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Abstract—In this paper, we propose a fence recognition method 
based on the ENet (Efficient neural Network) segmentation 
network to address the problems of traditional segmentation 
networks, which have poor performance in recognizing fences with 
a large range of scale variations and hollow structures. Firstly, a 
multi-scale attention fusion ENet segmentation network is 
designed, which is trained using the fence with obvious color 
features. Then, a morphological algorithm is used to process the 
predicted image to restore the fence segmentation results. The 
designed multi-scale attention fusion segmentation network 
performs better on fence datasets than traditional methods. In 
addition, the activation function Leaky_Relu6 further enhances 
the stability and generalization ability of the network. The 
experiments are conducted on 540 fence images from different 
construction sites, and the computed IoU is 90%. The processing 
speed is about 28 frames per second. The experimental results 
show that our proposed network outperforms traditional 
segmentation algorithms in fence recognition performance, and 
achieves robustness in different construction scenarios while 
meeting the requirements of both accuracy and speed. 

Keywords- fence recognition; ENet; multi-scale attention; 
morphological algorithms; 

I. INTRODUCTION 
As a common safety protection facility on the construction 

site, the fence is usually used to isolate dangerous areas from the 
construction staff, which can play a certain protective role. 
However, when the staff is facing away from the fence, there 
will still be some safety hazards due to the blind spot. Therefore, 
this paper hopes to apply the method of deep learning to identify 
the fence on the site in real-time and accurately, and send a 
reminder when the construction staff and the fence are close, 
which can reduce the accident rate to a certain extent and ensure 
the safety of construction staff. 

The construction site fence is mainly composed of thin red 
and white bars arranged in a certain shape, and its main shapes 
include vertical and cross-shaped patterns, as shown in Fig. 1. 
Traditional methods of acquiring segmented datasets involve 

pixel-by-pixel annotation of foreground pixels. However, pixel-
by-pixel operations would require a lot of time due to the high 
density of the fence, and the hollow structure of the fence itself 
would contain a large amount of background information, 
making it difficult for the network to learn the correct features. 
Moreover, because the relative scales of the fence in different 
images can vary dramatically, the range of scale changes in the 
feature map is also large, which presents a challenge for 
traditional segmentation algorithms. 

 

Figure 1.   Example of fence. 

As technology continues to evolve and replace older 
methods, there have been significant improvements in the 
accuracy and speed of multiscale object segmentation. However, 
not all segmentation algorithms can be applied to practical 
engineering projects. While accuracy and speed are important, 
other factors such as memory usage and model stability must 
also be considered. ENet (Efficient neural Network) [1] is a 
lightweight segmentation network that has a higher inference 
speed than traditional networks, making it more suitable for 
environments with limited memory, such as embedded devices. 

Considering the structural characteristics of fence data, this 
paper proposes a fence recognition method based on improved 
ENet neural network. Firstly, a multi-scale attention fusion ENet 
neural network is constructed. Then, a new activation function 
is designed for the encoding part of the network to increase the 
model's stability and generalization ability. Finally, the network 
is trained using parts of the fence structure with clear color 
features, and the predicted image is processed using 
morphological algorithms to restore the entire fence structure. 
The proposed network has the following advantages: 
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• The multiscale attention fusion ENet neural network 
combines low-level positional information with high-
level semantic information. The attention mechanism is 
used to capture the context dependencies of foreground 
pixels, allowing the model to obtain richer feature maps. 

• A new activation function, Leaky_Relu6, is designed, 
which combines the advantages of Leaky_Relu [2] and 
Relu6 [3]. This function preserves useful information 
from the negative axis while suppressing the model's 
maximum output, preventing gradient explosion and 
improving model stability. 

• Using morphological algorithms to recover the 
complete fence structure from partial fence structures 
does not require a large amount of memory, making it 
advantageous for the network to be used in 
environments with limited memory, such as embedded 
devices. 

II. RELATED WORK 

A. Multi-scale Segmentation 
In recent years, image segmentation has been widely used to 

identify target objects in images or videos and perform instance 
segmentation at the pixel level [4]. However, the segmentation 
of images with large-scale variations remains a challenging 
problem [5]. Olaf et al. proposed the U-Net [6] segmentation 
network, which uses an encoding-decoding network structure 
and skips connections in the encoding and decoding parts to 
achieve good performance in multi-scale medical image 
segmentation. Chen et al. developed the Deeplab [7] 
segmentation network, which uses dilated convolution and fully 
connected convolutional neural networks to further improve 
segmentation accuracy. Long et al. proposed the FCN [8] 
segmentation algorithm based on fully convolutional neural 
networks, which uses deconvolutional layers to output more 
refined image segmentation results and employs skip 
connections to increase the network's robustness. Zhang et al. 
employed a context encoding [9] network to obtain global 
information of the target and combined it with a common 
encoding-decoding network structure to output feature maps 
with richer multi-scale information. 

B. Scene Segmentation 
Yu et al. developed the BiSeNet [10] lightweight semantic 

segmentation network, which uses a bidirectional mechanism to 
acquire receptive fields that retain spatial and semantic 
information, allowing for faster network speeds without 
sacrificing accuracy. Mohan et al. proposed the EfficientPS [11] 
panoramic segmentation network, which can simultaneously 
segment background and foreground information. They 
introduced a new panoramic fusion module that dynamically 
adjusts the panoramic segmentation results based on the 
confidence levels of semantic and instance segmentation, greatly 
aiding autonomous driving environment perception. Liu et al. 
proposed the CRNet [12] segmentation network with a cross-
reference mechanism that enhances model output feature 
representations by comparing similar features in two images, 
achieving small-sample image segmentation. Weng et al. 

introduced the DMA-Net [13] semantic segmentation network 
suitable for street view data, which aggregates feature maps 
generated by different convolutional layers through a multi-
branch aggregation network to obtain multi-scale information of 
the target, achieving good performance on the CamVid dataset. 

C. Segmentation with  Attention Mechanism 
Fu et al. proposed a dual attention mechanism [14] that 

combines channel and spatial attention to the aggregate context 
information and improves the expression ability of multi-scale 
feature maps, resulting in improved performance in scene 
segmentation. Hou et al. proposed the self-attention distillation 
network SAD [15], which optimizes low-level learning with 
high-level positional information and enhances high-level 
feature expression with low-level learned attention features, 
performing well in lane line segmentation. Tao et al. utilized a 
hierarchical multiscale attention mechanism [16] to predict 
different scale targets and output final results through pixel level 
operations, reducing memory usage by four times while 
improving accuracy and segmentation speed. Huang et al. 
developed CCNet [17] which uses a criss-cross attention module 
that cycles through the network to obtain horizontal and vertical 
contextual information of target pixels and generate richer 
feature maps. 

III. METHOD 
In this paper, we propose a fence recognition method based 

on an improved ENet neural network. Firstly, we construct a 
multi-scale attention fusion ENet neural network, and design a 
new activation function Leaky_Relu6 in the encoding part to 
replace PRelu [18], which improves the stability and 
generalization ability of the network. Then, we train the network 
using fences with obvious color features and restore the 
complete fence area from partially recognized fence structures 
through computer morphological algorithms. 

A. ENet with Multi-Scale Attention Fusion 
To effectively reduce the computational cost and time in 

segmentation tasks, this paper chooses the ENet segmentation 
network as the main component of the segmentation network. 
The ENet network structure is mainly composed of an initial 
module and several bottleneck modules, as shown in Fig. 2.  
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Figure 2.  Main structure modules of ENet network. 



In the initial block in Fig. 2, a 3x3 convolution with a stride 
of 2 and a maximum pooling are performed on the input. The 
results on both sides are merged into channels by concatenation. 
In the main branch of the bottleneck module in Fig. 2, the 
channel number is reduced by a 1x1 convolution, and a specific 
number of feature maps is output by a 1x1 convolution layer. If 
the bottleneck module is not down-sampled in the other branch, 
no operation is performed in this branch and it is directly added 
to the main branch. If it is down-sampled, this branch is first 
down-sampled by maximum pooling, then padded to achieve the 
same size as the feature map in the main branch.  

The original ENet neural network consists of five parts, its 
structure is similar to an encoding-decoding structure, in which 
the first three parts extract feature information, and the last two 
parts are used to restore the feature map with the original size. 

Generally speaking, for neural networks, the lower the 
feature map size and the less down-sampling operations, the 
richer the location information of small targets. The higher the 
feature map size and the larger the receptive field, the richer the 
semantic information. However, as the number of down-
sampling operations increases, the location information of small 
targets becomes insufficient. Therefore, this paper combines the 
feature maps of the first and fourth parts of ENet, as well as the 
feature maps of the second and third parts, through a multi-scale 
fusion to combine the location information of the lower layers 
with the semantic information of the higher layers, thereby 
enhancing the model's feature learning ability. 

At the same time, in each fusion process, in order to better 
aggregate foreground pixels and reduce the influence of 
interference pixels, Coordinate Attention (CA) [19] is added 
during the fusion process. CA is an attention mechanism that 
embeds positional information into channel attention by dividing 
channel attention into two dimensions of encoding. One 
dimension is used to obtain the dependency relationship between 
foreground pixels and contextual information, and the other 
dimension is used to preserve the positional information of 
foreground pixels, thereby enabling the feature map to have 
better direction and position expression ability.  

B. Leaky_Relu6 Activation Function 
In the encoding part of the original ENet network, PRelu was 

used as the activation function instead of Relu. Compared to the 
case where the negative output of Relu is constantly 0, PRelu 
can adjust the output value of the negative part adaptively by a 
learnable parameter. However, this occurs at the cost of the need 
of learning an extra parameter. Therefore, this paper leans 
towards the use of Leaky_Relu for the negative output, as shown 
in Fig. 3a. It outputs a small value to retain some useful 
information and avoid dead neurons without the need for 
additional parameter learning. 

For the positive output, considering the high requirements 
for devices and networks on mobile devices, allowing unlimited 
output may lead to gradient explosion. Therefore, inspired by 
Relu6 activation function, as shown in Fig. 3b, a maximum value 
of 6 is set as the upper limit to suppress unlimited output. This 
can effectively solve the gradient explosion problem, prevent 
overfitting, and improve the model's generalization ability and 
stability. 

Inspired by Leaky_Relu and Relu6 activation functions, this 
paper proposes a new activation function called Leaky_Relu6, 
as shown in Fig. 3c. It outputs an extremely small value when 
the input is less than 0. When the input is between 0 and 6, it 
outputs the same value as the input, and when the input is greater 
than 6, it outputs 6. This activation function is also used in the 
encoding component of the network, to replace the PRelu 
activation function in the original ENet network. 
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Figure 3.  Three activation functions. 

Combined with the above improvement points, the structure 
diagram of the network we proposed in this paper is shown in 
Fig. 4.
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Figure 4.  Structure diagram of the network we proposed in this article



C. Graphics Processing Algorithms 
The image containing fence facilities is fed into the trained 

network to obtain the predicted image, which is then subjected 
to morphological operations such as closing, polygon dilation, 
and rectangle filling [20] to recover the complete fence structure 
from partial fence segmentation results. At the same time, the 
position corresponding to the fence area in the construction site 
picture is marked to realize the positioning of the fence area of 
the construction site 

Firstly, a rectangular kernel of size 9*9 is set to divide the 
predicted image into several rectangular structural elements, 
which are then subjected to closing operation to fill the concave 
corners. The mathematical formula for the closing operation is 
as follows:  

 𝐴𝐴 ∙ 𝐵𝐵 = (𝐴𝐴⊕ 𝐵𝐵) ⊙𝐵𝐵 (1) 

where A represents the predicted image, B represents the 
rectangular structural elements segmented by the rectangular 
kernel, and ⊕ represents the dilation operation. ⊙ represents 
the corrosion operation. The formula for dilation operation is as 
follows: 

 𝑃𝑃 = (𝐴𝐴 ⊕ 𝐵𝐵) = {𝑥𝑥,𝑦𝑦|𝐵𝐵𝑥𝑥,𝑦𝑦 ∩ 𝐴𝐴 ≠ ∅} (2) 

where 𝐵𝐵𝑥𝑥,𝑦𝑦means that the origin of the rectangular structural 
element is moved to the point (𝑥𝑥,𝑦𝑦). The prediction image A is 
traversed by the structural element B, and if there is pixel 
intersection between B and A, the entire structural element B is 
retained. The corrosion operation is performed on the image P 
after the dilation operation, and the mathematical formula of the 
corrosion operation is as follows: 

 𝐴𝐴 ∙ 𝐵𝐵 = 𝑃𝑃 ⊙ 𝐵𝐵 = {𝑥𝑥,𝑦𝑦|𝐵𝐵𝑥𝑥,𝑦𝑦 ∈ 𝑃𝑃} (3) 

which means that structural element B goes through the 
binary image P after dilation operation. The pixels that intersect 
between structural element B and binary image P are retained, 
and other disjoint pixels are removed. 

To prevent erroneous connections caused by closure 
operation, we set a vertical pixel threshold of 10. Columns with 
fewer than 10 pixels in the vertical direction are considered 
erroneous connections and are removed to prevent errors in 
subsequent steps. After polygon dilation, a rectangle filling 
operation is performed on the foreground pixels. Specifically, 
the number of pixels between the top and bottom pixels in each 
column are set to 255. Through these morphological image 
operations, the complete fence structure is successfully restored 
from the partially segmented fence structure. The 
implementation process of graphic processing algorithms is 
shown in Fig. 5.
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Figure 5.  Flowchart of graphical processing algorithm 

IV. EXPERIMENT RESULTS AND ANALYSIS 
The experiments are performed in Windows 10 system with 

a NVIDIA GTX1080 graphics card. The main algorithm in this 
article is implemented using Pycharm, where ENet training is 
carried out under the Pytorch framework 1.1.0. The libraries 
used in the implementation process mainly include Numpy, 
OpenCV, etc. 

A. Experimental Data 
The experimental data in this study was primarily obtained 

from the cameras located at power grid construction sites. 
Additionally, some common fence facility images are obtained 

through internet searches. The dataset contains 3980 fence 
images, including 240 samples with complex scenes, such as 
fences with inconspicuous color features or covered with plastic 
film, and approximately 300 negative samples, each with a size 
of 1280*720 pixels. Among them, the training set is divided into 
2800 images, the validation set is divided into 640 images, and 
the remaining 540 images are used as the test set. 

B. Evaluation Metrics 
In this study, Mean Intersection-Over-Union (mIoU) [21], 

the time t(s) spent to process each image, and the image 
processing speed v (frames/s) are used as the performance 
evaluation metrics. The IoU is a standard measure for semantic 



segmentation that calculates the ratio of the intersection to the 
union of two sets. The formulas for calculating the IoU and v are 
as follows:  

 𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∩𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∪𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 (4) 

 𝑣𝑣 = 𝑁𝑁
∑ 𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖

 (5) 

In the above formulas, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents true pixel area of 
the safety fence and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 represents the pixel area that is 
actually predicted to be the security fence. N represents the total 
number of images, and t represents the time required to process 
each image. 

C. Analysis and Comparison of Results 
Firstly, based on the distribution characteristics of fence 

structures in construction site images, fences are classified into 
four types: vertical fences without occlusions, intersecting 
fences without occlusions, vertical fences with occlusions, and 
intersecting fences with occlusions. These four types are 
respectively denoted as type A, B, C, and D. 

To test the effectiveness of the method proposed in this paper, 
the segmentation of fences of the above four types was tested 
individually (Fig. 6). Specifically, Fig. 6a displays the original 
images of fences captured in different construction scenarios and 
with different shapes, including a cross-shaped fence with 
obstructions in a road construction scene, a cross-shaped fence 
with obstructions in another road construction scene, a cross-

shaped fence without obstructions in an indoor construction 
scene, and a vertical fence with obstructions in a substation 
construction scene. Fig. 6b shows the ground truth of the fences 
obtained using the labelme annotation software [22], Fig. 6c 
displays preliminary predicted fence regions generated using our 
improved ENet segmentation network, and Fig. 6d shows the 
fence regions recovered using graphical processing algorithms. 

Table I shows the performance of the improved ENet 
network models and the original ENet network on the fence 
dataset. It can be observed that the improved network model 
achieves overall better recognition performance without 
sacrificing recognition speed, demonstrating the effectiveness of 
the proposed network architecture and new activation function.  

Table II presents the results of our proposed method when 
four different types of fences are identified. From Table 2, it can 
be observed that our proposed method achieves an accuracy of 
around 90% for fence identification in different scenes. 
Especially for data with occlusions, it seems that our method 
performs well in identifying fence boundaries. Additionally, it 
seems that our proposed method meets the processing speed 
requirements while achieving high accuracy throughout the 
entire identification process. 

Table III summarizes the segmentation accuracy of our 
proposed method for the 540 images in the four different fence 
types. It can be observed that our proposed method demonstrates 
good robustness in segmentation, achieving an overall 
recognition rate of approximately 90%. This may meet the 
requirements for fence recognition in construction sites and 
provides a solid foundation for future work. 

 

 

 

 
a. origin picture                      b. ground truth                             c. predicted                              d. our method 

Figure 6.  Experimental results of the method in this paper 



TABLE I.  EXPERIMENTAL PERFORMANCE OF DIFFERENT MODELS 

Model mIoU Average of speed(s) 

ENet 0.854 0.036 

ENet+Leaky_Relu6 0.863 0.035 

Mul-scale ENet+CA+Leaky_Relu6 0.896 0.038 

TABLE II.  EXAMPLE OF FENCE RECOGNITION 

Type Origin Images The Results of 
Our Method IoU Time 

A 

  

0.913 0.034s 

B 

  

0.887 0.037s 

C 

  

0.894 0.036s 

D 

  

0.885 0.039s 

TABLE III.  SEGMENTATION PERFORMANCE OF OUR METHOD 

Type Number of Tests mIoU 

A 116 0.925 

B 147 0.894 

C 143 0.912 

D 134 0.883 

V. CONCLUSIONS 
This paper proposes a fence recognition method based on 

improved ENet neural network. The method utilizes the distinct 
color features of fences for neural network training and employs 
morphological algorithms to process the predicted images, 
enabling fast and accurate segmentation of the fence structures 
in construction site images. This method has the advantages of 
low cost, high accuracy, and low computational complexity. It 
can be used to develop safety guarantee systems for the stuff 
working at construction sites. 
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