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Abstract—Graph neural network is an effective deep learning 

framework for learning graph data. Existing research has introduced 

different variants of graph neural networks into the field of software 

defects and has achieved promising results. However, the graph neural 

network model based on the previous research is essentially 

transductive, is applied to a single fixed graph, and often ignores the 

direction and weight of the edges when modeling the network. In 

practice, software systems are dynamically evolving. Furthermore, in 

software network modeling, the direction and weight of edges are 

factors that are worth considering. Based on an inductive graph neural 

network, we proposed an improved defect prediction method named 

GSAGE2defect. We first constructed the class dependency network of 

the program and then used node2vec for embedding learning to 

automatically obtain the structural features of the network. Then we 

combined the learned structural features with traditional software 

code features to initialize the properties of nodes in the class 

dependency network. Next, we fed the dependency network to 

GraphSAGE for a deeper class representation. Finally, we evaluated 

the proposed method based on eight open-source programs and 

demonstrated that GSAGE2defect achieves an average improvement 

of 2.09%-26.69% over state-of-the-art methods in terms of F-measure. 

Keywords-component; Software defect prediction; Graph neural 

network; Network embedding; Class dependency network 

I.  INTRODUCTION  

Graph-structured data are ubiquitous nowadays in many 
domains such as social networks, cybersecurity, and bio- and 
chemo-informatics [1]. Through the learning of graph data, 
many tasks in these domains have been successfully solved, such 
as recommendations in social networks, and drug discovery in 
biological information networks. In the field of software 
engineering, software systems can also be abstracted as a Class 
Dependency Graph (CDG) with classes as nodes and class 
dependencies as edges. Some researchers have confirmed that 
learning the CDG structural information by using complex 
network theory can effectively improve software defect 
prediction [2-4]. In recent years, researchers have begun to 
employ deep learning techniques to automatically encode the 

dependency graph structure into low-dimensional vector spaces 
to improve downstream software tasks [2]. 

Many high-performance graph neural networks have been 
proposed, in which node adjacency information and node 
attributes are combined to capture structural information well 
(e.g., [3,5-7]). It is not difficult to find that the Graph Neural 
Network (GNN) models, based on which previous studies have 
been carried out, are inherently transductive and have only been 
applied in settings with a single fixed graph. However, graph 
structure data in real scenarios are often dynamic. As we know, 
a successful software system usually undergoes multiple 
consecutive versions during its life cycle. In other words, the 
structure of a software system continues to evolve with 
requirements and other factors. For instance, the fixing of bugs 
and the updating of functions may result in the addition or 
deletion of classes. The transductive-based GNNs primarily 
generate node embeddings on fixed graphs, and for new nodes, 
they usually require relearning the new graph, even if it is just a 
small update. This gives rise to high costs. Moreover, 
representations for unseen nodes or entirely new graphs cannot 
be quickly generated. 

Hamilton et al. [8] proposed a general framework, called 
GraphSAGE (SAmple and aggreGatE), for inductive node 
embedding. Instead of training a distinct embedding vector for 
each node, GraphSAGE trains a set of aggregator functions and 
generates node embeddings by applying the learned aggregation 
functions. Based on GraphSAGE ideas, Zhou et al. [10] 
attempted to learn node deeper representation scores in CDGs 
for key class identification tasks. Besides, in the proposed 
method, the authors also considered the influence of the 
direction and weight of the edges in the Class Dependency 
Network (CDN). 

Inspired by the above-mentioned studies and by considering 
the direction and weight of edges for nodes’ feature vector 
learning, we also attempted to apply an inductive GNN model to 
CDN and then used them for defect prediction. The main 
contributions are summarized as follows: 
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⚫ We introduce an inductive GNN model, called 
GraphSAGE, to learn the features of CDN nodes 
effectively. 

⚫ We proposed a new method named GSAGE2defect, 
which uses the network embedding technique 
node2vec to initialize the node attributes of CDNs, and 
uses the GraphSAGE model to further implement 
feature extraction to improve defect prediction. 

⚫ We validated the effectiveness of GSAGE2defect 
based on eight open-source projects, and the results 
indicated that the proposed method can improve defect 
prediction performances. 

The remainder of this paper is organized as follows: The 
related work is introduced in Section 2. The proposed method is 
detailed in Section 3. The experimental setup and results analysis 
are presented in Section 4. The advantages and shortcomings of 
our work are discussed in Section 5. Finally, the conclusion and 
prospects are drawn in Section 6. 

II.  RELATED WORK  

In recent years, deep learning has been utilized to mine 
nonlinear features in software source code, where capturing 
semantic information from Abstract Syntax Tree (AST) has 
attracted widespread attention. For example, Wang et al. [11] 
extracted the source code of AST, and then leveraged Deep 
Belief Network (DBN) to automatically learn the hidden 
semantic and syntactic features in the program for defect 
prediction. Li et al. [12] employed a Convolutional Neural 
Network (CNN) to extract the semantic information of ASTs and 
combined the learned features with traditional hand-crafted 
features to enhance the prediction performance. However, AST 
only encapsulates the abstract syntax structure of the source code 
and cannot represent the execution process of the program. 
Hence, Phan et al. [13] converted the source code into a program 
Control Flow Graphs (CFG), and tried to learn from CFG 
through the convolutional neural network. It is worth mentioning 
that AST and CFG only focus on the semantic and structural 
information inside each code file, thereby ignoring the macro-
structural information between code files, such as the 
dependencies between classes. Thus, Qu et al. [2] adopted a 
network embedding technique (i.e., node2vec) to automatically 
learn the external structural information of the CDN. In this way, 
they could achieve good results. 

 With the development of GNNs, the graph embedding 
model can integrate node and edge attributes while learning 
network structure. Indeed in [3], the author enhanced the 
performance of software defect prediction by successfully 
managing to learn the network structural features of source 
codes by using a transductive graph convolution neural network 
(GCN) model. Nevertheless, software system is constantly 
evolving in the real world. The addition of new classes, the 
deletion of irrelevant classes, the update of functional classes, 
and the repair of error classes will give rise to the iterative 
evolution of software systems. The transductive graph neural 
network (e.g., GCN) needs to re-learn the entire graph when 
generating embeddings for new nodes in the graph, which will 
result in problems such as excessive computing costs and large 
space costs. Besides, because network dependence is usually 

directed and weighted, CDG should be a directed weighted 
graph. However, the authors in [3,4] regarded CDG as an 
undirected unweighted graph. Some network information is 
inevitably lost in this approach.  

It is not difficult to find that most existing studies have the 
following limitations: (1) The work focuses on embedding nodes 
from a single fixed graph, while many real-world applications 
require the fast generation of embeddings for unseen nodes or 
entirely new (sub) graphs. (2) The weight and direction of the 
edges are not considered during software network modeling. In 
practice, the dependency between classes is not a bidirectional 
equivalent dependency, and the degree of dependency between 
classes also varies. 

Given these, we introduced an inductive graph neural 
network, namely GraphSAGE, to learn the directed weighted 
CDN. Specifically, we constructed a GSAGE2defect model for 
learning the structural features of nodes in class dependency 
networks. Then we performed end-to-end learning based on the 
semantic and structural information of nodes, and ultimately 
applied the obtained features to improve defect predictive 
performance.  

III.  METHOD 

The framework diagram of this research is shown in Figure 
1, which mainly includes three parts: (1) Constructing a class 
dependency network, and then learning the node embedding by 
the node2vec method; (2) Initializing node attributes by 
combining learned node embedding and traditional hand-crafted 
metrics, then introducing GraphSAGE to learn network 
structural features; (3) Training a classifier for defect prediction.  

A. Network Modeling and Embedding Learning 

1) Class dependency network modeling  
A Class Dependency Network (CDN) is a directed weighted 

network constructed according to the dependencies between 
class files. For object-oriented software, its class dependency 
network 𝐶𝐷𝑁𝑃 = (𝑉, 𝐸),where 𝑉 is the set of nodes, each node 
𝑣 ∈ 𝑉   represents a class or interface, 𝐸  is the set of edges, 
representing the dependencies between classes or interfaces. 
Three main dependencies are considered in this paper: 
Inheritance dependency, Interface implementation dependency, 
Method calls dependency (aggregation). 

For weight extraction, the calculation method of the edge 
weight was as follows: 

𝑊𝑖𝑗 =
𝑑𝑖𝑗

∑ 𝑑𝑖𝑘
 
𝑘∈𝑁(𝑗)

 (1) 

where 𝑊𝑖𝑗 represents the weight between node 𝑣𝑖  and node 

𝑣𝑗, 𝑑𝑖𝑗  stands for the number of dependencies between the two 

nodes, and 𝑁(𝑗) denotes the set of neighbors of the node 𝑣𝑗. 

It is worth mentioning that in the weighted network, the 
weight of the edge is not related to the direction, but to the 
current target node. Some explanations are mentioned in 
reference [10]. 

2)  Node attribute generation 



 

Before training GraphSAGE, we must provide the attributes 
of the nodes in CDN. Node attribute metrics can include many 
types, such as traditional static code metrics, complex network 
metrics, and network-embedded metrics. Traditional static Code 
Metrics (TCM) consist of twenty manually designed metrics, 
such as CBO (number of classes coupled to a given class), WMC 
(number of methods in a given class), and LOC (lines of source 
code). Complex Network Metrics (CNM) are extensively 
employed in social networks, including seventeen metrics such 
as density, size, and extent. Network structure information is 

extracted from CDN through network embedding learning as a 
Network Embedding Metric (NEM). We used the node2vec [14] 
method to map each class node to a low-dimensional vector.  

Different metrics can be combined in many ways. According 
to our previous research [4], the combination of TCM and NEM 
as node attributes is the optimal choice. Therefore, we selected 
this combination of metrics as the initial attributes of nodes in 
class dependency networks to feed into GraphSAGE for training. 
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Figure 1.  The framework of our approach 

B. GraphSAGE learning 

Algorithm 1 describes the entire learning process. 
Specifically, a CDN and its node attributes are provided as input. 
Each step in the outer loop of Algorithm 1 proceeds as follows, 
where k signifies the current search depth in the outer loop, and 

𝒉𝑣
𝑘  indicates the node representation at this search depth. First, 

each node 𝑣 ∈ 𝒱  aggregates the representations of the nodes in 

its immediate neighborhood, 𝒉𝑢
𝑘−1, ∀𝑢 ∈ 𝒩(𝑣)} , and then 

convert to a single vector 𝒉𝑁(𝑣)
𝑘−1 . After aggregating adjacent 

feature vectors, GraphSAGE concatenates the current 

representation of the node  𝒉𝑣
𝑘−1  with the aggregated domain 

vector  𝒉𝑁(𝑣)
𝑘−1    to obtain the features of the current layer node 

representation, the final output is the feature matrix 𝒁  of the 
node. 

Algorithm 1: GraphSAGE algorithm for generating node 

features 

Input:  G(V, E) ; Node initial feature vector  X;  Depth  
K; weight matrix Wk, ∀k ∈ {1, ⋯ , K}; aggregation functions 

𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑘 , ∀𝑘∈ {1, … . , 𝑘};  neighborhood 

function   N: v → 2v 

Output: Node Feature Matrix  Z . 

1   Initialize the node representation vector hv
0 = Xv, ∀v ∈ V ; 

2   if k = 1 ⋯ K: 

3     do the following for each node  v ∈ V ： 

4        hN(v)
k = AGGREGATEk({hu

k-1, ∀u ∈ N(v)}); 

5         hv
k     = σ(Wk ∙ CONCAT(hN(v)

k , hv
k-1)); 

6   hv
k = hv

k ‖hv
k‖

2
 ⁄ ;      // Normalize the hv

k obtained by each 

layer 

7   ends 

8   zv = hv
k, , ∀v ∈ V ; 

9   Output node feature matrix  Z . 

GraphSAGE provides three aggregator functions: average 
aggregation, Long Short-Term Memory (LSTM) aggregation, 
and max pooling aggregation. we selected the default aggregator 
function (i.e., max pooling aggregation).  

IV. EXPERIMENT 

A. Datasets 

In our experiments, we utilized eight classical defect projects 
published by the PROMISE1 library. Table I shows the details 
of the eight software projects, in which #Nodes represents the 
number of class files in CDN, #Edges indicates the number of 
dependencies between class files, #Defective signifies the 
number of buggy files in the project, and %Defective denotes 
the corresponding buggy rate.    



 

B. Experimental setup  

Because the defect dataset was imbalanced, it needs to be 
sampled before training. Here we consider 4 commonly used 

sampling strategies: SMOTE [15] 、BorderlineSMOTE [16] 、
SMOTEENN [17] and SMOTETomek [18].  

Five-fold cross-validation was used (the training set 
accounted for 80% and the test set 20%), and we repeated the 
experiment 25 times. The final results were averaged to reduce 
the bias introduced by randomly dividing the data. The 
experimental parameters of this study are shown in Table II. 

TABLE I.  DATASET 

project version #Nodes #Edges #Defective %Defective 

Ant 1.7.0 703 3012 128 22.76% 

Camel 1.6.0 906 3644 145 20.09% 

Ivy 2.0 343 1710 31 11.37% 

jEdit 4.1 292 1044 58 25.00% 

Velocity 1.6.1 210 1035 60 35.71% 
Poi 3.0 421 1304 273 64.85% 

Lucene 2.4.0 324 1353 194 59.88% 

Xalan 2.6.0 801 3965 362 45.19% 

TABLE II.  EXPERIMENTAL ENVIRONMENT 

Parameter Parameter value 

Feature dimension 32 

epochs 2000 

optimizer Adam 

initial learning rate 0.001 

output dimension 32 

dropout 0.1 

Imbalance Handling Threshold 𝜎                  0.4 

To verify the effectiveness of GSAGE2defect, we selected 
the following eight benchmark methods for comparison: 
dw2defect [18], node2defect [2], DP-CNN [12], Seml [19], 
SDNE2defect [20], Struc2defect [21], GCN2defect [3], and 
GAT2defect [22]. 

C. Evaluation metrics 

The evaluation metric of our experiment adopts F-measure. 
The formula for calculating F-measure is as follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4) 

Among them, TP (True Positive) and TN (True Negative) are 
the numbers of positive and negative samples predicted correctly, 
FP (False Positive) is the number of negative samples predicted 
as positive samples, and FN (False Negative) is the number of 
positive samples predicted as negative samples. 

D.  Results and Analysis 

RQ1: Does the proposed GSAGE2defect approach work well?  
For a fair comparison, the sampling method and classifier in 

the benchmark model were chosen consistent with our proposed 
method. All baseline models use SMOTETomek and Random 
Forest (RF) in predictions.  

To further explore RQ1, we contrasted our approach with 
four baseline models and four classical model approaches. 
Figure 2 (left) exhibits that our proposed method is superior to 
the four baseline methods in terms of overall performance, 
which is evident by the higher median value of the F-measure 
(0.919). Among the four baseline methods, the performance of 
the GAT prediction model of the graph attention neural network 
(labeled as GAT2defect) was better than the other three baseline 
methods, and its median value of the F-measure was 0.843. 
Moreover, Figure 2 (right) displays that the proposed method is 
also better than the four classical methods. This is reflected by 
its median value of the F-measure which is the greatest (0.919). 

The overall F-measure value of dw2defect was 0.793, 
struc2defect was 0.702, sdne2defect was 0.804, GAT2defect 
was 0.843, and GSAGE2defect was 0.917. The performance of 
GSAGE2defect was indeed better than the four baseline 
methods. The F-measure values of the other four classical 
methods of DP-CNN [12], Seml [19], node2defect [2], and 
GCN2defect [3] were 0.807, 0.714, 0.714, and 0.894, 
respectively. The performance of GSAGE2defect was clearly 
better than the four classical methods. 

Figure 3 (left) depicts the improvement in the prediction of 
the GSAGE2defect model compared to that of the eight 
benchmark models. It can be observed from the figure that the 
GSAGE2defect model has provided a certain improvement in 
the prediction compared with other benchmark models, and the 
improvement range is between 2.09% and 26.69%. 

In general, according to the results of Figure 3, it can be 
found that the GSAGE2defect model has a better improvement 
than the benchmark model, with a maximum improvement of 
26.69% and an average improvement of 13.22%. 

RQ2: Do the dependency direction and weight of CDN have a 
significant impact on GSAGE2defect? 

To answer RQ2, we designed four sets of experiments to 

discuss the prediction performance of the GSAGE2defect 

model in four network scenarios and to explore the influence of 

the dependency direction and weight on the model during 

network modeling. The results are displayed in Figure 3(right) 

and Table III. Table III shows the F-score of the GSAGE2defect 

model under eight projects in four network scenarios. 
On the whole, the GSAGE2defect model had the best 

performance under the directed and unweighted network with 
the highest average F-score (0.921), and five of the eight projects 
achieved the highest F1-score in the directed and unweighted 
scenario, followed by the scenario of undirected weighted and 
directed weighted, and the worst was undirected unweighted. 

Besides, we introduced Wilcoxon signed-rank test (p-value) 

and Cliff’s [23] influence factors, and compared and analyzed 

the differences in the experimental results. According to the 

results of the p-value and d-value in Table 4, the class 

dependency direction and weight do not have a very substantial 

impact on the prediction performance of the GSAGE2defect 

model. 



 

 

Figure 2.  Comparison of F1 values with the baseline model (left) and the classic model (right) 

 

Figure 3.  The improvement in the prediction effect compared to the baseline model(left) and F1 comparison of GraphSAGE under four network scenarios(right) 

TABLE III.  COMPARISON OF MICRO-F1 RESULTS IN FOUR NETWORK 

SCENARIOS 

Project 

F1(F-measure) 

         ud & uw 
        ud & 

w 

         d & 

uw 
        d & w 

Ant 0.907 0.908 0.903 0.905 

Camel 0.936 0.941 0.937 0.937 

Ivy 0.937 0.938 0.937 0.939 

jEdit 0.919 0.923 0.932 0.925 
Velocity 0.913 0.918 0.918 0.911 

Poi 0.920 0.928 0.930 0.928 

Lucene 0.919 0.919 0.921 0.921 

Xalan 0.888 0.881 0.892 0.887 

Average 0.917 0.920 0.921 0.920 

comparation Sig.p < 0.05, d 

ud&uw vs ud&w 0.1913 (-0.1875) 

d&uw vs d&w 0.1627 (0.0625) 

ud&uw vs d&uw 0.0780 (-0.2180) 

ud&w vs d&w 0.8321 (0) 

V. DISCUSSION 

For addressing RQ1, we reproduced the GCN2defect method 
on the dataset processed in this paper. The defect rate of the 
dataset in our study was slightly different from that in [3]. This 
may originate from the fact that the direction information and 
weight information between nodes were not extracted in [3] 
when processing the dataset, however, we extracted these two 
types of information.  

For addressing RQ2, the comparison of directed unweighted 
vs. directed weighted and undirected weighted vs. directed 
weighted groups demonstrated that considering the effect of 
both direction and weight is not optimal compared to 
considering a single element. In the comparison between 
undirected unweighted and undirected weighted cases, the F-

score of seven out of eight projects in the undirected weighted 
was greater than the former and the d-value was negative. This 
indicated that in the undirected case, the weighting effect was 
better. Compared with the directed and unweighted case, the F-
score of six out of the eight projects of the directed and 
unweighted case was greater than the undirected unweighted 
case and the d-value was negative, suggesting that the directed 
effect was better in the case of the unweighted. Therefore, it is 
still necessary to consider the dependency direction and weight 
in the software network modeling process. 

Moreover, we chose random forest as the classifier in RQs. 
To further explore the influence of the classifier on the model 
predictions, we tried four different classifiers in the 
GSAGE2defect model, including Random Forest (RF), 
Multilayer Perceptron (MLP), Decision Tree (DT), and Logical 
Regression (LR). The GAGE2defect model worked best in 
directed and unweighted scenarios. Thus, in this scenario, we 
conducted a comparative experiment of classifiers in the 
GSAGE2defect model. Table IV exhibits the effects of the four 
classifiers on GSAGE2defect, and the best values are shown in 
bold. In addition, Table V shows the significant differences 
when using different classifiers. From the results of the p-value 
and d-value, it can be observed that the difference between RF 
and the other three classifiers is significant. 

TABLE IV.  THE EFFECT OF THE CLASSIFIER ON GSAGE2DEFECT 

Project LR DT MLP RF 

Ant 0.732  0.653  0.830  0.903 

Camel 0.805  0.757  0.872  0.937 

Ivy 0.800  0.689  0.812  0.937 

jEdit 0.821  0.781  0.833  0.932 

Velocity 0.827  0.818  0.320  0.918 

Poi 0.922  0.907  0.460  0.930 
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Lucene 0.892  0.854  0.450  0.921 

Xalan 0.893  0.823  0.872  0.892 

average 0.836  0.785  0.681  0.921 

TABLE V.  STATISTICAL TEST RESULTS OF GSAGE2DEFECT 

GSAGE2defect p-value Cliff’s delta 

LR vs RF 0.016 -0.828 

DT vs RF 0.006 -0.938 

MLP vs RF 0.019 -0.938 

VI. CONCLUSION 

This paper proposed a new defect prediction method  
GSAGE2defect, by introducing an inductive graph neural 
network model GraphSAGE to automatically learns the 
dependencies between nodes in a class dependency network and 
using SMOTETomek sampling to solve the problem of sample 
imbalance. We verified the effectiveness of our method on data 
from eight open-source projects, and the results indicated that 
GSAGE2defect can outperform the baseline model by 26.69% 
in terms of F-measure, and also revealed that considering weight 
and direction in the class dependency network is helpful for 
software defect prediction. If only one of these two factors is 
considered, a certain improvement will occur in the predictions 
of the model. In general, the model had the best prediction in the 
directed and unweighted scenario. Besides, our method has an 
absolute advantage compared to the four baseline models, and it 
also has obvious advantages in comparison to the five classic 
methods. 

This study is only a small part of the results of our 
comprehensive research, and there is still much research that 
should be completed. In the future, we will extend this study to 
extract richer features and to build more complete software 
networks. Furthermore, we will extend our research to focus on 
defect prediction across various projects. 
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