably cover some blank areas
outside the mode, so GAN may generate some samples that have
no realistic meaning, which explains why GAN may generate
some poor samples. For a theoretical proof of GAN’s mode
collapse, please refer to [14].

Therefore, the key to addressing mode collapse is to build a
discontinuous map. Adding generators can discretize the
generation distribution, so that each generator covers a mode,
which is essentially similar the way that multiple GAN utilizes
to achieve the discontinuous mapping of multi-mode distribution,
but the difference is that simply adding generators can do.

In summary, auto-encoding GAN adopts the way of adding
generators to realize discontinuous mapping of multi-mode
distribution, which can not only speed up convergence of the
model, but also cover multiple modes.

B. Objective Function of Auto-Encoding GAN

Assume real samples is subject to distribution of real samples

datax P , where dataP is the distribution of real samples,

containing k modes, and noise samples is subject to standard
normal distribution  0,1z N . According to the architecture

of the auto-encoding GAN, k generators  1 2, , ..., kG G G G

are designed to try to cover various k modes. A discriminator
D is responsible for distinguishing between real and generated
samples. An Encoder is used to map the generated samples and
real samples to the embedding space. A Decoder not only
distinguishes from which generator the generated samples come,
but also distinguishes from which mode the real samples come,
where G , D ,  -Encoder Decoder ED are deep networks.

iGy represents the label corresponding to the generated samples

by the -i th generator, and
dataPy represents the label

corresponding to the real sample, which is mainly a pseudo-label
after cluster center matching. The purpose of auto-encoding
GAN training is to obtain a set of  1 2, ,..., kG G G G that can

cover different modes and an Encoder with capability of
feature representation. Therefore, the objective function that
needs to be optimized for auto-encoding GAN can be written as
follows.

        

      

~

~

,
1

1
~

, ,

1
da

d

Gi

G at

ta

i di ta aa

k

x P
G ED D

i
z P i

z
i

P P x

k

PG

minmax L G D ED E log D x E

E

log

y E log

D G z

ED G z DE lo xy g





      

         





 (1)

where  is the weight to keep the balance between D and ED .

Assume G , D , and ED have sufficient capacity and
training time, the conditions of convergence of them are given
below.

Proposition 1. For G fixed, the optimal D is

 

1
i

data
k

data G
i

P
D x

P P





Proposition 2. For G fixed, the optimal ED is

  

 
i

data

k

G G
i

x p

ED G z y

ED x y






 



For the convenience of description, ED can be divided into

 GED x and  xED x , which are responsible for the

representation and classification of generated samples and real
samples, respectively.

Obviously, when
1

i

k

data G
i

P P


  , D converges to the

optimum. At this time, it can be deduced that  G z x , that is

1
i data

k

G p
i

y y


 . When
1

i data

k

G p
i

y y


 , it can be deduced that

    
dataG pED G z ED x y  , so the convergence condition of

ED is also reached.

Proposition 3. For the optimized D and ED fixed, the
optimized generator G is

 
1 1

4 2 || 2
i i i

k k

data G G G
i ix

G log JSD P P y log y
 

     
 

 

When
1

i

k

data G
i

P P


  ,
1

|| 0
i

k

data G
i

JSD P P


 
 

 
 .since

both
iGy and Paday are known, the generator G converges to

 
1

4 2
i i

k

G G
ix

G log y log y


    .

Due to limited space, the proofs of convergence of D ,
ED and G are omitted, which is similar to that of GAN.

C. Minimizing Cluster Center Matching

If the decoder only distinguishes from which generator the
generated samples come, it may cause the generated samples to
cover different parts of a certain mode, resulting in modes
collapse. Here, the training results of the InfoGAN and MGAN
on 2D dataset are taken as an example to show the case where
the modes collapse, as shown in the Fig. 5.

Figure 5. Left is the results of InfoGAN on 2D dataset, and right is the results

of MGAN on 2D dataset.

If the mode distribution of real samples is taken into account,
the classifier can effectively avoid mode overlap. However, the
mode distribution of real samples is unknown, so how to
approximate the distribution of real samples is a key issue. Both
the generated distribution and real distribution are distributions
of the embedding space output by the encoder. Since the same
mode is usually clustered in the embedding space due to the
similarity between real samples, a clustering algorithm is
employed to perceive the mode distribution of real samples.

At the same time, in order to prevent perceived results from
deviating from the real distribution, we take the generated
distribution as a reference, and balance the deviation by
minimizing the cluster centers matching of the generated
distribution and real distribution. The reason why the generated
distribution can be used as a reference is that it is constantly
approaching the real distribution during the training process.
Theoretically, when the model converges, the generated
distribution approximates the real distribution. However, in
actual training the encoder cannot accurately learn the
characteristics of the real distribution, since the generated
distribution cannot fully represent the real distribution. If some
prediction information of the real distribution is added, the
learning capability of the encoder for the real distribution will be
considerably improved.

According to the above analysis, assuming that the generated
samples and the real samples are fed into the encoder, the
embedded features output by the encoder are respectively

 xh Encoder x and     G zh Encoder G z . The cluster

centers of real samples and generated samples obtained by the
clustering algorithm are  ,1 ,2 ,, ,...,x x x kx    and

        
1 2,1 ,2 ,, ,...,

kG z G z G z kG z    . In order to minimize the

matching of the cluster centers of the real distribution and the
generated distribution, the loss function that needs to be satisfied
is given as follows.

     

 

G

22

, ,
1

2

, ,

,

data i ii

i

k

c x P x x i z P G z i
i

x i z i

G z

G

minL G Encoder hE h E 

 



  

 

   (2)

Combined with the loss function, the process of minimizing
cluster center matching is introduced in detail, which includes
the following three steps.

1) First, the encoder is utilized to take the generated and real
samples as input, and outputs the embedded features. Then, k-
means++ algorithm is used to cluster the generated samples and
real samples in the embedded space respectively, and obtain the
clustering center sets x and  G z of the generated samples and

real samples respectively.

2) To minimize the cluster center matching, the distance
matrix between the center sets x and  G z is calculated, and

-i th ,x i the closest matching center  ,G z i is found to ensure

 

2

, ,ix i G z i  is the smallest.

3) To unify the cluster assignment of the real samples and
the generated samples, the generated samples are used as a

reference to keep the matching center pairs   , ,,
ix i G z i 

consistent with the corresponding cluster labels.

After the above process, the current loss of centers matching
between real distribution and the generated distribution can be
obtained, and the generator and encoder can be further optimized.

D. Training of Auto-Encoding GAN

Combined with the above introduction of auto-encoding
GAN, the specific algorithm of auto-encoding GAN is given.

III. EXPERIMENTS

In this section, we conduct experiment on image datasets and
demonstrate the effectiveness and of auto-encoding GAN for
reducing mode collapse and enhancing feature representation.

A. Implementation Details

For the convenience of experiment reproduction, we provide
the experimental details. In the process of cluster center
matching, it is necessary to obtain the cluster center for matching
by k-means++ algorithm (or GMM). The generated and real
samples are clustered in each iteration, where k-means++ adopts
default parameters of a python package “sklearn” except for the
number of clusters that need to be specified.

It can be seen from the loss function that the hyperparameter
involved in this paper is mainly  , and it is used to balance the
weight between the discriminator and the encoder-decoder.
Their losses can be unified to magnitude according to the actual
training value. In our experiments,  set to 0.5. In addition, k
determines the number of generators, and is generally equal to
the number of categories of the dataset in experiments.

B. Experiments of Image Datasets

In this subsection, we conduct experiments on the image
datasets to verify the effectiveness of auto-encoding GAN. We
choose some frequently used datasets, USPS, MNIST, Fashion-
MNIST, Coil-20, and Cifar-10, to conduct experiments.

Image Datasets. USPS and MNIST [15] are digital image
datasets. USPS contains 9298 images (16 16) of 10 categories,
where 7291 images for training and 2007 images for testing.
MNIST contains 70000 images (28  28), including 60000
training images and 10000 testing images, with 10 categories.
Fashion-MNIST is similar to MNIST, except that it contains
different categories. Coil-20[16] contains 1440 images (128
128), with 20 categories. Cifar-10[17] involves 60,000 color
images (32 32) of 10 categories, including 50000 for training
and 10000 for testing. Only the training images is used in the
experiments.

Evaluation Indicators. The generator is evaluated from the
quality and diversity of the generated images, and FID [18] is
often used to serve this purpose. The lower the FID score, the
closer the generated distribution is to the real distribution,
which means that the quality of the generated images is higher
and the diversity is better.

As for the evaluation of the encoder-decoder, the feature
representation of the encoder is verified from the classification
of images. Clustering accuracy (ACC) and normalized mutual
information (NMI) is usually exploited as the evaluation
indicators of feature representation (especially unsupervised).
The larger the value of ACC and NMI, the better the capability
of feature representation.

Network Architecture. For USPS, MNIST and Fashion-
MNIST datasets, both the generator and discriminator choose
the DCGAN network architecture. The encoder has the same
convolution architecture as the discriminator. The decoder is
coded as a fully connected layer, and the activation function is
softmax for classification of generated and real samples. The
other parameters of the above datasets are set as follows: the

optimizer is uniformly Adam, the learning rate is 0.0004, the
batch size is 128, and the epochs is 500.

Experimental Results. Comparative experiments are
implemented from the coverage degree of the mode and the
feature representation of the model on image datasets, and each
class is regarded as a mode in the image datasets. The models
selected for comparison are WGAN, DCGAN, InfoGAN and
MGAN, as they are representative in each category and more
relevant to our model.

1) Experiments are implemented for the mode coverage of
different models on the image datasets. The degree of model
coverage is mainly evaluated by the FID. The experimental
results are shown in Table Ⅰ.

TABLE Ⅰ. FID (lower is better) of different models on Image Datasets

 Datasets

Models
USPS MNIST

Fashion-
MNIST

Coil-20 Cifar-10

DCGAN 51.41 28.70 72.78 41.39 95.47
WGAN 60.74 83.86 82.79 57.46 100.25

InfoGAN 34.06 26.71 72.92 37.41 80.82
MGAN 30.85 25.29 81.24 36.92 87.23

Ours 28.42 22.07 64.63 35.27 85.46

From the experimental results in Table Ⅰ, it can be concluded
that auto-encoding GAN is better than other models on USPS,
MNIST, Fashion-MNIST and Coil-20. On Cifar-10, InfoGAN
is the best and better than auto-encoding GAN.

From the average of FID over all datasets, auto-encoding
GAN is 10.77 lower than DCGAN, 27.06 lower than WGAN,
4.01 lower than InfoGAN, and 4.53 lower than MGAN. It is
further demonstrated that auto-encoding GAN is significantly
better other models in reducing mode collapse.

In addition to the above FID comparison experiments, some
images generated by various models on MNIST are shown in
Fig. 6.

WGAN DCGAN InfoGAN

MGAN Auto-Encoding GAN

Figure 6. Images generated by various models on MNIST

From the generated images on MNIST, it can be seen that
the quality of the images generated by WGAN and DCGAN is
poor, and the images are generated in a random way. Both

InfoGAN and MGAN generate a variety of modes, but partial
modes have a phenomenon of overlap, such as '1' of MGAN,
and the purity of the generated images is low, such as '9' and '4'.
Compared with InfoGAN and MGAN, auto-encoding GAN
generate all modes, and the purity of generated images is higher.

2) Experiments are implemented for feature representation
capabilities of different models on the image datasets. Because
WGAN and DCGAN do not have multi-mode representation
abilities, only InfoGAN, MGAN and auto-encoding GAN are
selected in the experiments. NMI and ACC are used to evaluate
the feature representation capabilities of a model. The
experimental results are shown in Table Ⅱ and Table Ⅲ.

TABLE Ⅱ. NMI (%) (higher is better) of different models on Image Datasets

Datasets

Model
USPS MNIST

Fashion-
MNIST

Coil-20 Cifar-10

InfoGAN 72.57 85.27 59.49 74.70 20.49
MGAN 75.99 85.01 54.11 66.49 17.26

Ours 76.21 87.24 59.83 79.34 18.34

TABLE Ⅲ. ACC (%) (higher is better) of different models on Image Datasets

 Datasets

Model
USPS MNIST

Fashion-
MNIST

Coil-20 Cifar-10

InfoGAN 71.42 92.64 58.44 60.41 34.80
MGAN 74.13 92.52 56.09 56.53 32.17

Ours 74.92 93.27 58.11 68.94 33.34

From the experimental results in Table Ⅱ, it can be
concluded that auto-encoding GAN is better than other models
on USPS, MNIST and Coil-20 and Fashion MNIST. On Cifar-
10, InfoGAN performs better than auto-encoding GAN. The
possible reason for this is InfoGAN can randomly select the
hidden code to prevent overfitting of the model compared with
multi-generator models.

From the average of NMI over all datasets, auto-encoding
GAN is 1.69% better than InfoGAN, and 4.22% better than
MGAN. It is further demonstrated that auto-encoding GAN
have preferable capability of feature representation.

IV. CONCLUTION

This paper proposed an auto-encoding GAN to reduce the
mode collapse of the generator and enhance feature
representation of the encoder. It consists of a set of generators, a
discriminator, an encoder and a decoder. A set of generators is
responsible for learning different modes, accelerating the
convergence of the model and preventing mode collapse. The
discriminator is used to distinguish between real samples and
generated samples. The encoder maps the generated samples and
real samples to the embedding space, encoding distinguishable
feature information among modes. The decoder distinguishes
from which generator the generated samples come and from
which mode the real samples come. Different from other multi-
generator models, in order to improve the feature representation
of the encoder and prevent multiple generators from covering a
certain mode, an approach consisting of three phases is proposed
accordingly. First, a clustering algorithm is presented to perceive
the distribution of real and generated samples. Then, cluster

center matching is utilized to keep consistency of the distribution
of real and generated samples. Finally, the encoder and decoder
are jointly optimized by the generated and real samples. We have
conducted experiments on image datasets to fully demonstrate
the effectiveness of auto-encoding GAN in reducing mode
collapse and enhancing feature representation.

REFERENCES
[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley and

S. Ozair. “Generative adversarial nets,” Advances in neural information
processing systems, 2014.

[2] A. Radforda, L. Metz, and S. Chintala. “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[3] T. Karras, S. Laine and T. Aila. “A style-based generator architecture for
generative adversarial networks,” In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 4401-4410,
2019.

[4] JY. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” In Proceedings
of the IEEE international conference on computer vision, pp. 2223-2232,
2017.

[5] D. Pathak, P. Krahenbuhl, J. Donahue J, T. Darrell and A.A. Efros,
“Context encoders: Feature learning by inpainting”. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2536-
2544, 2016.

[6] L. Metz, B. Poole, D. Pfau , and J. Sohl-Dickstein, “Unrolled generative
adversarial networks,” arXiv preprint arXiv:1611.02163, 2016.

[7] M Mirza and S. Osindero, “Conditional generative adversarial nets,”
Computer Science, arXiv preprint arXiv:1411.1784, 2014.

[8] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,
“InfoGAN: Interpretable representation learning by information
maximizing generative adversarial nets,” Advances in neural information
processing systems, 2016.

[9] H. Eghbal-Zadeh, W. Zellinger, and G. Widmer, “Mixture density
generative adversarial networks,” In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5820-5829,
2019.

[10] A. Ghosh, V. Kulharia, V. Namboodiri, V. P. Namboodiri, P. H. Torr, and
P. K. Dokania, “Multi-agent diverse generative adversarial networks,” In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8513-8521, 2018.

[11] Q. Hoang, T.D. Nguyen, T. Le, and D. Phung, “MGAN: Training
generative adversarial nets with multiple generators,” In International
conference on learning representations, February 2018.

[12] M. Arjovsky, S. Chintala, and L.Bottou, “Wasserstein generative
adversarial networks,” In International conference on machine learning,
pp. 214-223, July 2017.

[13] L. Tran, X. Yin, and X. Liu, “Disentangled representation learning gan for
pose-invariant face recognition,” In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1415-1424, 2017.

[14] Y. Guo, D. An, X. Qi, Z. Luo, S. T. Yau, and X.Gu, “Mode collapse and
regularity of optimal transportation maps,” arXiv preprint
arXiv:1902.02934., 2019.

[15] Y. Lecun, and L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,”. Proceedings of the IEEE,
1998, 86(11):2278-2324.

[16] S. Nene, S. Nayar, and Murase, “Columbia object image library (coil-20),”
Technical Report, 1996.

[17] A. Krizhevsky, and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[18] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” Advances in neural information processing systems, pp.
6629-6640, 2017.

