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Abstract—Biosignals reflect the mental states of soft-
ware developers and could improve support technolo-
gies for software development activities. Although sev-
eral technologies for software development support
using biosignals (BioSDS) have been proposed, BioSDS
has not yet been deployed in actual software devel-
opment workplaces. As a prerequisite for industrial
deployment, BioSDS must be well understood and
accepted by software developers. However, the current
level of their acceptance has not been comprehensively
assessed. In this study, we conducted a survey to clarify
the current level of acceptance of BioSDS and potential
attributes that influence the level of acceptance. We
defined eleven use-cases based on six previous primary
studies related to BioSDS, and then asked developers
at Hitachi, a Japanese IT company in the FORTUNE
500, about the level of acceptance of each use-case.
Our analysis of eighty-six responses revealed that four
out of eleven use-cases had some level of acceptance
by software developers. In addition, we found four
attributes that affect the level of acceptance: subject
to be measured, objectives, interventions, and timing.
These findings help to identify barriers to the adoption
of BioSDS in the workplace.

Index Terms—Biosignal, Acceptance, Software devel-
opment support

I. Introduction
Several technologies for software development support

using biosignals (BioSDS) have been proposed but have
not yet been deployed in workplaces of software devel-
opment. For example, Züger et al. showed that software
developers’ interruptibility can be estimated from biosig-
nals and proposed a use-case (UC) in which software
developers can easily maintain a focused state by notifying
their interruptibility to teammates [18]. Müller et al. also
showed that biosignals can be used to estimate whether a
developer’s edits contain defects and proposed a UC that
recommends peer review of codes containing defects [13].
These UCs can boost software development by considering
the mental state of software developers [4].

As the prerequisites for the introduction of BioSDS to
workplaces, software developers need to accept BioSDS.
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The acceptance to such new technologies has been de-
scribed following the technology acceptance model (TAM)
[2]. Following TAM, the acceptance of BioSDS could be
evaluated from the agreement level with the the self-
predicted future usage.

In this study, we conducted a survey of software de-
velopers at a large Japanese IT company to determine
the current level of acceptance of BioSDS and to explore
attributes that influence the acceptance. We analyzed
BioSDS UCs presented by six previous primary studies
and extracted four candidate attributes of UCs affecting
the acceptance: (i) subject to be measured, (ii) objective,
(iii) intervention and (iv) timing. We defined 11 BioSDS
UCs varying attributes (ii)–(iv) , and designed question-
naires that asks the acceptance level of each UC. In
addition, for (i), two types of questionnaires were created:
whether the subject was the respondent or not.

We obtained 86 responses and analyzed them to answer
the following two research questions (RQs).
RQ1. Do software developers accept BioSDS?
RQ2. How do attributes of UCs affect the level of accep-

tance?
These findings contribute to reveal the obstacles to deploy
BioSDS in workplaces.

II. Related Work
A. Review of software engineering studies using biosignals

Several review studies were presented previously [6],
[10], [15]. Weber et al. identified 89 studies in the field
of software engineering that used neural activity, such as
brain activity and autonomic nervous systems, and showed
that there are 4 types of contributions that can be made
by the study of neural activity, [15]: (1) contributions to
understanding human factors (2) improvement in software
development, (3) investigation of software-understanding
methods, and (4) development of software systems that
adapt to the user’s mental state. Menzen et al. identified 40
major studies that used biosignals in software engineering,
categorized their types and themes, and pointed out the
lack of application in real-world development environ-
ments [10]. Gonçales et al. selected 33 studies that used



biosignals to estimate cognitive load and investigated the
challenges in realistic scenarios, noting the lack of accuracy
in machine learning, [6]. These studies are similar to ours
in that they compared studies that used biosignals in soft-
ware engineering and attempted to identify challenges in
existing research. However, they did not consider whether
they are accepted by software developers.

B. Evaluating software-development support technologies
Several studies proposed new support technologies and

evaluated usefulness of them [1], [5], [17]. In a study that
did not use biosignals, Züger et al. asked 449 knowledge
workers from 12 countries to use a light to make it known
they did not want to be disturbed [17]. During the first
half of the five-week experiment, they conducted a survey
asking whether the participants wanted to stop using the
light and indicated their willingness to continue after they
were allowed to use the light. They were also surveyed
about whether they wanted to continue using it. There are
two studies that used eye gaze as a biosignal. Glücker et
al. implemented EyeDE, which uses eye trackers to browse
related parts of a program displayed in an integrated de-
velopment environment (IDE) with the gaze. Four people
were interviewed about their qualitative impressions of
EyeDE and found it interesting [5]. Ahrens et al. also
developed a tool to assist novice users in understanding a
program by displaying a heatmap on the IDE that shows
the viewing positions of the eyes viewed by expert users.
Feedback on this tool was diverse, including responses
that it reduced comprehension difficulty and that it was
intrusive, [1]. However, these were only usefulness evalu-
ations for individual UCs. Quantitative evaluations when
comparing UCs have not been conducted.

III. Method
The acceptance of BioSDS was surveyed by defining

comprehensive BioSDS UCs and presenting them to soft-
ware developers. Four candidate attributes of BioSDS UCs
were extracted from 6 previous primary studies: (i) sub-
ject to be measured, (ii) objective, (iii) intervention and
(iv) timing. Comprehensive BioSDS UCs were defined as
varying 3 attributes (ii)–(iv). Subsequently, questionnaires
were designed to ask the acceptance of each UC and
the reasons of selecting the most or the least useful UC.
Besides, for (i), the questionnaires were separately asked
whether the subject was the respondent or not. Eventually,
responses were analyzed to answer 3 RQs.

A. Attributes of BioSDS UCs
1) Select primary BioSDS studies: Six primary BioSDS

studies were selected (Table I) from studies cited by
the most cited review study [15] among previous review
studies of software engineering studies using biosignals [6],
[10], [15] referred in II-A.

The most cited review study constructed the search
query by combining 22 words related to neural activity

and 13 words related to software engineering, and obtained
89 studies. Then, the review study classified obtained
89 studies into 5 categories: empirical studies (N=47),
empirical (research in progress) (N=24), methodological
studies (N=8), conceptual studies (N=5), and review
studies (N=5). Empirical studies were further categorized
into studies in which biosignals were explanatory variables
(N=19) and those in which biosignals were the target
variable (N=26).

We selected 6 primary studies satisfying two criteria
from 19 studies in which biosignals were explanatory
variables. Firstly, 10 studies were excluded because the
number of citations was less than 10. Secondly, 3 studies
were excluded because they did not explicitly present UCs.
Consequently, 6 studies were remained and their number
of citations were 25–158(Table I). The number of citations
was retrieved from Scopus (https://www.scopus.com) in
May 2022.

2) Extract UCs and their attributes from six primary
BioSDS studies: Fifteen UCs were extracted from six
primary BioSDS studies (Table I). All UCs analyzed
biosignals to detect the stress or the cognitive load of
software developers, and attempted to boost software
development by interventions. From 12 UCs, we extracted
four candidate attributes: (i) subject to be measured, (ii)
objective, (iii) intervention and (iv) timing.

(i) All UCs had two types of subjects: subjects to be
measured and subjects not to be measured and two types
of subjects would have totally different experiences in UCs.
For example, “Assistance in preventing interruption” had
at least two subjects and one subject was measured and
prevented from the other’s interruptions. Therefore, the
acceptance would be varying by whether “subject to be
measured = respondent” or “subject to be measured =
non-respondent”.

(ii) The UCs’ objectives were categorized into following
eight types. “O1. Assessing quality”, which had 2 UCs,
estimated the quality of programs and attempted to iden-
tify codes to be reviewed. “O2. Assessing skills”, which
had 1 UC, estimated the skills of software developers.
“O3. Preventing bugs”, which had 5 UCs, estimated the
quality of programs and attempted to prevent bugs by
double-checking the program. “O4. Preventing interrup-
tions”, which had 2 UCs, estimated the interruptibility
of software developers and attempted to prevent inter-
ruptions from other software developers. “O5. Searching
code”, which had 1 UC, estimated the cognitive load of
software developers and attempted to present programs
related to codes causing the high cognitive load. “O6.
Taking breaks”, which had 2 UCs, estimated the stress of
software developers and attempted to encourage software
developers to take a break. The acceptance would be
varying by whether each objective satisfied needs of each
software developer.

(iii) The UC’s interventions were categorized into 3
types, and each type of interventions had different impact

https://www.scopus.com


TABLE I
BioSDS UCs proposed in six primary studies

Ref. UC Objective Intervention Timing

[3] Prevent commits with bugs O3. Preventing bugs – Non-real-time

[12]
Identify code to be reviewed O1. Assessing quality I3. Assessment –
Search related code O5. Searching code I1. Notification (Private) Real-time
Assist to take a break O6. Taking breaks I1. Notification (Private) Real-time
Prevent interruption O4. Preventing interruptions I2. Notification (Team) Real-time

[18] Notify when not to interrupt O4. Preventing interruptions I2. Notification (Team) Real-time

[13]
Prevent commits with bugs O3. Preventing bugs – Non-real-time
Identify code to be reviewed O3. Preventing bugs I2. Notofication (Team) Non-real-time
Assist to take a break O6. Taking breaks I1. Notification (Private) Real-time

[7] Prevent commits with bugs O3. Preventing bugs – Non-real-time
Annotate difficult code O1. Assessing quality I3. Assessment –

[9] Prevent bugs due to difficult tasks O3. Preventing bugs – Real-time
Estimate programming experience O2. Assessing skills I3. Assessment –

on software development. Both “I1. Notification (Private)”
and “I2. Notification (Team)” intervened software devel-
opment by notifying estimation results to individuals or
teammates, and their impacts would be relatively low
because software developers could freely ignore notifica-
tions. “I3. Evaluation” intervened software development
by evaluating skills or the quality of programs and its
impact would be relatively high because additional works
would be required when the evaluation results was bad.
The acceptance would be varying by whether software
developers tolerated those impacts.

(iv) The UC’s timings of intervention were categorized
into 2 types: “Real-time” and “Non-real-time”, and two
types of timings varied frequencies and adequacy. Interven-
tions in real-time could help software developers immedi-
ately when they had troubles, but too much interventions
could ironically cause additional stress or interrupt self-
help efforts. Therefore, the acceptance would be varying
depending on the intervention timing.

B. Comprehensive BioSDS UCs

Based on extracted 12 BioSDS UCs and 4 attributes,
11 UCs were defined (Table II). Six UCs were defined
to consider the most common objective “O3. Preventing
bugs” (Table II UC03, UC04, UC06, UC07, UC10, UC11)
and 5 UCs were defined to consider other 5 different
objectives(Table II UC01, UC02, UC05, UC08, UC09).

Six UCs related to “O3. Preventing bugs” were defined
as varying (iii) interventions and (iv) timing. Four UCs
were defined by combining two types of interventions:
“I1. Notification (Private)” and “I2. Notification (Team)”,
and two types of intervention timing: “Real-time” and
“Non-real-time” (Table II UC03, UC04, UC06, UC07).
Besides, to further investigate how interventions affect
the acceptance, we added the intervention category “I4.
Edit” and defined 2 original UC scenarios (Table II UC10,
UC11).

C. Questionnaires
We created two descriptions for each UC with different

subjects to be measured: respondent and non-respondent.
For the UCs whose subject is respondent, we use the
descriptions in Table II. For the UCs whose subject is
non-respondent, we replaced “(you)” with “(someone other
than you)” in the descriptions. Each description is pro-
vided with a Likert question that asks the acceptance level
of the description. We asked the same questions separately
for those two groups of descriptions to understand the
impact of the subject to be measured.

A Likert question was designed to evaluate “self-
predicted future usage” as the acceptance. The actual
question was “If the technology were available, would
you use it in your future tasks?” and had 5 options:
(1) “strongly disagree”, (2) “disagree”, (3) “neutral”, (4)
“agree”, (5) “strongly agree”. Likert responses higher than
3 suggest acceptance and that lower than 3 suggest rejec-
tion.

Questionnaires consisted of three pages. The first page
provided the summary and prerequisites of survey. As the
prerequisites for survey, “Do not care the feasibility” was
written because software for realizing any of defined UCs is
not yet available although software for collecting biosignals
is available [11], [14]. The second page asked the Likert
questions for descriptions whose subject to be measured
is respondent. The third page asked the same questions
for descriptions whose subject to be measured is non-
respondent. All sentences in questionnaires were written
in Japanese.

D. Analysis
1) RQ1. Do software developers accept BioSDS?: If

software developers accept a UC of BioSDS, their Likert
responses for a UC scenarios should be greater than 3
(neutral). We conducted Wilcoxon signed rank test [16]
to analyze whether the median of Likert responses was
significantly greater than 3 or not.



TABLE II
UCs created in this study

# Description of UCs Reference Objective Intervention Timing

UC01 Prompt the developer (you) to take a break when the developer (you) feels stressed.
[12] O6. Taking breaks I1. Notification (Private) Real-time

UC02 Present a candidate related code to the developer (you) only when the developer (you) feels stressed
because it is difficult to find a related code.

[12] O5. Searching code I1. Notification (Private) Real-time

UC03 While the developer (you) is viewing or modifying a code, identify the code that caused the stress
in real-time and encourage the developer (you) to review the modification or consult with others.

[3], [7], [9], [13] O3. Preventing bugs I1. Notification (Private) Real-time

UC04 Prompt the developer (you) to review the changes or consult with others before reflecting the changes
in the production code after the developer (you) has completed modifying the code.

[3], [7], [9], [13] O3. Preventing bugs I1. Notification (Private) Non-real-time

UC05 Let teammates know in real-time when the developer’s (your) concentration level is high
to prevent interruptions from those around the developer (you).

[12], [18] O4. Preventing interruptions I2. Notification (Team) Real-time

UC06 While the developer (you) is modifying the code, identify the code that caused the stress in real-time
and inform co-editors or teammates of the high stress of the developer (you).

[12], [13] O3. Preventing bugs I2. Notification (Team) Real-time

UC07 Prompt the reviewer to conduct a focused code review of the code that caused the developer (you) stress
after the developer (you) has completed the task but before it is reflected in the production code.

[12], [13] O3. Preventing bugs I2. Notification (Team) Non-real-time

UC08 Estimate the quality of the refactoring based on the stress while the developer (you) is viewing the code
to evaluate how the readability is improved from the developer’s (your) perspective.

[7], [12] O1. Assessing quality I3. Assessment –

UC09 Estimate technical skills on the basis of the stress while the developer (you) is viewing
and modifying the code.

[9] O2. Assessing skills I3. Assessment –

UC10 Edit code conventions to prevent program patterns that caused the developer (you) stress
by identifying the code that caused the stress in real-time while the developer (you) is viewing the code.

– O3. Preventing bugs I4. Edit Real-time

UC11 Submit issues for refactoring the code that caused the developer (you) stress
by identifying that code in real-time while the developer (you) is viewing the code.

– O3. Preventing bugs I4. Edit Real-Time

2) RQ2. How do attributes of UCs affect the accep-
tance?: The difference in Likert responses was analyzed
depending on the four attributes of UCs: (i) subject to
be measured, (ii) objectives, (iii) interventions, and (iv)
timing. For (i) the subject to be measured, the responses
were divided into two groups, and Wilcoxon signed rank
test was conducted as a test for two related paired samples.
For (ii) objectives and (iii) interventions, the response
values were divided into multiple groups, and the Kruskal-
Wallis test [8] was conducted as a multiple comparison
test. When the test result was significant, Wilcoxon rank-
sum test was conducted for every two groups. For (iv)
timing, to conduct a test for two related paired samples,
we limited the objective to “O3. Preventing bugs” and
the intervention of “Notification (I1, I2)”, and Wilcoxon
signed rank test was conducted.

E. Distribution

The survey was distributed to employees at Hitachi,
Ltd., a large Japanese IT company in FORTUNE 500; the
company has more than 3,000 employees and has been
doing business for more than 100 years in the electric
device field. The survey was distributed to about 100
software developers in the financial industry and about
60 employees in the research department.

IV. Results

We obtained 86 responses, of which 52 were from the
development sector and 34 from the R&D sector. The
average response time was 38 minutes. The respondents’
years of work experience were widely distributed from 0 to
35 years, with a particularly large number of respondents
around 0 and 20 years (Fig. 1A). This indicates that this
survey could reflect the opinions from both novice and
experienced software developers.
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A. RQ1. Do software developers accept BioSDS?
We verified whether the median Likert response of each

of the 11 UCs was greater than 3 when the subject to
be measured was either a respondent or non-respondent
(Fig. 1B). As the result, the median was significantly
greater than 3 for 4 use-cases (UC01, UC02, UC05, and
UC07), and for 1 use-case (UC11) the median was signif-
icantly less than 3. This result indicates that developers
accept some BioSDS UCs.

B. RQ2. How do attributes of UCs affect the level of
acceptance?

For each of the 4 attributes of UC defined in this
study, we grouped Likert responses by attribute values and
compared median values of each group (Fig. 1C).

1) Subject to be measured: The median Likert response
was significantly higher (Fig. 1C(i), p = 5.34 × 10−5 <
0.0001) when the subject to be measured was non-
respondent than when the subject was respondent. This
indicates that the acceptance is higher when the software
developer is not measured.

2) Timing: The median Likert response was signifi-
cantly higher (Fig. 1C(ii), p = 0.00132 < 0.05) when
the intervention timing was non-real-time than when the
intervention timing was real-time. This indicates that

developers could be more accepting of BioSDS with “Noti-
fication” interventions (I1, I2) and “O3. Preventing bugs”
objective.

3) Objective: The median Likert response showed
a significant difference among 6 types of objectives
(Fig. 1C(iii), p = 2.83 × 10−5 < 0.0001). Among fifteen
pairs of two of the six objectives, 3 were significantly
different after Bonferroni correction: O1 < O5 (p =
0.00571 < 0.05), O2 < O5 (p = 0.00622 < 0.05), and
O3 < O5 (p = 0.00142 < 0.05). This indicates that
“O5. Searching code” is the most acceptable, and “O4.
Preventing interruptions” and “O6. Taking breaks” are
moderately acceptable.

4) Intervention: The median Likert response showed
a significant difference among 4 types of interventions
(Fig. 1C(iv), p = 1.19 × 10−12 < 0.0001) as well as the
objectives. Among six combinations of two of the four in-
terventions, four combinations were significantly different
after Bonferroni correction; I1 > I3(p = 0.00148 < 0.05),
I1 > I4 (p = 3.11 × 10−10 < 0.0001), I2 > I3 (p =
0.00627 < 0.05), and I2 > I4 (p = 1.26 × 10−8 < 0.05).
This indicates that the two “Notification” interventions
(I1, I2) are more acceptable than the other interventions
(I3, I4).



V. Discussion
We examined the level of acceptance for each of the

UCs based on previous BioSDS studies, and revealed the
current level of acceptance (RQ1) and how four attributes
affect the level of acceptance (RQ2).

First, developers accepted some BioSDS UCs to a cer-
tain extent (Fig. 1B). This result suggests that at least
some BioSDS UCs are ready to be deployed in the work-
place from an acceptance perspective. Currently, even if
developers want to start using BioSDS, they cannot try
out BioSDS UCs because it is difficult to prepare machine
learning models trained by BioSDS studies. In addition,
some measurement devices, such as eye trackers, are too
expensive for all software developers to install. In the
future, it is expected that at least some of the use-cases
can be deployed in the workplace by publishing research-
trained models or by providing inexpensive devices.

Second, all 4 of the attributes defined in this study
affect the level of acceptance (Fig. 1C). For each of these
attributes, respondents prefer values where the impact is
relatively small. For example, acceptance is higher when
the software developer is not measured (Fig. 1C(i)). In
the future, we should clarify the reason by conducting a
qualitative analysis.

VI. Conclusion
The acceptance of software development support tech-

nologies using biosignals (BioSDS) was investigated by
presenting eleven defined use-cases to software developers
in a large Japanese IT company. As a result of the analysis
of 86 responses, 2 findings were obtained.

1) Four out of 11 BioSDS use-cases (UC01, UC02, UC05,
UC07) were accepted by the software developers.

2) The level of acceptance of BioSDS use-cases var-
ied depending on four attributes: the subject to be
measured, the objectives, the interventions, and the
timing. For all these attributes, software developers
preferred low-impact values for them.

These results suggest that at least some use-cases are
ready to be deployed in the workplace from an accep-
tance perspective, and deployment could be advanced
by publishing assets created in BioSDS studies. On the
other hand, the acceptance of BioSDS use-cases with high
impact was still low, and we should clarify the reason by
conducting qualitative analysis in the future.

As a limitation of this study, it is not clear how ac-
ceptance varies depending on the characteristics of soft-
ware developers, as the respondents were a heterogeneous
group. In the future, we will use a mathematical method
for clustering heterogeneous groups to reveal which type
of software developers tend to be more accepting of the
use of BioSDS.
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