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Abstract—Smart contracts are self-executing programs on the
blockchain that are critical to a range of industries, including
finance, supply chain management, and healthcare. However,
comprehending smart contracts can be challenging due to a lack
of effective comments in most user-defined code. To address this
challenge, we propose a novel retrieval-enhanced approach CC-
GRA that leverages retrieval knowledge to generate high-quality
comments for Solidity language code. Our approach carefully
eliminates duplicated data and template data in the widely-used
smart contract dataset to ensure a high-quality corpus. Exten-
sive experiments and comprehensive analysis demonstrate the
effectiveness applicability of our approach after being compared
with eight state-of-the-art baselines. Finally, we conduct a human
study and find the comment quality generated by our approach
is better than baselines in terms of similarity, naturalness, and
informativeness.

Index Terms—Code Comment Generation, Smart Contract,
CodeT5, Information Retrieval

I. INTRODUCTION

Smart contracts are self-executing programs that reside on
the blockchain. They comprise of template code and user-
defined code. Template code provide basic functionalities
such as asset transfer, voting, or escrow, while user-defined
code tailors the smart contract to specific needs, including
business logic and rules. However, user-defined code is often
not commented, making it challenging for traders to read,
especially in high-stakes transactions [1].

Adding precise comments to user-defined code is critical for
contract code comprehensibility and trust-building. However,
the quality of the dataset used for training comment generation
models can significantly impact their ability to accurately
capture the nuances of user-defined code [2]. Our investigation
highlights that the Solidity datasets [3], which widely used
for smart contract code comment generation tasks, contains
a significant amount of template code data that can skew
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the model’s learning towards the template code. This, in
turn, compromises the model’s ability to generate high-quality
comments for user-defined code. To address this challenge, we
propose a solution that involves removing duplicate template
code comments, which can lead to more effective and accurate
comment generation for user-defined code.

In this paper, we propose a novel retrival-enhanced approach
CCGRA (Code Comment Generation with Retrival-enhanced
Approach). Our approach leverages the advantages of pre-
trained language models and retrieval techniques to gener-
ate reliable and high-quality comments for smart contract.
To achieve this objective, we utilize the widely-used smart
contract dataset [3], carefully eliminating duplicated data and
template data to ensure a high-quality training set. In the end,
the dataset we used contains 29,720 〈code, comment〉pairs,
and the experimental results indicate that it outperforms eight
state-of-the-art baselines. Our approach showcases the poten-
tial of combining pre-trained language models and retrieval
techniques to improve the quality of generated comment in
the smart contract.

The main contributions can be summarized as follows:

• We address the challenges associated with current dataset
used for smart contract code comment generation by
eliminating duplicated data and template data.

• We conduct a comprehensive empirical study and a
human evaluation to evaluate the performance of various
baselines and demonstrate that our proposed approach,
CCGRA, achieves state-of-the-art results.

• We share our corpus and scripts on our project homepage
1 to promote the replication of our research.

1https://github.com/ZZHbible/CCGRA

https://github.com/ZZHbible/CCGRA


II. RELATED WORK

A. Code Comment Generation

1) Information retrieval-based approaches: In the early
study phase, the researchers aimed to retrieve similar code
from the software repository to improve the quality of code
comments. Haiduc et al. [4], [5] considered two information
retrieval models VSM and LSI. Rodeghero et al. [6] utilized
the eye-tracking technique to identify the statements and
keywords focused on by the developers.

2) Deep learning-based approaches: Recently, most of
the previous studies followed deep learning-based approaches
and achieved promising results. For example, Hu et al. [7]
proposed the approach DeepCom by analyzing abstract syntax
trees (ASTs). Later, Hu et al. [8] further proposed the improved
approach Hybrid-DeepCom. Ye et al. [9] and Yang et al. [10]
exploited the probabilistic correlation between the code sum-
marization and code generation task via dual learning.

Ahmad et al. [11] used the Transformer model to generate
code comments. The Transformer model is a kind of Seq2Seq
model based on multi-head self-attention, which could effec-
tively capture long-range dependencies. Then the first pre-
trained model CodeBert on the source code was proposed by
Feng et al. [12]. Later, Ahmad et al. [13] proposed another
pre-training model PLBART for the source code. Recently,
Wang et al. [14] proposed the pre-training model CodeT5.

3) Retrieval-enhanced approaches: Except for the ap-
proaches based on information retrieval or deep learning,
recent studies also proposed approaches, which could fuse
information retrieval and deep learning. Zhang et al. [15] were
the first to take advantage of both information retrieval and
deep learning approaches and proposed the approach Rencos.
Wei et al. [16] used the comment of the similar code snippet
as exemplars and proposed the approach Re2Com.

B. Code Intelligence in Smart Contract

1) Vulnerability detection and repair: Code intelligence in
smart contracts is its ability to detect and prevent security vul-
nerabilities. Code intelligence can analyze the code and iden-
tify potential security flaws, such as re-entrancy attacks, and
recommend appropriate measures to mitigate them. Tsankov
et al. [17] release static analysis tools named Securify used
to analyze code vulnerabilities in smart contracts. Zhang et
al. [18] proposed a system for automatically repairing code.

2) Smart contract code comment generation: The comment
generation of smart contracts can effectively help traders
understand the contract content. Shi et al. [19] propose an
automated translation approach based on AST, and leveraged
reinforcement learning to train a syntax synthesizer to generate
comprehensible comments. Hu et al. [20] exploited the Trans-
former and Pointer mechanism to learn the representation of
source code and generates natural language descriptions.

In this study, our main focus is on combining the retrieval
augmentation method with a pre-training model, leveraging the
existing code library and the pre-training model generalization
ability for generating comments for smart contract code.

Fig. 1. The framework of CCGRA

III. APPROACH

In this section, we introduce the framework of CCGRA,
which is illustrated in Fig. 1. Overall, CCGRA consists of
two modules: (a) Retrieval Module. This module retrieves
the most similar candidate code from the corpus to the given
code. The comment associated with the retrieved code is then
used as the basis for generating comment on the given code.
(b) Generation Module. This module combines the retrieved
comment with the given code, adds a prompt, and learns to
generate the comment using the prior knowledge of a pre-
trained language model.

A. Retrieval Module

Suppose we index the corpus into a list of key-value pairs,
i.e. Z = {(xi, yi)}, where x means the code and y means the
comment. Then, given the input code x, the retrieval module
Θ matches it with all code and returns the most similar code
together with its comment:

Θ(x | Z) = {(x′
i, y

′
i)} (1)

In this work, we build the retrieval engine based on the
CCGIR [21]. Therefore, for the given input code x, we define
the input code sequence {xi}Mi=1, where M is the length of the
code sequence. Then we encode the sequence via CodeBert,
extract the hidden states to get the semantic vector X ∈ RD,
which D denotes the hidden dimension of CodeBert. Then
we further perform a linear transformation of X via BERT-
whitening get X̃ ∈ Rd, which can reduce its dimension from
D to d. Thus for the target code snippet x and the code snippet
xi in the corpus, we can get the semantic vectors X̃ and X̃i

respectively. Then we can calculate their dot product score as
their semantic similarity to select the top − k most similar
code snippets as the candidates from the corpus Z .

To better combine syntactic and lexical knowledge of the
source code, we separately utilize syntactic-level similarity
and lexical-level similarity to find the most similar code x′.



Since the computational cost of calculating the similarities
based on tree matching algorithms is high, we generate its
corresponding AST sequence for each code snippet and then
calculate the syntactical-level similarity via the edit distance.
Since keywords occur more frequently than other tokens in the
source code, these duplicated keywords may have a negative
impact. We calculate the lexical-level similarity based on the
set structure and Jaccard score.

Finally, we use mixed score to retrieve the most similar
code. For the code snippets x1 and x2, mixed score can be
calculated as follows.

mixed score (x1, x2) = λ× lexical similarity
(x1, x2) + (1− λ)× syntactic similarity (x1, x2)

(2)

where λ is a hyper-parameter for knowledge fusion, which
can control the ratio of the lexical-level similarity and the
syntactical-level similarity.

B. Generation Module
For the given input code x, we use the retrieval engine

to find the the most similar code x′ together with its com-
ment y′. As retrieval from a large corpus is computationally
costly, we propose to retrieve from the labeled training data.
In other words, we directly adopt the training data T =
{(x1, y1) , . . . , (xN , yN )} as the indexed corpus Z , where xi

is the input code and yi is the ground-truth comment. Note
that during training, as the input code x is already indexed,
we filter it from the retrieval results to avoid data leakage.

Inspired by Instruct-GPT [22], constructing instructions for
downstream tasks can stimulate the potential of pre-trained
models. For our task, we design the template function f by
appending task-specific instructions as follows.

f(x, y′) = “summarize Solidity : y′ ⊕ x” (3)

Here we use f(x, y′) to denote the input of the pre-trained
model, and we use CodeT5 [14] as the backbone model
for our task. The encoder inputs f(x, y′) and outputs the
hidden representation h = Enc(f(x, y′)). Then the decoder
iterates on the previously generated token y < j via self-
attention, and then predicts the probability of the next text
token PΦ(yj |y<j , x) = Dec(y<j , h). We train our model Φ
by minimizing the negative log-likelihood of the target text
tokens y for a given input f(x, y′). The formula can be defined
as follows

LΦ = −
|y|∑
j=1

logPΦ (yj | y<j , f(x, y
′)) (4)

IV. EXPERIMENTAL SETUP

In our empirical study, we aim to answer the following three
research questions (RQs).
RQ1: How effective is our CCGRA compared to the baseline
models in terms of automatic performance measures?
RQ2: How do various retrieval methods affect the retrieval-
augmented pre-training model?
RQ3: How effective is our CCGRA at generating higher-
quality comments in terms of human evaluation?

A. Experimental Subjects

In our empirical study, we employed a carefully selected
corpus of smart contracts sourced from Etherscan.io and
provided by Zhuang et al. [3] and Yang et al. [21]. To ensure
a high-quality dataset, we carefully eliminated duplicate data
and template data. Our final dataset consisted of 29,720 pairs
of data, which we split into training, validation, and testing
sets in an 8:1:1 ratio. We also computed the average number of
tokens in both code and comments, providing detailed statistics
in Table I.

TABLE I
STATICS OF THE DATASETS

Type Train Validation Test

Count 23,776 2,972 2,972
Avg. tokens in code 80.54 80.13 82.27

Avg. tokens in comment 12.05 11.97 12.10

B. Performance Evaluation Measures

In our experimental study, we use three performance eval-
uation measures (i.e., BLEU [23], METEOR [24], and
ROUGE -L [25]) from the source code summarization do-
main to automatically evaluate the quality of the generated
comments. Moreover, these performance measures have also
been widely used in previous studies for source code summa-
rization [26], which can alleviate the construct threats of our
empirical study.

To avoid the result difference due to different performance
measure implementation versions [27], we utilize the nlg-eval
package2, which can ensure the implementation correctness of
these performance measures and guarantee a fair comparison.

C. Baselines

To show the competitiveness of our proposed approach
CCGRA, we evaluate our proposed approach against eight
state-of-the-art source code summarization baselines. Specif-
ically, we classify these baselines into three groups. The
first group is information retrieval approaches, including
BM25 [28], NNGen [29], and CCGIR [21]. The second
group is deep learning approaches, including CodeBert [12],
UniXcoder [13], and CodeT5 [14]. The last group is hybrid
approaches, including Rencos [15] and BashExplainer [30].

D. Experimental Settings

In our empirical study, we use the packages Faiss3 and
Transformers4 to implement our proposed approach CCGRA.
The hyper-parameters and their values in our empirical study
are summarized in Table II.

All the experiments run on a computer with an Intel(R)
Xeon(R) Silver 4210 CPU and a GeForce RTX3090 GPU with
24 GB memory. The running OS platform is Ubuntu operation
system.

2https://github.com/Maluuba/nlg-eval
3https://github.com/facebookresearch/faiss
4https://github.com/huggingface/transformers

https://github.com/Maluuba/nlg-eval
https://github.com/facebookresearch/faiss
https://github.com/huggingface/transformers


TABLE II
HYPER-PARAMETERS AND THEIR VALUES IN OUR EMPIRICAL STUDY

Module Hyper-parameter Value

Retrieval
Dimension d after BERT-whitening 256

Number k for top-k candidates 5
Coefficient α of mixed score 0.7

Generation
Model size dmodel 768

Number of layers N 12
Number of multi-attention-heads 12

V. EXPERIMENTAL RESULTS

A. RQ1: How effective is our CCGRA compared to the base-
line models in terms of automatic performance measures?

In this RQ, we want to investigate how effective our
approach is and how much performance improvement our
approach can achieve over the baselines.

TABLE III
COMPARISON BETWEEN BASELINES AND CCGRA

Model Name BLEU-3 BLEU-4 METEOR ROUGE-L

BM25 20.18 16.98 16.81 37.08
NNGen 21.33 18.17 16.83 37.70
CCGIR 22.12 18.96 17.33 38.12

CodeBert 19.34 16.61 17.38 42.15
UniXcoder 19.49 16.56 17.03 40.46

CodeT5 23.16 20.48 19.82 45.86

Rencos 17.35 14.53 14.95 38.45
BashExplainer 21.09 18.62 18.22 42.62

CCGRA 25.55 22.20 20.84 46.32

The results are shown in Table III where the best results are
in bold fonts. We can find that we proposed CCGRA achieve
the best results among the eight baselines. By comparing the
average growth rate of four metrics with the baseline models,
our proposed CCGRA outperforms them by a substantial
margin of 26.58%, 22.17%, 18.58%, 23.88%, 25.49%, 6.21%,
30.12%, and 9.57% for BM25, NNGen, CCGIR, CodeBert,
UniXcoder, Rencos, and BashExplainer, respectively. And the
results indicate that retrieval-based methods outperform the
CodeBert and UniXcoder models in terms of BLEU scores,
suggesting that the comments generated by retrieval-based
methods are effective in maintaining language consistency.
However, in terms of ROUGE-L scores, pre-trained models
perform better than retrieval-based methods, indicating that
the comments generated by pre-trained models match the ref-
erence comments more closely in terms of semantic similarity.
Moreover, it can be observed that the transformer with an
encoder-decoder structure has better performance in generating
Solidity comment (which does not appear in the pre-training
data) compared to models with a single encoder structure.

To further demonstrate the effectiveness of CCGRA, we
conduct qualitative analysis and two examples of generated
comments are listed in Fig. 2. We denote comments written
by humans in bold black font, and highlight comparisons

(a) Example 1 (b) Example 2

Fig. 2. Examples of generated comments by CCGRA and other baselines

in light blue and red. From Fig. 2(a), we find that through
comparing the light blue and red comments that CCGIR and
BashExplainer generated “activities” and “contributors” re-
spectively, which is not correct. Meanwhile, CodeT5 generated
“partner account” which is not as accurate as human-written
comments. Only CCGRA is more accurate in identifying the
objects in generating comments compared to the approaches of
retrieval and pre-trained models. From Fig. 2(b), we find that
when generating long text comments, the comments generated
by retrieval-based approaches are not accurate enough, and
those generated by pre-trained models are relatively short and
lacked comprehensiveness. However, CCGRA can effectively
overcome the shortcomings of these approaches and generate
comments that are most in line with human-written com-
ments. CCGRA combines the advantages of retrieval-based
approaches by retrieving similar comment and constructing
prompts to reduce semantic bias in generating comments on
unseen datasets during pretraining, achieving optimal results.

Summary for RQ1: CCGRA can achieve better
performance than eight state-of-the-art baselines in
automatic evaluation.

B. RQ2: How do various retrieval methods affect the retrieval-
augmented pre-training model?

To show the relative importance of retrieval-based approach
in CCGRA, we perform a series of ablation studies over the
key modules.

TABLE IV
COMPARISON BETWEEN DIFFERENT BASELINES

Model Name BLEU-3 BLEU-4 METEOR ROUGE-L

UniXcoder 19.49 16.56 17.03 40.46
with BM25 21.36 18.23 18.82 44.32

with NNGen 21.56 18.56 18.34 43.89
with CCGIR 23.16 20.48 19.82 45.86

CodeT5 23.16 20.48 19.82 45.86
with BM25 24.42 21.01 20.52 46.02

with NNGen 23.86 20.72 20.05 45.56
with CCGIR 25.55 22.20 20.84 46.32



Table IV shows the performance comparison of several
retrieval-based approaches combined with pre-trained models.
We observe that an effective retrieval approach can promote
the model to learn the representation of the code, thereby
guiding the generation of appropriate comments by the model.
Meanwhile, the results show that BM25, NNGen, and CCGIR
can improve UniXcoder and CodeT5 by 10.08%, 12.08%,
23.67%, and 2.57%, 1.17%, 8.40%, respectively, in terms of
the BLEU-4 score. Furthermore, our results show that an im-
proved retrieval ability is positively correlated with the model’s
learning ability. We find that the performance of the retrieval
module directly impacted the model’s overall performance,
which can highlight the positive impact of retrieval augment.

Summary for RQ2: The incorporation of a retrieval
module into the overall model has a significant impact
on its performance. Specifically, the performance of
the retrieval module is positively correlated with the
overall model’s effectiveness.

C. RQ3: How effective is our CCGRA at generating higher-
quality comments in terms of human evaluation?

Although automatic performance metrics can evaluate the
gap between the generated comments and reference com-
ments written by humans, these performance measures may
not truly reflect the semantic similarity between different
comments [31]. To verify the effectiveness of our proposed
approach CCGRA, we further conducted a human study. In
our human study, we only compare CCGRA with CodeT5,
which can achieve the best performance in the all baselines.
We follow the methodology used by Wei et al. [16] and Yang
et al. [32] to conduct the human evaluation from three aspects:

• Similarity evaluates the semantic similarity between
the generated comments and the reference comments.

• Naturalness evaluates the fluency of the generated
comments.

• Informativeness evaluates the amount of content
transferred from the code to the generated comments.

We invite five master students, who have 1∼3 years of smart
contract experience and have good English reading ability. Due
to the high cost of manually analyzing all these samples in the
testing set, we use a commonly-used sampling method [33] to
select the minimum random samples. The number of selected
samples can be determined via the following formula:

MIN =
n0

1 + n0−1
size

(5)

where n0 is related to the confidence level and the error margin
n0

(
= Z2×0.25

e2

)
. Here Z is the confidence level score and e

is the error margin. size is the size of the testing set. In this
RQ, we select MIN examples with the error margin e = 0.05
at 95% confidence level. Specifically, we randomly selected
340 samples from the corpus.

For each code snippet, we generate a questionnaire for each
participant. Each participant is asked to score each comment

TABLE V
RESULTS OF OUR HUMAN STUDY IN TERMS OF SIMILARITY,

NATURALNESS, AND INFORMATIVENESS

Approach Similarity Naturalness Informativeness

CodeT5 2.05 3.15 2.15
CCGRA 2.75 3.44 2.32

in terms of similarity, naturalness, and informativeness aspects
for two comments generated by CCGRA and the baseline
CodeT5 respectively. All these scores are integers, ranging
from 0 to 4 (the higher the better). During the comment
quality evaluation process, the participants can search the
Internet for relevant information and unfamiliar concepts. To
guarantee a fair comparison, the participants do not know
which comment is generated by which approach, and the
order of questionnaires is different for different participants.
To guarantee the comment evaluation quality, we need each
participant to review only 50 code snippets in half a day to
avoid fatigue.

We compute the average score of the participants’ feedback
and the results are shown in Table V. In this table, we can find
that CCGRA can outperform the approach CodeT5 by 0.70,
0.29, and 0.17 respectively in terms of similarity, naturalness,
and informativeness. Therefore, our human study can further
verify the competitiveness of CCGRA.

Summary for RQ3: Our human study shows that
CCGRA can generate higher quality comments in
terms of similarity, naturalness, and informativeness.

VI. THREATS TO VALIDITY

Internal threats. The internal threat is the potential defects in
the implementation of our proposed approach and baselines.
To alleviate this threat, we first check the code carefully and
re-implement baselines according to the original studies.
External threats. The external threat is the choice of corpora.
To alleviate this threat, we select the popular corpora, which
have been widely used in previous studies on smart contract
code summarization [21].
Construct threats. This threat relates to the suitability of
our selected performance measures. To alleviate this threat,
we consider the widely used performance measures and also
conduct a human study to verify the effectiveness of our
proposed approach.

VII. CONCLUSION

In this study, we propose a novel retrieval-enhanced ap-
proach CCGRA for generating high-quality comments for
user-defined code in smart contracts. By leveraging retrieval
techniques and pre-trained language models, CCGRA is able
to produce reliable and informative comments that improve
the comprehensibility and trust-building of smart contract
code. We have demonstrated the effectiveness of our approach
through extensive experiments and comprehensive analysis. In



addition, a human study was conducted to show that the quality
of comments generated by CCGRA outperforms baselines in
terms of similarity, naturalness, and informativeness.

In the future, we aim to further improve the performance of
CCGRA by exploring advanced code representation methods.
Additionally, we plan to expand our dataset by mining more
high-quality data of smart contracts, which will facilitate the
practical application of our research in various industries, such
as finance and healthcare.
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