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Abstract—Generative Adversarial Nets (GAN) has been a popular 
research topic in processing of images, speech, texts, and videos, 
and many other fields. However, GAN still has some drawbacks 
such as unstable training and mode collapse. To address these 
challenges, this paper proposes an auto-encoding GAN, which is 
composed of a set of generators, a discriminator, an encoder and a 
decoder. A set of generators is responsible for learning different 
modes, accelerating the convergence of the model and preventing 
model collapse. The discriminator is used to distinguish between 
real samples and generated ones. In order to improve feature 
representation of the encoder and prevent multiple generators 
from covering a certain mode, an approach consisting of three 
phases is proposed accordingly. First, a clustering algorithm is 
presented to perceive the distribution of real and generated 
samples. Then, cluster center matching is utilized to keep 
consistency of the distribution of real and generated samples. 
Finally, the encoder and decoder are jointly optimized by the 
generated and real samples. Therefore, the encoder can map the 
generated and real samples to the embedding space so as to encode 
distinguishable features, and the decoder can distinguish from 
which generator the generated samples come and from which 
mode the real samples come. Experiments are conducted on image 
datasets to verify effectiveness of the auto-encoding GAN for 
reducing mode collapse and enhancing feature representation. 
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I. INTRODUCTION 

GAN [1] is a generative model proposed by Goodfellow, and 
it has a wide range of applications in data generation, style 
transfer, image inpainting, etc. [2,3,4,5]. However, GAN suffers 
from several problems such as unstable training, blurred images 
and mode collapse, etc. Among them, mode collapse has been a 
crucial problem that needs to be addressed for GAN. Mode 
collapse means that GAN only generates some of all modes, and 
others are missing. In order to reduce mode collapse, researchers 
have made a number of improvements, which can be 
summarized in the following four classes. 

1) Adding constraints: Unrolled GAN [6] stabilizes the 
training of GAN by K-step cyclic training to avoid the generator 
falling into a single mode. CGAN [7] strengthens the 
relationship between input and output data by using conditional 
information, forcing the generator to learn different modes. 

InfoGAN [8] maximizes the mutual information between the 
input data and the hidden code to obtain interpretable and 
distinguishable features and avoid mode collapse. Mixture 
Density GAN [9] encourages the discriminator to conform to 
Gaussian mixture distribution in the embedded space, which 
ensures that the generator fits Gaussian mixture distribution as 
much as possible, covering different modes. 

2) Adding generators: The typical models are MADGAN 
[10] and MGAN [11]. Unlike GAN, their discriminators not only 
need to distinguish between real samples and generated samples, 
but also distinguish from which generator the generated samples 
come. 

3) Modifying loss function: WGAN [12] uses the EM 
distance to measure the difference between generated 
distribution and real distribution, avoiding the problem of 
gradient disappearance of the generator, and making sure the 
generated distribution is as close to real distribution as possible 
to cover multiple modes. 

4) Imposing gradient penalty: DRAGAN [13] imposes a 
gradient penalty on the training samples to the discriminator, and 
tries to construct a linear function on the training samples to find 
the global optimal solution. 

In classes 1) and 2), the discriminator only considers the 
distribution of the generated samples, but neglects the 
distribution of the real samples, which may lead to a problem 
that multiple generators cover different parts of a certain mode, 
resulting in mode collapse. As for 3) and 4), although the 
generator can cover multiple modes, it still retains the 
characteristics of continuous mapping in GAN, which may cover 
the blank area between modes and generate poor samples, 
resulting in training instability. 

In order to address the issues of modes collapse and training 
instability, this paper proposes an auto-encoding GAN, which 
consists of a set of generators, a discriminator, an encoder and a 
decoder. The network architecture is shown in Fig. 1, where a 
set of generators is responsible for covering different modes, and 
the discriminator, like GAN, is used to distinguish between real 
samples and generated samples, ensuring that the generated 
distribution does not deviate from real distribution. In order to 
prevent multiple generators from covering different parts of a 
certain mode, different from the above-mentioned multi-
generator model, a clustering algorithm is introduced to perceive *Corresponding author: yzou@hhu.edu.cn (Y. Zou) 
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the distribution of real samples and generated samples, and an 
algorithm of cluster center matching is presented to keep 
consistency of the distribution of real and generated samples. 
Then, the encoder and decoder are jointly optimized by the 
generated and real samples. Therefore, the encoder can map 
generated samples and real samples to the embedding space so 

as to encode distinguishable feature, and the decoder can 
distinguish from which generator the generated samples come 
and from which mode the real samples come. Experimental 
results show that the trained auto-encoding GAN can not only 
reduce mode collapse, but also have preferable capability in 
feature representation.

... ...

Distinguishing  from which mode 
the real samples come

Distinguishing  from which generator 
the generated samples come

 

Figure 1. Architecture of Auto-Encoding GAN.  0,1z N  is input to different 
1 2
, , ...,

k
G G G  in equal amounts. The generated samples    

 1i i kG z  and real samples 

x are input to the discriminator and encoder-decoder respectively, and the discriminator distinguishes the real and the fake and the encoder extract features. The pseudo 

labels datay  and 
iGy of real and generated samples are determined by the cluster center matching algorithm. The decoder distinguishes from which generator the 

generated samples come and from which mode the real samples come by cross-entropy loss. 

The technical contributions of the paper are summarized as 
follows: 

1) From the perspective of data distribution, it verifies that 
adding generators is an effective way to tackle training 
instability and mode collapse. 

2) An algorithm for cluster center matching is proposed to 
keep consistency of the distribution of real and generated 
samples, prevent multiple generators from covering different 
parts of a certain mode and reduce mode collapse. 

3) The encoder and decoder are jointly optimized by 
generated samples and real samples, which reduces the mode 
collapse of generator and enhancing the feature representation of 
encoder. 

II. AUTO-ENCODING GAN 

This section elaborates on the auto-encoding GAN’s 
network architecture, objective function and algorithm of cluster 
center matching in detail. 

A. Adding Generators to Reduce Training Instability and 
Mode Collapse 

The training instability of GAN means that the learning 
processes of generator G  and discriminator D  are difficult to 
converge together. From the perspective of data distribution, the 
reason is that the complexity of the real samples’ distribution 
affects the speed of G  and D  convergence. If the real samples 
are a single-mode simple distribution, G  and D  converge 
together soon. If the real samples are a multi-mode complex 
distribution, G  and D  are difficult to converge together, as 
shown in the Fig. 2 and Fig. 3. 

 
Figure 2. Left is mode coverage of GAN on single-mode simple distribution, 
where blue and red points represent real and generated samples, respectively. 
Right is the loss curve of G  and D  of GAN on the single-mode distribution. 

   
Figure 3. Left is mode coverage of GAN on four-mode complex distribution, 
where blue and red points represent real and generated samples respectively. 
Right is the loss curve of G  and D  of GAN on the four-mode distribution. 

As shown in Fig. 3, it can be seen from the loss curve of four-
mode complex distribution that the training of G  and D  is 
unstable and difficult to converge together. However, in Fig. 2, 
G  and D  of GAN converge easily together for single-mode 
simple distribution. Obviously, if one generator is used to learn 
multiple modes, it will be difficult to converge and the training 
is unstable. Therefore, if a set of generators is employed to learn 
multiple modes, trying to ensure that a single generator covers a 
single mode, the training instability of GAN can be effectively 



settled, as shown in Fig. 4. Accordingly, it can be seen from Fig. 
3 and Fig. 4 that the generators and discriminator of auto-
encoding GAN converge and tend to be stable much more 
quickly than that of GAN. 

 
Figure 4. Left is mode coverage of Auto-Encoding GAN on four-mode complex 
distribution, where blue points represent real samples, and others represent 
generated samples in which samples generated from different generators are 
denoted by different colors. Right is the loss curve of G  and D  of Auto-
Encoding GAN on the four-mode distribution. 

The mode collapse of GAN refers to that GAN tends to 
concentrate continuously mapped values on a single mode 
during the training process. The main reason for the 
phenomenon is GAN can only approximate continuous mapping, 
on the contrary, but the multi-mode distribution belongs to the 
discrete distribution that is not continuous, so GAN is difficult 
to cover discrete multi-mode distributions with continuous map. 
If a continuous map is forced to cover all modes, the values of 
the continuous map will inevitably cover some blank areas 
outside the mode, so GAN may generate some samples that have 
no realistic meaning, which explains why GAN may generate 
some poor samples. For a theoretical proof of GAN’s mode 
collapse, please refer to [14]. 

Therefore, the key to addressing mode collapse is to build a 
discontinuous map. Adding generators can discretize the 
generation distribution, so that each generator covers a mode, 
which is essentially similar the way that multiple GAN utilizes 
to achieve the discontinuous mapping of multi-mode distribution, 
but the difference is that simply adding generators can do. 

In summary, auto-encoding GAN adopts the way of adding 
generators to realize discontinuous mapping of multi-mode 
distribution, which can not only speed up convergence of the 
model, but also cover multiple modes. 

B. Objective Function of Auto-Encoding GAN 

Assume real samples is subject to distribution of real samples 

datax P  , where dataP  is the distribution of real samples, 

containing k  modes, and noise samples is subject to standard 
normal distribution  0,1z N  . According to the architecture 

of the auto-encoding GAN, k generators  1 2, , ..., kG G G G  

are designed to try to cover various k  modes. A discriminator 
D  is responsible for distinguishing between real and generated 
samples. An Encoder  is used to map the generated samples and 
real samples to the embedding space. A Decoder  not only 
distinguishes from which generator the generated samples come, 
but also distinguishes from which mode the real samples come, 
where G  , D  ,  -Encoder Decoder ED  are deep networks. 

iGy  represents the label corresponding to the generated samples 

by the -i th  generator, and 
dataPy  represents the label 

corresponding to the real sample, which is mainly a pseudo-label 
after cluster center matching. The purpose of auto-encoding 
GAN training is to obtain a set of  1 2, ,..., kG G G G  that can 

cover different modes and an Encoder  with capability of 
feature representation. Therefore, the objective function that 
needs to be optimized for auto-encoding GAN can be written as 
follows. 
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where   is the weight to keep the balance between D  and ED . 

Assume G , D , and ED  have sufficient capacity and 
training time, the conditions of convergence of them are given 
below. 

Proposition 1. For G  fixed, the optimal D  is  
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Proposition 2. For G  fixed, the optimal ED  is 
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For the convenience of description, ED  can be divided into 

 GED x  and  xED x  , which are responsible for the 

representation and classification of generated samples and real 
samples, respectively. 

Obviously, when 
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Proposition 3. For the optimized D  and ED  fixed, the 
optimized generator G  is 
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Due to limited space, the proofs of convergence of D  ,
ED  and G  are omitted, which is similar to that of GAN. 

C. Minimizing Cluster Center Matching 

If the decoder only distinguishes from which generator the 
generated samples come, it may cause the generated samples to 
cover different parts of a certain mode, resulting in modes 
collapse. Here, the training results of the InfoGAN and MGAN 
on 2D dataset are taken as an example to show the case where 
the modes collapse, as shown in the Fig. 5. 

 
Figure 5. Left is the results of InfoGAN on 2D dataset, and right is the results 

of MGAN on 2D dataset. 

If the mode distribution of real samples is taken into account, 
the classifier can effectively avoid mode overlap. However, the 
mode distribution of real samples is unknown, so how to 
approximate the distribution of real samples is a key issue. Both 
the generated distribution and real distribution are distributions 
of the embedding space output by the encoder. Since the same 
mode is usually clustered in the embedding space due to the 
similarity between real samples, a clustering algorithm is 
employed to perceive the mode distribution of real samples.  

At the same time, in order to prevent perceived results from 
deviating from the real distribution, we take the generated 
distribution as a reference, and balance the deviation by 
minimizing the cluster centers matching of the generated 
distribution and real distribution. The reason why the generated 
distribution can be used as a reference is that it is constantly 
approaching the real distribution during the training process. 
Theoretically, when the model converges, the generated 
distribution approximates the real distribution. However, in 
actual training the encoder cannot accurately learn the 
characteristics of the real distribution, since the generated 
distribution cannot fully represent the real distribution. If some 
prediction information of the real distribution is added, the 
learning capability of the encoder for the real distribution will be 
considerably improved. 

According to the above analysis, assuming that the generated 
samples and the real samples are fed into the encoder, the 
embedded features output by the encoder are respectively 

 xh Encoder x  and     G zh Encoder G z  . The cluster 

centers of real samples and generated samples obtained by the 
clustering algorithm are  ,1 ,2 ,, ,...,x x x kx     and 

        
1 2,1 ,2 ,, ,...,

kG z G z G z kG z     . In order to minimize the 

matching of the cluster centers of the real distribution and the 
generated distribution, the loss function that needs to be satisfied 
is given as follows. 
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Combined with the loss function, the process of minimizing 
cluster center matching is introduced in detail, which includes 
the following three steps. 

1) First, the encoder is utilized to take the generated and real 
samples as input, and outputs the embedded features. Then, k-
means++ algorithm is used to cluster the generated samples and 
real samples in the embedded space respectively, and obtain the 
clustering center sets x  and  G z of the generated samples and 

real samples respectively. 

2) To minimize the cluster center matching, the distance 
matrix between the center sets x  and  G z  is calculated, and 

-i th  ,x i  the closest matching center  ,G z i  is found to ensure 

 

2

, ,ix i G z i   is the smallest. 

3) To unify the cluster assignment of the real samples and 
the generated samples, the generated samples are used as a 

reference to keep the matching center pairs   , ,,
ix i G z i   

consistent with the corresponding cluster labels. 

After the above process, the current loss of centers matching 
between real distribution and the generated distribution can be 
obtained, and the generator and encoder can be further optimized. 

D. Training of Auto-Encoding GAN 

Combined with the above introduction of auto-encoding 
GAN, the specific algorithm of auto-encoding GAN is given. 

 



III. EXPERIMENTS 

In this section, we conduct experiment on image datasets and 
demonstrate the effectiveness and of auto-encoding GAN for 
reducing mode collapse and enhancing feature representation. 

A. Implementation Details 

For the convenience of experiment reproduction, we provide 
the experimental details. In the process of cluster center 
matching, it is necessary to obtain the cluster center for matching 
by k-means++ algorithm (or GMM). The generated and real 
samples are clustered in each iteration, where k-means++ adopts 
default parameters of a python package “sklearn” except for the 
number of clusters that need to be specified. 

It can be seen from the loss function that the hyperparameter 
involved in this paper is mainly  , and it is used to balance the 
weight between the discriminator and the encoder-decoder. 
Their losses can be unified to magnitude according to the actual 
training value. In our experiments,   set to 0.5. In addition, k
determines the number of generators, and is generally equal to 
the number of categories of the dataset in experiments. 

B. Experiments of Image Datasets 

In this subsection, we conduct experiments on the image 
datasets to verify the effectiveness of auto-encoding GAN. We 
choose some frequently used datasets, USPS, MNIST, Fashion-
MNIST, Coil-20, and Cifar-10, to conduct experiments. 

Image Datasets. USPS and MNIST [15] are digital image 
datasets. USPS contains 9298 images (16 16) of 10 categories, 
where 7291 images for training and 2007 images for testing. 
MNIST contains 70000 images (28  28), including 60000 
training images and 10000 testing images, with 10 categories. 
Fashion-MNIST is similar to MNIST, except that it contains 
different categories. Coil-20[16] contains 1440 images (128
128), with 20 categories. Cifar-10[17] involves 60,000 color 
images (32 32) of 10 categories, including 50000 for training 
and 10000 for testing. Only the training images is used in the 
experiments. 

Evaluation Indicators. The generator is evaluated from the 
quality and diversity of the generated images, and FID [18] is 
often used to serve this purpose. The lower the FID score, the 
closer the generated distribution is to the real distribution, 
which means that the quality of the generated images is higher 
and the diversity is better. 

As for the evaluation of the encoder-decoder, the feature 
representation of the encoder is verified from the classification 
of images. Clustering accuracy (ACC) and normalized mutual 
information (NMI) is usually exploited as the evaluation 
indicators of feature representation (especially unsupervised). 
The larger the value of ACC and NMI, the better the capability 
of feature representation. 

Network Architecture. For USPS, MNIST and Fashion-
MNIST datasets, both the generator and discriminator choose 
the DCGAN network architecture. The encoder has the same 
convolution architecture as the discriminator. The decoder is 
coded as a fully connected layer, and the activation function is 
softmax for classification of generated and real samples. The 
other parameters of the above datasets are set as follows: the 

optimizer is uniformly Adam, the learning rate is 0.0004, the 
batch size is 128, and the epochs is 500. 

Experimental Results. Comparative experiments are 
implemented from the coverage degree of the mode and the 
feature representation of the model on image datasets, and each 
class is regarded as a mode in the image datasets. The models 
selected for comparison are WGAN, DCGAN, InfoGAN and 
MGAN, as they are representative in each category and more 
relevant to our model. 

1) Experiments are implemented for the mode coverage of 
different models on the image datasets. The degree of model 
coverage is mainly evaluated by the FID. The experimental 
results are shown in Table Ⅰ. 

TABLE Ⅰ. FID (lower is better) of different models on Image Datasets 

  Datasets 
 

Models 
USPS MNIST 

Fashion-
MNIST 

Coil-20 Cifar-10 

DCGAN 51.41 28.70 72.78 41.39 95.47 
WGAN 60.74 83.86 82.79 57.46 100.25 

InfoGAN 34.06 26.71 72.92 37.41 80.82 
MGAN 30.85 25.29 81.24 36.92 87.23 

Ours 28.42 22.07 64.63 35.27 85.46 

From the experimental results in Table Ⅰ, it can be concluded 
that auto-encoding GAN is better than other models on USPS, 
MNIST, Fashion-MNIST and Coil-20. On Cifar-10, InfoGAN 
is the best and better than auto-encoding GAN. 

From the average of FID over all datasets, auto-encoding 
GAN is 10.77 lower than DCGAN, 27.06 lower than WGAN, 
4.01 lower than InfoGAN, and 4.53 lower than MGAN. It is 
further demonstrated that auto-encoding GAN is significantly 
better other models in reducing mode collapse. 

In addition to the above FID comparison experiments, some 
images generated by various models on MNIST are shown in 
Fig. 6. 

   

WGAN  DCGAN       InfoGAN 

  

MGAN           Auto-Encoding GAN 

Figure 6. Images generated by various models on MNIST 

From the generated images on MNIST, it can be seen that 
the quality of the images generated by WGAN and DCGAN is 
poor, and the images are generated in a random way. Both 



InfoGAN and MGAN generate a variety of modes, but partial 
modes have a phenomenon of overlap, such as '1' of MGAN, 
and the purity of the generated images is low, such as '9' and '4'. 
Compared with InfoGAN and MGAN, auto-encoding GAN 
generate all modes, and the purity of generated images is higher. 

2) Experiments are implemented for feature representation 
capabilities of different models on the image datasets. Because 
WGAN and DCGAN do not have multi-mode representation 
abilities, only InfoGAN, MGAN and auto-encoding GAN are 
selected in the experiments. NMI and ACC are used to evaluate 
the feature representation capabilities of a model. The 
experimental results are shown in Table Ⅱ and Table Ⅲ. 

TABLE Ⅱ. NMI (%) (higher is better) of different models on Image Datasets 

Datasets 
 

Model 
USPS MNIST 

Fashion-
MNIST 

Coil-20 Cifar-10 

InfoGAN 72.57 85.27 59.49 74.70 20.49 
MGAN 75.99 85.01 54.11 66.49 17.26 

Ours 76.21 87.24 59.83 79.34 18.34 

TABLE Ⅲ. ACC (%) (higher is better) of different models on Image Datasets 

 Datasets 
 

Model 
USPS MNIST 

Fashion-
MNIST 

Coil-20 Cifar-10 

InfoGAN 71.42 92.64 58.44 60.41 34.80 
MGAN 74.13 92.52 56.09 56.53 32.17 

Ours 74.92 93.27 58.11 68.94 33.34 

From the experimental results in Table Ⅱ, it can be 
concluded that auto-encoding GAN is better than other models 
on USPS, MNIST and Coil-20 and Fashion MNIST. On Cifar-
10, InfoGAN performs better than auto-encoding GAN. The 
possible reason for this is InfoGAN can randomly select the 
hidden code to prevent overfitting of the model compared with 
multi-generator models. 

From the average of NMI over all datasets, auto-encoding 
GAN is 1.69% better than InfoGAN, and 4.22% better than 
MGAN. It is further demonstrated that auto-encoding GAN 
have preferable capability of feature representation. 

IV. CONCLUTION 

This paper proposed an auto-encoding GAN to reduce the 
mode collapse of the generator and enhance feature 
representation of the encoder. It consists of a set of generators, a 
discriminator, an encoder and a decoder. A set of generators is 
responsible for learning different modes, accelerating the 
convergence of the model and preventing mode collapse. The 
discriminator is used to distinguish between real samples and 
generated samples. The encoder maps the generated samples and 
real samples to the embedding space, encoding distinguishable 
feature information among modes. The decoder distinguishes 
from which generator the generated samples come and from 
which mode the real samples come. Different from other multi-
generator models, in order to improve the feature representation 
of the encoder and prevent multiple generators from covering a 
certain mode, an approach consisting of three phases is proposed 
accordingly. First, a clustering algorithm is presented to perceive 
the distribution of real and generated samples. Then, cluster 

center matching is utilized to keep consistency of the distribution 
of real and generated samples. Finally, the encoder and decoder 
are jointly optimized by the generated and real samples. We have 
conducted experiments on image datasets to fully demonstrate 
the effectiveness of auto-encoding GAN in reducing mode 
collapse and enhancing feature representation. 
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