
WasmFuzzer: A Fuzzer for WebAssembly Virtual Machines

Bo Jiang, Zichao Li, Yuhe Huang
State Key Laboratory of Software Development Environment

School of Computer Science and Engineering
Beihang University

Beijing, China
{jiangbo, lizichao, yhhuang}@buaa.edu.cn

Zhenyu Zhang
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

zhangzy@ios.ac.cn

W.K. Chan
Department of Computer Science

City University of Hong Kong
Hong Kong

wkchan@cityu.edu.hk

Abstract—WebAssembly is a fast, safe, and portable low-level
language suitable for diverse application scenarios. And The
WebAssembly virtual machines are widely used by Web browsers
or Blockchain platforms as execution engine. When there is a bug
in the implementation of the Wasm virtual machine, the execution
of WebAssembly may lead to errors or vulnerability in the
application. Due to the grammar checks by WASM VMs, fuzzing
at the binary level is ineffective to expose the bugs because most
inputs cannot reach the deep logic within the WASM VM. In this
work, we propose WasmFuzzer, a bytecode level fuzzing tool for
WASM VMs. WasmFuzzer proposes to generate initial seeds for
Fuzzing at the Wasm bytecode level and it also designs a systematic
set of mutation operators for Wasm bytecode. Furthermore,
WasmFuzzer proposes an adaptive mutation strategy to search for
the best mutation operators for different fuzzing targets. Our
evaluation on 3 real-life Wasm VMs shows that WasmFuzzer can
significantly outperform AFL in terms of both code coverage and
unique crash.

Keywords-fuzzing; WebAssembly; Virtual Machine

I. INTRODUCTION
In order to improve the performance of Web applications, a

number of companies and organizations have designed and
implemented a new low-level language that can be executed
across platforms, called WebAssembly [1].*

WebAssembly was born in Web technology, and many
browsers, including Chrome, have provided compatibility,
allowing WebAssembly code files to be embedded in Web pages.
WebAssembly modules will be able to call into and out of the
JavaScript context and access browser functionality through the
same Web APIs accessible from JavaScript. WebAssembly has
some great features. First, it is a refined target language, with a
significantly shorter code length than both scripting languages
and many compiled native codes. As a result, it has a small
footprint for deployment. Secondly, the instruction set of
WebAssembly is designed to correspond directly to CPU
instructions as much as possible. In some experiments, it runs
more than 20 times faster than JavaScript and is more suitable

DOI reference number: 10.18293/SEKE2022-165

for implementing more complex applications. Furthermore,
since WebAssembly is a back-end language supported by
LLVM [2], many source codes that support LLVM toolchains,
including C [3], C++ [4], Rust [5], can be compiled into
WebAssembly code, which allows much software originally
implemented in traditional languages to generate WebAssembly
code with the same functionality after adaptation, not only
reducing the difficulty of program migration, but also allowing
WebAssembly code to reuse existing library code. Because of
these advantages, WebAssembly is now not only used as a
technology for Web applications, but also integrated in
blockchain platforms [6].

The WebAssembly code is executed within WebAssembly
virtual machine [7]. The existing Wasm virtual machine
implementations include WAVM [8], Wasmtime [9], Wasmer
[10], etc. Virtual machines are the infrastructure that executes
WebAssembly and should be implemented correctly, efficiently,
and robustly. However, if there are errors in the implementation
of the virtual machine, the execution of WebAssembly may lead
to wrong results, or the program may exit abnormally. Some of
these bugs can even lead to security vulnerabilities. For example,
there are 7 CVEs reported for the Wasm VM called WAVM [8]
in 2018. To avoid these situations, we can adopt fuzzing
techniques [11] to identify errors in virtual machine
implementations.

There are two major challenges faced with Wasm VM
fuzzing. First, the Wasm VM often performs Wasm code
validation before execution, which makes it hard to generate
effective input to reach the deep logic within the VM. Although
AFL, the mainstream fuzzing test software, can be used to test
WebAssembly virtual machines written in C/C++, the test cases
they generate are all binary data without considering Wasm
bytecode grammar, which is hard to pass through the code
validations commonly performed by the Wasm VMs. To solve
this problem, we propose a Wasm bytecode level fuzzing
framework that can both generate and mutate Wasm modules to
test Wasm VMs. In particular, our proposed mutation operators
can systematically mutate a Wasm module at different
granularity. Second, there are many different implementations of

WASM VM and they have different code structures and bug
patterns. A fixed mutation strategy is hard to accommodate the
differences among those Wasm VMs to achieve the best fuzzing
effectiveness. To solve this problem, we propose an adaptive
mutation strategy that can dynamically update the probabilities
of different mutation operators for a testing target.

The contributions of this work are as follows:

First, we propose a Wasm bytecode level fuzzing framework
called WasmFuzzer for Wasm VMs, the tool can generate and
mutate Wasm bytecode modules to reach the deep logic within
the Wasm VMs.

Second, we propose an adaptive mutation strategy that can
dynamically update the probabilities of different mutation
operators. In this way, we can optimize the mutation operator
configurations for a testing target.

Finally, we have systematically performed fuzzing on 3 real-
life Wasm VMs with WasmFuzzer. Our evaluation results show
that WasmFuzzer is more effective than AFL in terms of both
code coverage and bug detection. And WasmFuzzer has detected
235 unique crashes within WAVM, WAMR, and EOS-VM.

 The following sections are organized as follows. In section
II, we will present the background knowledge on Wasm. In
section III, we will discuss the design of WasmFuzzer in detail.
In section IV, we present our fuzzing experiment with
WasmFuzzer and AFL on 3 popular Wasm VM implementations
and discuss the experiment results. Finally, we present related
works and conclusion in section V and VI.

II. BACKGROUND
In this section, we present background information on Wasm

bytecode. In general, Wasm is a binary instruction format for a
stack-based virtual machine. It is designed as a portable target
for compilation of high-level languages like C/C++/Rust,
enabling deployment on the web for client and server
applications.

Wasm provides only four basic number types. These are
integers and IEEE 754-2019 numbers, each in 32 and 64 bit
width [1]. The computational model of WebAssembly is based
on a stack machine. The instructions of Wasm fall into two main
categories: simple instructions performing basic operations on
data and control instructions altering control flow. The
instructions are in turn organized into separate functions.
A table in Wasm stores an array of untyped function references,
which a program can call indirectly through a dynamic index
into a table. WebAssembly adopts a linear memory structure,
which is a contiguous, mutable array of raw bytes. A program
can load and store values from/to a linear memory at any byte
address. Finally, a WebAssembly binary takes the form of
a module that contains definitions for functions, tables, linear
memories, and global variables. In addition to definitions,
modules can define initialization data for their memories or
tables.

A. The Workflow of WasmFuzzer
The workflow of WasmFuzzer is shown in Figure 1. , which

follows the general workflow of coverage-guided grey-box

fuzzing. At first, WasmFuzzer will generate a set of Wasm files
as seed inputs. Then it will enqueue these Wasm files and start
the Wasm VM under fuzzing. Within the fuzzing loop, it will
dequeue the first Wasm module and execute it against the Wasm
VM. After execution, if the execution of the Wasm module leads
to any new code coverage or new crashes, the module is
considered a good candidate for mutation. And the WasmFuzzer
will perform mutation on it to generate new Wasm modules,
which are then enqueued for further fuzzing. Note that
WasmFuzzer proposes several different mutation strategies to
perform mutation. Then WasmFuzzer will further check the
condition to stop the fuzzing process. If the fuzzing has reached
the predefined time limit, the fuzzing will halt. Otherwise, it will
continue the fuzzing loop the dequeue the next Wasm module
for execution.

III. THE DESIGN OF WASMFUZZER

A. The Generation of Wasm Bytecode
The input to the Wasm VM is the Wasm bytecode. To

extensively fuzz the WebAssembly VM, WasmFuzzer proposes
to generate valid Wasm bytecode for execution and mutation.
Compared with binary input and mutation, the bytecode level
inputs have a higher chance to reach deeper logic of the Wasm
VM.

Figure 1. The Workflow of WasmFuzzer

According to the characteristics of the instruction, there are
two main approaches to generating parameters: selecting
parameters from the module and generating parameters from the
domain of data type. Selecting a parameter from a module is
used when the parameter of the instruction depends on the

internal state of the module. For example, the global.set
instruction is to set a global variable at the top of the stack, and
its parameter is the id of the global variable. Therefore,
WasmFuzzer obtains the ids of all global variables from the
global array in the module and selects one of them as the
parameter of the instruction. Generating parameters from the
domain of data type is used when the parameter is of certain data
type. In such case, WasmFuzzer randomly returns a value within
the domain of the data type.

WasmFuzzer extends the WebAssembly Binary Toolkit
(WABT) to help generate different kinds of instructions. To be
specific, it uses the internal functions of the WABT to generate
different kinds of opcode, which are combined with the
corresponding parameters to build different instructions. Finally,
the instructions are further assembled into functions and
modules as seed inputs.

B. Mutation Operator for Wasm Bytecode
Modules are the basic unit of deployment for WebAssembly.

With an existing module, you can mutate it to generate new
modules for fuzzing. To support feedback-directed fuzzing, we
have systematically designed a set of mutation operators for
Wasm modules.

1) Mutation operations
Mutation operations are divided into 2 types: mutation

operations on instructions and other mutation functions. The
mutation operations currently supported by WasmFuzzer are
shown in TABLE I. .

TABLE I. LIST OF WASMFUZZER MUTATION OPERATIONS

Classification Mutation Operator Description

Mutation
operations on
Instructions

insertInstruction Insert an instruction

eraseInstruction Delete an instruction

moveInstruction Move an instruction

addFunction Add an empty function

eraseFunction Delete a function

swapFunction Swap the positions of two
functions

Other
mutation
operations

addGlobal Add a global variable

eraseGlobal Delete a global variable

swapGlobal Swap the positions of two global
variables

addExport Add an export entry

eraseExport Delete an export entry

swapExport Swap the positions of two export
entries

addType Add a type

addMemory Add a block of storage space

setStart Set the start function

eraseStart Delete start function

The mutation operations on instructions are performed at the
instruction level or at the function level. They randomly insert,
delete, or change the instructions or functions to perform the
mutation. The other mutation operations aim at changing the
global variables, the export entries, the memory, or the start
functions. To ensure the mutated WebAssembly code can pass
through the validation [12] process of Wasm VM, we control the
probability of different mutation operators such that the newly
generated Wasm modules have a higher chance to be valid.

2) Adaptive Random Mutation Strategy
WasmFuzzer proposes an adaptive random mutation strategy

to perform mutation. During the mutation step, each mutation
operator has a probability to be selected. In general, our mutation
strategy will reward the mutation operators leading to new code
coverage or crash by dynamically increasing their probabilities.
In this way, those more “promising” mutation operators have a
higher chance to be selected.

To realize this, WasmFuzzer defines an adaptive mutation
table, which is an array of function pointers of length 256. These
function pointers may point to different mutation operators. The
first 16 positions of this array are read-only areas and they
correspond to the 16 mutation operators. In this way,
WasmFuzzer ensures each mutation operator at least has a
chance of 1/256 to be selected for performing mutation, which
is not affected by the adaptive strategy.

TABLE II. ALGORITHM UPDATING ADAPTIVE MUTATION TABLE

Input table: adaptive mutation table,
 func: pointer to the current mutation operator
Output updated adaptive mutation table
1 #define NEW_PATH_REWARD 3
2 #define CRASH_REWARD 6
3 int increase = 0;
4 if (new paths found)
5 increase += NEW_PATH_REWARD;
6 if (new crash triggered)
7 increase += CRASH_REWARD;
8 for (int i = 0; i < increase; ++i) {
9 int num = randomBetween(16, 255);
10 table[num] = func;
11 }
12 return table;

The positions starting from 16 to the 255 can be both read
and written, which is used for dynamically changing the
selection probability of the mutation operators. At first, all
positions in the table are initialized to various mutation
operations with equal probability. The algorithm to update the
adaptive mutation table is shown in Table II. During fuzzing, if
the Wasm module obtained from a mutation operator called M
leads to new code coverage or crash, WasmFuzzer will increase
the selection probability of the mutation operator M (lines 3 to
7). Then, WasmFuzzer will generate a random number between
16 and 255 as index into the mutation table, and overwrite the
position in the table corresponding to the index with the pointer
of M (line 9 to line 10). In this way, the probability of those more
effective mutation operators for a fuzzing target will increase
gradually while those ineffective mutation operators for a target
will decrease gradually. When testing multiple Wasm VMs, the

adaptive mutation strategy can automatically change the
probability of each mutation operation to find the best mutation
probability for each Wasm VM.

C. Test Oracle and Bug Report Generation
When the software under testing crashes or aborts during

fuzzing, the system will send out signals such as SIGSEGV or
SIGABT. WasmFuzer will capture these signals to report errors.
Furthermore, WasmFuzzer also utilizes the AddressSanitizer [13]
to detect memory-related software bugs such as use-after-free,
buffer overflow, stack overflow, memory leaks, etc.

When WasmFuzzer has detected an error, it will generate
bug reports to facilitate further debugging. The bug reports
include two sections: the Wasm bytecode triggering a unique
crash, and the Wasm bytecode triggering a unique hang. By
"Unique", it means the execution of these Wasm bytecode leads
to unique code path. Furthermore, we also measure the code
coverage achieved during fuzzing as another metric.

IV. EVALUATION
In this section, we evaluate WasmFuzzer by fuzzing 3 large-

scale Wasm VMs.

A. Research Question
Based on the implementation of WasmFuzzer, this chapter

mainly focuses on its test capability and test efficiency. Various
performance metrics of WasmFuzzer and AFL were compared,
including code coverage, number of unique crashes that could
be found, and type of software problem, through comparative
experiments under the same conditions.

B. Experiment Design
In our experiment, we compare WasmFuzzer with AFL to

evaluate its fuzzing effectiveness.

1) Subjects
We have selected 3 real-life Wasm VM implementations to

evaluate WasmFuzzer. These 3 Wasm VMs (WAVM, WAMR,
and EOS VM) are written in C/C++, which is friendly for
instrumentation and collecting code coverage. WAVM [8] is a
popular WebAssembly virtual machine designed for non-
browser applications. WebAssembly Micro Runtime [14]
(WAMR for short) is a small WebAssembly virtual machine
frequently used in embedded systems.

EOS-VM [15] is a WebAssembly virtual machine designed
for blockchain applications. Since the command line interface
provided by EOS-VM only supports the call of exported
functions without parameters. To perform fuzzing, we modified
the interface of EOS-VM to call the exported functions with
parameters.

2) Experimental Setup
Our experiments were performed using a desktop with

Intel(R) Core (TM) i7-6700 CPU @ 3.40 GHz and 16GB of
memory. The operating system is Ubuntu 20.04 LTS. The
version number of the AFL tool for comparison is 2.51b.

3) Instrumentation Procedure

To instrument the Wasm VMs for code coverage collection,
we use Gcc compiler with code coverage profiling options
enabled. To detect memory-related bugs, we also enabled the
address sanitizer during compilation.

4) The experimental process
For each WebAssembly VM, we performed 8 hours of

fuzzing using both WasmFuzzer and AFL. Then we use the afl-
cov tool to analyze the code coverage achieved by each tool. We
also manually analyzed the test cases leading to the crash or hang
in the VMs to confirm the bug detected.

C. Results and Analysis
In this section, we present and compare the results of

WasmFuzzer and AFL in terms of code coverage and unique
crashes.

1) Code coverage
The code coverage results for the 3 Wasm VMS are shown

in TABLE III. For WAVM, the code coverage of WasmFuzzer
is 25.7% while the code coverage for AFL is 23.6%. For WAMR,
the code coverage of WasmFuzzer is 25.9% while the code
coverage for AFL is 22.7%. For EOS-VM, the code coverage of
WasmFuzzer is 84.7% while the code coverage for AFL is
59.3%. We can see that WasmFuzzer consistently performs
better than AFL in terms of code coverage at line level.

TABLE III. CODE COVERAGE RESULTS

Subjects Code Coverage

/ WasmFuzzer AFL

WAVM 25.7% 23.6%

WAMR 25.9% 22.7%

EOS-VM 84.7% 59.3%

Figure 2. Code Coverage over Time

As shown in Figure 2, we also present the code coverage with
respect to fuzzing time for WasmFuzzer and AFL on all 3 Wasm
VMs. In this way, we want to understand the code coverage
results of WasmFuzzer during the fuzzing process. We can see
that for each subject VM, WasmFuzzer consistently performs
better than AFL in terms of code coverage over time. And the
advantage is more significant on EOS-VM than the other 2

0

10

20

30

40

50

60

70

80

0 60 120 180 240 300 360 420 480

C
od
e
C
ov
er
ag
e
in
Pe
rc
en
ta
ge

Fuzzing Time in Minutes

WAVM-WasmFuzzer WAVM-AFL WAMR-WasmFuzzer
WAMR-AFL EOS-VM-WasmFuzzer EOS-VM-AFL

Wasm VMs. Therefore, for different fuzzing time limit,
WasmFuzzer can outperform AFL in terms of code coverage.

Based on the results above, we can conclude that
WasmFuzzer can indeed achieve more code coverage than AFL
if given the same fuzzing time.

2) Unique crashes
The main goal of fuzzing is to find bugs in the system.

Therefore, we further present and compare the unique crashes
detected by WasmFuzzer and AFL. The number of unique
crashes for WasmFuzzer and AFL are shown in TABLE IV. We
can see that WasmFuzzer consistently outperforms AFL on all
three WebAssembly VMs. For WAVM, the difference between
WasmFuzzer and AFL is small. But on WAMR and EOS-VM,
the advantage of WasmFuzzer is significant.

In particular, for EOS-VM, the AFL fails to detect any error
after 8 hours of fuzzing. We double-checked the code of EOS-
VM, and we find that it performs strict code validation checks
before executing the Wasm code. Most of the inputs generated
by AFL are rejected during the code validation phase. As a result,
AFL cannot detect the bugs hidden in the VM execution program
logic. In contrast, WasmFuzzer can build and mutate valid
Wasm modules, which makes it easier to test the execution logic
of EOS-VM.

TABLE IV. NUMBER OF UNIQUE CRASHES

Subjects Unique Crash

/ WasmFuzzer AFL

WAVM 56 55

WAMR 97 77

EOS-VM 82 0

Figure 3. Unique Crashes over Time

The number of unique crashes over time for WasmFuzzer
and AFL on the 3 Wasm VMs are shown in Figure 3. For
WAMR and EOS-VM, WasmFuzzer consistently detected much
more crashes than AFL over time. However, for WAVM,
WasmFuzzer and AFL found almost the same number of unique
crashes over time. A closer analysis on the crashes shows that
WasmFuzzer and AFL can indeed detect different unique
crashes. Therefore, when there are abundant resources during

fuzzing, it is desirable to adopt both tools to perform fuzzing so
they can complement each other. However, when the testing
resource is limited, WasmFuzzer is preferred than AFL.

Based on the results above, we can conclude that
WasmFuzzer can perform as good as or better than AFL in terms
of unique crashes.

V. RELATED WORK
Park et al. designed a new test case mutation technique called

aspect-preserving, and implemented a JavaScript fuzzing tool
called DIE [16]. They believe that there are certain patterns in
test cases that can trigger vulnerabilities. For the JavaScript
language, the combination of some code structures and variable
types is more likely to trigger vulnerabilities in the JavaScript
execution engine. Therefore, DIE tends to retain these
combinations when performing mutation.

Fuzzing tools can also be combined with neural network
models to generate inputs that can trigger vulnerabilities more
easily. Lee et al. developed a fuzzing tool based on neural
network language model for JavaScript engines named Montage
[17]. They train the model with the abstract syntax subtree
converted from the JavaScript abstract syntax tree. In this way,
the model can generate valid JavaScript code. With this
approach, their tool has detected previously undiscovered
software bugs in the JavaScript execution engine under fuzzing.

Zhong et al. designed and implemented a fuzzing tool called
Squirrel for relational databases [18], whose input data is
structured query language. Since the structured query language
needs to meet certain grammatical rules, the proportion of input
that can be executed by the database when directly mutating
binary data is small. Therefore, they designed an intermediate
representation capable of generating structured query language
code and performed type-based mutation on the intermediate
representation. In this way, the proportion of input that can be
executed by the database is significantly increased.

Fuzzing tools are also effective to find functional
implementation bugs in the software implementation. For
example, Chen et al. implemented a fuzzing tool for
differentially testing Java virtual machines [19]. The main idea
is to use the same input to execute multiple Java virtual machines
and compare the running results among them. If there is any
difference in their results, one of these Java virtual machines
must contain a bug. Engineers can further perform analysis and
debugging based on the fuzzing results to find the position of the
software error.

Ventuzelo proposes to use mainstream fuzzing tools to test
WebAssembly virtual machines, and they integrated a fuzzing
tool called WARF [20]. WARF can fuzz WebAssembly virtual
machines and test them with binary data. WARF has found
several bugs in the WebAssembly virtual machine
implementation. WARF is implemented in Rust language and
integrates three mainstream fuzzing tools, AFL++ [21],
Honggfuzz [22] and libFuzzer [23].

0 0 0 0 0 0 0 0 00

10

20

30

40

50

60

70

80

90

100

0 60 120 180 240 300 360 420 480

N
um

b
er

 O
f

U
ni

q
ue

 C
ra

sh
es

Fuzzing Time in Seconds

WAVM-WasmFuzzer WAVM-AFL WAMR-WasmFuzzer
WAMR-AFL EOS-VM-WasmFuzzer EOS-VM-AFL

VI. CONCLUSION
WebAssembly is a fast, safe, and portable low-level

language suitable for diverse application scenarios. And The
WebAssembly virtual machines are widely supported by Web
browsers for building Web applications. When there is a bug in
the implementation of the Wasm virtual machine, the execution
of WebAssembly may lead to errors in its supporting application.
Due to the code validation performed by WASM VMs, fuzzing
at the binary level is ineffective to expose the bugs because most
inputs cannot reach the deep logic within the WASM VM. In
this work, we propose WasmFuzzer, a bytecode level fuzzing
tool for WASM VMs. WasmFuzzer proposes to generate initial
seeds for Fuzzing at the Wasm bytecode level and it also
proposes a systematic set of mutation operators for Wasm
bytecode. Furthermore, WasmFuzzer proposes an adaptive
mutation strategy to search for the best mutation operators for
different fuzzing targets. Our evaluation on 3 real-life Wasm
VMs shows that WasmFuzzer can significantly outperform AFL
in terms of both code coverage and unique crash.

For future work, we plan to explore new seed generation
scheme and fuzzing input scheduling scheme to improve the
effectiveness of the fuzzing tool. We will also perform fuzzing
on other popular Wasm VMs to further evaluate the
effectiveness of WasmFuzzer.

ACKNOWLEDGMENTS
This research is supported in part by the National Key R&D

Program of China under Grant 2019YFB2102400, NSFC
(project no. 61772056), the Beijing Advanced Innovation Center
for Future Blockchain and Privacy Computing, Innovative
Technology Fund of HKSAR (project no. 9440226) and CityU
MF_EXT (project no. 9678180). Zhenyu Zhang is the
corresponding author.

REFERENCES
[1] WebAssembly. https://webassembly.org/. Last access, 2022.
[2] The LLVM Compiler Infrastructure. https://llvm.org/. Last access, 2022.
[3] Ritchie D. M.. The Development of the C Language. ACM Sigplan

Notices 28.3, 201-208, 1993.
[4] Stroustrup B.. The C++ programming language. Pearson Education India,

India, 2000.

[5] Matsakis N. D.., Klock F. S.. The rust language. ACM SIGAda Ada Letters
34.3, 103-104, 2014.

[6] Wang S., Yuan Y., Wang X., et al. An overview of smart contract:
architecture, applications, and future trends. 2018 IEEE Intelligent
Vehicles Symposium (IV), 2018.

[7] Sauntry D. M., Gilbert M.. Generating a compiled language program for
an interpretive runtime environment. US, US6327702 B1. 2001.

[8] WAVM. https://wavm.github.io/. Last access, 2022.
[9] Wasmtime. https://wasmtime.dev/. Last access, 2022.
[10] Wasmer. https://wasmer.io/. Last access, 2022.
[11] Ammann P., Offutt J.. Introduction to software testing. UK: Cambridge

University Press, 2016.
[12] Validation — WebAssembly 1.1 (Draft 2021-11-18).

https://webassembly.github.io/spec/core/valid/index.html. Last access,
2021.

[13] AddressSanitizer.
https://github.com/google/sanitizers/wiki/AddressSanitizer. Last access,
2019.

[14] WebAssembly Micro Runtime.
https://github.com/bytecodealliance/wasm-micro-runtime. Last access,
2021.

[15] EOS VM - A Low-Latency, High Performance and Extensible
WebAssembly Engine. https://github.com/EOSIO/eos-vm. Last access,
2019.

[16] Park S., Xu W., Yun I., et al. Fuzzing JavaScript Engines with Aspect-
preserving Mutation. 2020 IEEE Symposium on Security and Privacy (SP),
1629-1642, 2020.

[17] Lee S., Han H. S., Cha S. K., et al. Montage: A Neural Network Language
Model-Guided JavaScript Fuzzer. 20th USENIX Security Symposium
(USENIX Security 2020). 2020.

[18] Zhong R., Chen Y., Hu H., et al. SQUIRREL: Testing Database
Management Systems with Language Validity and Coverage Feedback.
https://arxiv.org/abs/2006.02398, 2020.

[19] Chen Y., Su T., Sun C., et al. Coverage-directed differential testing of
JVM implementations. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
2016: 85-99.

[20] WARF - WebAssembly Runtimes Fuzzing project.
https://github.com/pventuzelo/wasm_runtimes_fuzzing. Last access,
2022.

[21] The AFL++ fuzzing framework | AFLplusplus. https://aflplus.plus/. Last
access, 2021.

[22] Honggfuzz | honggfuzz. https://honggfuzz.dev/. Last access, 2021.
[23] libFuzzer – a library for coverage-guided fuzz testing.

https://llvm.org/docs/LibFuzzer.html. Last access, 2022.

