
DOI reference number: 10.18293/SEKE23-068

GSAGE2defect: An Improved Approach to Software

Defect Prediction based on Inductive Graph Neural

Network

Ju Ma

School of Computer

Science and

Information Engineering

Hubei University

Wuhan, China

mj_5265@qq.com

Yi-Yang Sun

School of Computer

Science and

Information Engineering

Hubei University

Wuhan, China

625824202@qq.com

Peng He

School of Cyber Science

and Technology

Hubei University

Wuhan, China

penghe@hubu.edu.cn

Zhang-Fan Zeng

School of Computer

Science and

Information Engineering

Hubei University

Wuhan, China

zeng.zhangfan@hubu.e

du.cn

Abstract—Graph neural network is an effective deep learning

framework for learning graph data. Existing research has introduced

different variants of graph neural networks into the field of software

defects and has achieved promising results. However, the graph neural

network model based on the previous research is essentially

transductive, is applied to a single fixed graph, and often ignores the

direction and weight of the edges when modeling the network. In

practice, software systems are dynamically evolving. Furthermore, in

software network modeling, the direction and weight of edges are

factors that are worth considering. Based on an inductive graph neural

network, we proposed an improved defect prediction method named

GSAGE2defect. We first constructed the class dependency network of

the program and then used node2vec for embedding learning to

automatically obtain the structural features of the network. Then we

combined the learned structural features with traditional software

code features to initialize the properties of nodes in the class

dependency network. Next, we fed the dependency network to

GraphSAGE for a deeper class representation. Finally, we evaluated

the proposed method based on eight open-source programs and

demonstrated that GSAGE2defect achieves an average improvement

of 2.09%-26.69% over state-of-the-art methods in terms of F-measure.

Keywords-component; Software defect prediction; Graph neural

network; Network embedding; Class dependency network

I. INTRODUCTION

Graph-structured data are ubiquitous nowadays in many
domains such as social networks, cybersecurity, and bio- and
chemo-informatics [1]. Through the learning of graph data,
many tasks in these domains have been successfully solved, such
as recommendations in social networks, and drug discovery in
biological information networks. In the field of software
engineering, software systems can also be abstracted as a Class
Dependency Graph (CDG) with classes as nodes and class
dependencies as edges. Some researchers have confirmed that
learning the CDG structural information by using complex
network theory can effectively improve software defect
prediction [2-4]. In recent years, researchers have begun to
employ deep learning techniques to automatically encode the

dependency graph structure into low-dimensional vector spaces
to improve downstream software tasks [2].

Many high-performance graph neural networks have been
proposed, in which node adjacency information and node
attributes are combined to capture structural information well
(e.g., [3,5-7]). It is not difficult to find that the Graph Neural
Network (GNN) models, based on which previous studies have
been carried out, are inherently transductive and have only been
applied in settings with a single fixed graph. However, graph
structure data in real scenarios are often dynamic. As we know,
a successful software system usually undergoes multiple
consecutive versions during its life cycle. In other words, the
structure of a software system continues to evolve with
requirements and other factors. For instance, the fixing of bugs
and the updating of functions may result in the addition or
deletion of classes. The transductive-based GNNs primarily
generate node embeddings on fixed graphs, and for new nodes,
they usually require relearning the new graph, even if it is just a
small update. This gives rise to high costs. Moreover,
representations for unseen nodes or entirely new graphs cannot
be quickly generated.

Hamilton et al. [8] proposed a general framework, called
GraphSAGE (SAmple and aggreGatE), for inductive node
embedding. Instead of training a distinct embedding vector for
each node, GraphSAGE trains a set of aggregator functions and
generates node embeddings by applying the learned aggregation
functions. Based on GraphSAGE ideas, Zhou et al. [10]
attempted to learn node deeper representation scores in CDGs
for key class identification tasks. Besides, in the proposed
method, the authors also considered the influence of the
direction and weight of the edges in the Class Dependency
Network (CDN).

Inspired by the above-mentioned studies and by considering
the direction and weight of edges for nodes’ feature vector
learning, we also attempted to apply an inductive GNN model to
CDN and then used them for defect prediction. The main
contributions are summarized as follows:

mailto:mj_5265@qq.com
mailto:625824202@qq.com
mailto:penghe@hubu.edu.cn
mailto:zeng.zhangfan@hubu.edu.cn
mailto:zeng.zhangfan@hubu.edu.cn

⚫ We introduce an inductive GNN model, called
GraphSAGE, to learn the features of CDN nodes
effectively.

⚫ We proposed a new method named GSAGE2defect,
which uses the network embedding technique
node2vec to initialize the node attributes of CDNs, and
uses the GraphSAGE model to further implement
feature extraction to improve defect prediction.

⚫ We validated the effectiveness of GSAGE2defect
based on eight open-source projects, and the results
indicated that the proposed method can improve defect
prediction performances.

The remainder of this paper is organized as follows: The
related work is introduced in Section 2. The proposed method is
detailed in Section 3. The experimental setup and results analysis
are presented in Section 4. The advantages and shortcomings of
our work are discussed in Section 5. Finally, the conclusion and
prospects are drawn in Section 6.

II. RELATED WORK

In recent years, deep learning has been utilized to mine
nonlinear features in software source code, where capturing
semantic information from Abstract Syntax Tree (AST) has
attracted widespread attention. For example, Wang et al. [11]
extracted the source code of AST, and then leveraged Deep
Belief Network (DBN) to automatically learn the hidden
semantic and syntactic features in the program for defect
prediction. Li et al. [12] employed a Convolutional Neural
Network (CNN) to extract the semantic information of ASTs and
combined the learned features with traditional hand-crafted
features to enhance the prediction performance. However, AST
only encapsulates the abstract syntax structure of the source code
and cannot represent the execution process of the program.
Hence, Phan et al. [13] converted the source code into a program
Control Flow Graphs (CFG), and tried to learn from CFG
through the convolutional neural network. It is worth mentioning
that AST and CFG only focus on the semantic and structural
information inside each code file, thereby ignoring the macro-
structural information between code files, such as the
dependencies between classes. Thus, Qu et al. [2] adopted a
network embedding technique (i.e., node2vec) to automatically
learn the external structural information of the CDN. In this way,
they could achieve good results.

 With the development of GNNs, the graph embedding
model can integrate node and edge attributes while learning
network structure. Indeed in [3], the author enhanced the
performance of software defect prediction by successfully
managing to learn the network structural features of source
codes by using a transductive graph convolution neural network
(GCN) model. Nevertheless, software system is constantly
evolving in the real world. The addition of new classes, the
deletion of irrelevant classes, the update of functional classes,
and the repair of error classes will give rise to the iterative
evolution of software systems. The transductive graph neural
network (e.g., GCN) needs to re-learn the entire graph when
generating embeddings for new nodes in the graph, which will
result in problems such as excessive computing costs and large
space costs. Besides, because network dependence is usually

directed and weighted, CDG should be a directed weighted
graph. However, the authors in [3,4] regarded CDG as an
undirected unweighted graph. Some network information is
inevitably lost in this approach.

It is not difficult to find that most existing studies have the
following limitations: (1) The work focuses on embedding nodes
from a single fixed graph, while many real-world applications
require the fast generation of embeddings for unseen nodes or
entirely new (sub) graphs. (2) The weight and direction of the
edges are not considered during software network modeling. In
practice, the dependency between classes is not a bidirectional
equivalent dependency, and the degree of dependency between
classes also varies.

Given these, we introduced an inductive graph neural
network, namely GraphSAGE, to learn the directed weighted
CDN. Specifically, we constructed a GSAGE2defect model for
learning the structural features of nodes in class dependency
networks. Then we performed end-to-end learning based on the
semantic and structural information of nodes, and ultimately
applied the obtained features to improve defect predictive
performance.

III. METHOD

The framework diagram of this research is shown in Figure
1, which mainly includes three parts: (1) Constructing a class
dependency network, and then learning the node embedding by
the node2vec method; (2) Initializing node attributes by
combining learned node embedding and traditional hand-crafted
metrics, then introducing GraphSAGE to learn network
structural features; (3) Training a classifier for defect prediction.

A. Network Modeling and Embedding Learning

1) Class dependency network modeling
A Class Dependency Network (CDN) is a directed weighted

network constructed according to the dependencies between
class files. For object-oriented software, its class dependency
network 𝐶𝐷𝑁𝑃 = (𝑉, 𝐸),where 𝑉 is the set of nodes, each node
𝑣 ∈ 𝑉 represents a class or interface, 𝐸 is the set of edges,
representing the dependencies between classes or interfaces.
Three main dependencies are considered in this paper:
Inheritance dependency, Interface implementation dependency,
Method calls dependency (aggregation).

For weight extraction, the calculation method of the edge
weight was as follows:

𝑊𝑖𝑗 =
𝑑𝑖𝑗

∑ 𝑑𝑖𝑘

𝑘∈𝑁(𝑗)

 (1)

where 𝑊𝑖𝑗 represents the weight between node 𝑣𝑖 and node

𝑣𝑗, 𝑑𝑖𝑗 stands for the number of dependencies between the two

nodes, and 𝑁(𝑗) denotes the set of neighbors of the node 𝑣𝑗.

It is worth mentioning that in the weighted network, the
weight of the edge is not related to the direction, but to the
current target node. Some explanations are mentioned in
reference [10].

2) Node attribute generation

Before training GraphSAGE, we must provide the attributes
of the nodes in CDN. Node attribute metrics can include many
types, such as traditional static code metrics, complex network
metrics, and network-embedded metrics. Traditional static Code
Metrics (TCM) consist of twenty manually designed metrics,
such as CBO (number of classes coupled to a given class), WMC
(number of methods in a given class), and LOC (lines of source
code). Complex Network Metrics (CNM) are extensively
employed in social networks, including seventeen metrics such
as density, size, and extent. Network structure information is

extracted from CDN through network embedding learning as a
Network Embedding Metric (NEM). We used the node2vec [14]
method to map each class node to a low-dimensional vector.

Different metrics can be combined in many ways. According
to our previous research [4], the combination of TCM and NEM
as node attributes is the optimal choice. Therefore, we selected
this combination of metrics as the initial attributes of nodes in
class dependency networks to feed into GraphSAGE for training.

Source Files

extracting

aggr2
CDN

node2vec

Features

Traditional hand-craft features

Sample

neighborhood

Classifier

?fm...f2f1

Test instances

×fm...f2f1

×fm...f2f1

×fm...f2f1

 fm...f2f1

 fm...f2f1

Predict

（buggy/clean）

Training instances

Aggregate feature

information

fm+n...fn+1fn...f1

1.Network modeling and embedding 2.GraphSAGE learning 3.Defect prediction

1

2

15

4

5

6

7

8

10

11
12

13

14

w51w21

w52

w59

w65w62

w43

w78

w67

w1415

w1315
w1314

w1213

w1110
w119

w116 w1311
w613w64

fnfn-1...f3f2f1
fnfn-1...f3f2f1

fnfn-1...f3f2f1

3

9

w21

w52

w51

w62

w64

w43

w78

w67 w613

w65

w59

w119

w1110

w1311

w1213

w1315

w1415
w1314

w21 w51 w59

w119
w1110

w1213

w1315

w1415

w1314

w613
w1113

w62

w52

w65

w64

w43

w78

w67

w116

fmfm-1...f3f2f1
fmfm-1...f3f2f1

fmfm-1...f3f2f1

Initial node attributes

fm+n...fn+1fn...f1

fm+n...fn+1fn...f1

Conbine

w116

1

2
5

7

8 14

13

12

10

9

11

15

6

4

3

1

3

4

6

7

8

11

12

13

14

15

9

10

2
5

Figure 1. The framework of our approach

B. GraphSAGE learning

Algorithm 1 describes the entire learning process.
Specifically, a CDN and its node attributes are provided as input.
Each step in the outer loop of Algorithm 1 proceeds as follows,
where k signifies the current search depth in the outer loop, and

𝒉𝑣
𝑘 indicates the node representation at this search depth. First,

each node 𝑣 ∈ 𝒱 aggregates the representations of the nodes in

its immediate neighborhood, 𝒉𝑢
𝑘−1, ∀𝑢 ∈ 𝒩(𝑣)} , and then

convert to a single vector 𝒉𝑁(𝑣)
𝑘−1 . After aggregating adjacent

feature vectors, GraphSAGE concatenates the current

representation of the node 𝒉𝑣
𝑘−1 with the aggregated domain

vector 𝒉𝑁(𝑣)
𝑘−1 to obtain the features of the current layer node

representation, the final output is the feature matrix 𝒁 of the
node.

Algorithm 1: GraphSAGE algorithm for generating node

features

Input: G(V, E) ; Node initial feature vector X; Depth
K; weight matrix Wk, ∀k ∈ {1, ⋯ , K}; aggregation functions

𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑘 , ∀𝑘∈ {1, … . , 𝑘}; neighborhood

function N: v → 2v

Output: Node Feature Matrix Z .

1 Initialize the node representation vector hv
0 = Xv, ∀v ∈ V ;

2 if k = 1 ⋯ K:

3 do the following for each node v ∈ V ：

4 hN(v)
k = AGGREGATEk({hu

k-1, ∀u ∈ N(v)});

5 hv
k = σ(Wk ∙ CONCAT(hN(v)

k , hv
k-1));

6 hv
k = hv

k ‖hv
k‖

2
 ⁄ ; // Normalize the hv

k obtained by each

layer

7 ends

8 zv = hv
k, , ∀v ∈ V ;

9 Output node feature matrix Z .

GraphSAGE provides three aggregator functions: average
aggregation, Long Short-Term Memory (LSTM) aggregation,
and max pooling aggregation. we selected the default aggregator
function (i.e., max pooling aggregation).

IV. EXPERIMENT

A. Datasets

In our experiments, we utilized eight classical defect projects
published by the PROMISE1 library. Table I shows the details
of the eight software projects, in which #Nodes represents the
number of class files in CDN, #Edges indicates the number of
dependencies between class files, #Defective signifies the
number of buggy files in the project, and %Defective denotes
the corresponding buggy rate.

B. Experimental setup

Because the defect dataset was imbalanced, it needs to be
sampled before training. Here we consider 4 commonly used

sampling strategies: SMOTE [15] 、BorderlineSMOTE [16] 、
SMOTEENN [17] and SMOTETomek [18].

Five-fold cross-validation was used (the training set
accounted for 80% and the test set 20%), and we repeated the
experiment 25 times. The final results were averaged to reduce
the bias introduced by randomly dividing the data. The
experimental parameters of this study are shown in Table II.

TABLE I. DATASET

project version #Nodes #Edges #Defective %Defective

Ant 1.7.0 703 3012 128 22.76%

Camel 1.6.0 906 3644 145 20.09%

Ivy 2.0 343 1710 31 11.37%

jEdit 4.1 292 1044 58 25.00%

Velocity 1.6.1 210 1035 60 35.71%
Poi 3.0 421 1304 273 64.85%

Lucene 2.4.0 324 1353 194 59.88%

Xalan 2.6.0 801 3965 362 45.19%

TABLE II. EXPERIMENTAL ENVIRONMENT

Parameter Parameter value

Feature dimension 32

epochs 2000

optimizer Adam

initial learning rate 0.001

output dimension 32

dropout 0.1

Imbalance Handling Threshold 𝜎 0.4

To verify the effectiveness of GSAGE2defect, we selected
the following eight benchmark methods for comparison:
dw2defect [18], node2defect [2], DP-CNN [12], Seml [19],
SDNE2defect [20], Struc2defect [21], GCN2defect [3], and
GAT2defect [22].

C. Evaluation metrics

The evaluation metric of our experiment adopts F-measure.
The formula for calculating F-measure is as follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

𝐹1 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4)

Among them, TP (True Positive) and TN (True Negative) are
the numbers of positive and negative samples predicted correctly,
FP (False Positive) is the number of negative samples predicted
as positive samples, and FN (False Negative) is the number of
positive samples predicted as negative samples.

D. Results and Analysis

RQ1: Does the proposed GSAGE2defect approach work well?
For a fair comparison, the sampling method and classifier in

the benchmark model were chosen consistent with our proposed
method. All baseline models use SMOTETomek and Random
Forest (RF) in predictions.

To further explore RQ1, we contrasted our approach with
four baseline models and four classical model approaches.
Figure 2 (left) exhibits that our proposed method is superior to
the four baseline methods in terms of overall performance,
which is evident by the higher median value of the F-measure
(0.919). Among the four baseline methods, the performance of
the GAT prediction model of the graph attention neural network
(labeled as GAT2defect) was better than the other three baseline
methods, and its median value of the F-measure was 0.843.
Moreover, Figure 2 (right) displays that the proposed method is
also better than the four classical methods. This is reflected by
its median value of the F-measure which is the greatest (0.919).

The overall F-measure value of dw2defect was 0.793,
struc2defect was 0.702, sdne2defect was 0.804, GAT2defect
was 0.843, and GSAGE2defect was 0.917. The performance of
GSAGE2defect was indeed better than the four baseline
methods. The F-measure values of the other four classical
methods of DP-CNN [12], Seml [19], node2defect [2], and
GCN2defect [3] were 0.807, 0.714, 0.714, and 0.894,
respectively. The performance of GSAGE2defect was clearly
better than the four classical methods.

Figure 3 (left) depicts the improvement in the prediction of
the GSAGE2defect model compared to that of the eight
benchmark models. It can be observed from the figure that the
GSAGE2defect model has provided a certain improvement in
the prediction compared with other benchmark models, and the
improvement range is between 2.09% and 26.69%.

In general, according to the results of Figure 3, it can be
found that the GSAGE2defect model has a better improvement
than the benchmark model, with a maximum improvement of
26.69% and an average improvement of 13.22%.

RQ2: Do the dependency direction and weight of CDN have a
significant impact on GSAGE2defect?

To answer RQ2, we designed four sets of experiments to

discuss the prediction performance of the GSAGE2defect

model in four network scenarios and to explore the influence of

the dependency direction and weight on the model during

network modeling. The results are displayed in Figure 3(right)

and Table III. Table III shows the F-score of the GSAGE2defect

model under eight projects in four network scenarios.
On the whole, the GSAGE2defect model had the best

performance under the directed and unweighted network with
the highest average F-score (0.921), and five of the eight projects
achieved the highest F1-score in the directed and unweighted
scenario, followed by the scenario of undirected weighted and
directed weighted, and the worst was undirected unweighted.

Besides, we introduced Wilcoxon signed-rank test (p-value)

and Cliff’s [23] influence factors, and compared and analyzed

the differences in the experimental results. According to the

results of the p-value and d-value in Table 4, the class

dependency direction and weight do not have a very substantial

impact on the prediction performance of the GSAGE2defect

model.

Figure 2. Comparison of F1 values with the baseline model (left) and the classic model (right)

Figure 3. The improvement in the prediction effect compared to the baseline model(left) and F1 comparison of GraphSAGE under four network scenarios(right)

TABLE III. COMPARISON OF MICRO-F1 RESULTS IN FOUR NETWORK

SCENARIOS

Project

F1(F-measure)

 ud & uw
 ud &

w

 d &

uw
 d & w

Ant 0.907 0.908 0.903 0.905

Camel 0.936 0.941 0.937 0.937

Ivy 0.937 0.938 0.937 0.939

jEdit 0.919 0.923 0.932 0.925
Velocity 0.913 0.918 0.918 0.911

Poi 0.920 0.928 0.930 0.928

Lucene 0.919 0.919 0.921 0.921

Xalan 0.888 0.881 0.892 0.887

Average 0.917 0.920 0.921 0.920

comparation Sig.p < 0.05, d

ud&uw vs ud&w 0.1913 (-0.1875)

d&uw vs d&w 0.1627 (0.0625)

ud&uw vs d&uw 0.0780 (-0.2180)

ud&w vs d&w 0.8321 (0)

V. DISCUSSION

For addressing RQ1, we reproduced the GCN2defect method
on the dataset processed in this paper. The defect rate of the
dataset in our study was slightly different from that in [3]. This
may originate from the fact that the direction information and
weight information between nodes were not extracted in [3]
when processing the dataset, however, we extracted these two
types of information.

For addressing RQ2, the comparison of directed unweighted
vs. directed weighted and undirected weighted vs. directed
weighted groups demonstrated that considering the effect of
both direction and weight is not optimal compared to
considering a single element. In the comparison between
undirected unweighted and undirected weighted cases, the F-

score of seven out of eight projects in the undirected weighted
was greater than the former and the d-value was negative. This
indicated that in the undirected case, the weighting effect was
better. Compared with the directed and unweighted case, the F-
score of six out of the eight projects of the directed and
unweighted case was greater than the undirected unweighted
case and the d-value was negative, suggesting that the directed
effect was better in the case of the unweighted. Therefore, it is
still necessary to consider the dependency direction and weight
in the software network modeling process.

Moreover, we chose random forest as the classifier in RQs.
To further explore the influence of the classifier on the model
predictions, we tried four different classifiers in the
GSAGE2defect model, including Random Forest (RF),
Multilayer Perceptron (MLP), Decision Tree (DT), and Logical
Regression (LR). The GAGE2defect model worked best in
directed and unweighted scenarios. Thus, in this scenario, we
conducted a comparative experiment of classifiers in the
GSAGE2defect model. Table IV exhibits the effects of the four
classifiers on GSAGE2defect, and the best values are shown in
bold. In addition, Table V shows the significant differences
when using different classifiers. From the results of the p-value
and d-value, it can be observed that the difference between RF
and the other three classifiers is significant.

TABLE IV. THE EFFECT OF THE CLASSIFIER ON GSAGE2DEFECT

Project LR DT MLP RF

Ant 0.732 0.653 0.830 0.903

Camel 0.805 0.757 0.872 0.937

Ivy 0.800 0.689 0.812 0.937

jEdit 0.821 0.781 0.833 0.932

Velocity 0.827 0.818 0.320 0.918

Poi 0.922 0.907 0.460 0.930

dw2defect struc2defect SDNE2defect GAT2defect GSAGE2defect

0.7

0.8

0.9

F
1

DP-CNN Seml Node2defect GCN2defect GSAGE2defect

0.2

0.4

0.6

0.8

1.0

F
1

12.47%
13.39%

11.35%

20.33%

7.37%

12.04%

26.69%

2.09%

0%

5%

10%

15%

20%

25%

30%

ud&uw ud&w d&uw d&w

0.88

0.90

0.92

0.94

F1

Lucene 0.892 0.854 0.450 0.921

Xalan 0.893 0.823 0.872 0.892

average 0.836 0.785 0.681 0.921

TABLE V. STATISTICAL TEST RESULTS OF GSAGE2DEFECT

GSAGE2defect p-value Cliff’s delta

LR vs RF 0.016 -0.828

DT vs RF 0.006 -0.938

MLP vs RF 0.019 -0.938

VI. CONCLUSION

This paper proposed a new defect prediction method
GSAGE2defect, by introducing an inductive graph neural
network model GraphSAGE to automatically learns the
dependencies between nodes in a class dependency network and
using SMOTETomek sampling to solve the problem of sample
imbalance. We verified the effectiveness of our method on data
from eight open-source projects, and the results indicated that
GSAGE2defect can outperform the baseline model by 26.69%
in terms of F-measure, and also revealed that considering weight
and direction in the class dependency network is helpful for
software defect prediction. If only one of these two factors is
considered, a certain improvement will occur in the predictions
of the model. In general, the model had the best prediction in the
directed and unweighted scenario. Besides, our method has an
absolute advantage compared to the four baseline models, and it
also has obvious advantages in comparison to the five classic
methods.

This study is only a small part of the results of our
comprehensive research, and there is still much research that
should be completed. In the future, we will extend this study to
extract richer features and to build more complete software
networks. Furthermore, we will extend our research to focus on
defect prediction across various projects.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (Nos. 61832014, 61902114, 61977021),
and the Key R&D Programs of Hubei Province (No.
2021BAA184, 2021BAA188).

REFERENCES

[1] Narayanan, A, Chandramohan, et.al. graph2vec: Learning Distributed
Representations of Graphs[J]. arXiv preprint arXiv:1707.05005, 2017.

[2] Qu Y, Liu T, Chi J and Zheng Q. node2defect: using network embedding

to improve software defect prediction[C]//2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE).

IEEE, 2018: 844-849.

[3] C. Zeng, C. Y. Zhou, S. K. Lv, P. He and J. Huang, "GCN2defect: Graph
Convolutional Networks for SMOTETomek-based Software Defect

Prediction," 2021 IEEE 32nd International Symposium on Software

Reliability Engineering (ISSRE), 2021, pp. 69-79.
[4] Zhou C, He P, Zeng, C and Ma J. "Software defect prediction with

semantic and structural information of codes based on Graph Neural

Networks." Information and Software Technology 152 (2022): 107057.
[5] Marcheggiani D, Bastings J, Titov I. Exploiting semantics in neural

machine translation with graph convolutional networks[J]. arXiv preprint

arXiv:1804.08313, 2018.
[6] Ying R, He R, Chen K, et al. Graph convolutional neural networks for

web-scale recommender systems[C]//Proceedings of the 24th ACM

SIGKDD international conference on knowledge discovery & data mining.
2018: 974-983.

[7] Monti F, Bronstein M, Bresson X. Geometric matrix completion with

recurrent multi-graph neural networks[J]. Advances in neural information
processing systems, 2017, 30.

[8] Hamilton W, Ying Z, Leskovec J. Inductive representation learning on

large graphs[J]. Advances in neural information processing systems, 2017,
30.

[9] Hajibabaee P, Malekzadeh M, Heidari M, et al. An empirical study of the

graphsage and word2vec algorithms for graph multiclass
classification[C]//2021 IEEE 12th Annual Information Technology,

Electronics and Mobile Communication Conference (IEMCON). IEEE,

2021: 0515-0522.
[10] ZHOU Chun-Ying, ZENG Cheng, HE Peng and ZHANG Yan. GKCI: An

Improved GNN-based Key Class Identification Method[J].Journal of

Software,2023,34(6):0-0.
[11] Wang, S., Liu, T., Nam, J., & Tan, L. (2018). Deep Semantic Feature

Learning for Software Defect Prediction. IEEE Transactions on Software

Engineering, 46, 1267-1293.
[12] Li J, He P, Zhu J and Lyn. M. R. Software defect prediction via

convolutional neural network[C]//2017 IEEE international conference on

software quality, reliability and security (QRS). IEEE, 2017: 318-328.
[13] P Phan A V, Le Nguyen M, Bui L T. Convolutional neural networks over

control flow graphs for software defect prediction[C]//2017 IEEE 29th

International Conference on Tools with Artificial Intelligence (ICTAI).
IEEE, 2017: 45-52.

[14] Grover A, Leskovec J. node2vec: Scalable feature learning for

networks[C]//Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. 2016: 855-864.

[15] Chawla N V, Bowyer K W, Hall L O and Kegelmeyer W P. SMOTE:
synthetic minority over-sampling technique[J]. Journal of artificial

intelligence research, 2002, 16: 321-357.

[16] Han H, Wang W Y, Mao B H. Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning[C]//Advances in Intelligent

Computing: International Conference on Intelligent Computing, ICIC

2005, Hefei, China, August 23-26, 2005, Proceedings, Part I 1. Springer
Berlin Heidelberg, 2005: 878-887.

[17] Batista G E, Prati R C, Monard M C. A study of the behavior of several

methods for balancing machine learning training data[J]. ACM SIGKDD
explorations newsletter, 2004, 6(1): 20-29.

[18] Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social

representations[C]//Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining. 2014: 701-710.

[19] Liang H, Yu Y, Jiang L and Xie Z. Seml: A semantic LSTM model for

software defect prediction[J]. IEEE Access, 2019, 7: 83812-83824.
[20] Wang D, Cui P, Zhu W. Structural deep network

embedding[C]//Proceedings of the 22nd ACM SIGKDD international

conference on Knowledge discovery and data mining. 2016: 1225-1234.
[21] Ribeiro L F R, Saverese P H P, Figueiredo D R. struc2vec: Learning node

representations from structural identity[C]//Proceedings of the 23rd ACM

SIGKDD international conference on knowledge discovery and data
mining. 2017: 385-394.

[22] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J].

arXiv preprint arXiv:1710.10903, 2017.
[23] Cliff N. Ordinal methods for behavioral data analysis[M]. Psychology

Press, 2014.

	I. Introduction
	II. Related work
	III. Method
	A. Network Modeling and Embedding Learning
	1) Class dependency network modeling
	2) Node attribute generation

	B. GraphSAGE learning

	IV. Experiment
	A. Datasets
	B. Experimental setup
	C. Evaluation metrics
	D. Results and Analysis
	RQ1: Does the proposed GSAGE2defect approach work well?

	V. Discussion
	VI. Conclusion
	Acknowledgment
	References

