
Detecting Design Patterns As Described By An
Explicit Specification

Ed van Doorn
Faculteit Bètawetenschappen

Open University of the Netherlands
Heerlen, the Netherlands

ed.vandoorn@ou.nl

Sylvia Stuurman
Faculteit Bètawetenschappen

Open University of the Netherlands
Heerlen, the Netherlands
sylvia.stuurman@ou.nl

Abstract—Teaching design patterns in higher education en-
hances coding skills and improves software quality. However,
manually correcting their work and detecting whether the stu-
dents have correctly implemented the design patterns is time-
consuming and would benefit from automated tools. There exist
tools that can automatically detect design patterns in code.
However, these tools rarely provide an explicit specification of
what each pattern should look like. As a consequence, these tools
are not usable in an educational environment. When using a
tool to detect design patterns in an educational environment,
there are several important considerations to keep in mind.
Firstly, the tool should use an explicit specification of each design
pattern. Secondly, as a teacher, you should be able to adjust the
specifications. Third, the tool should be accurate, meaning it
should produce few to no false positives or false negatives when
identifying patterns in the students’ code. Finally, the tool should
do this computationally efficiently. In this article, we present a
new tool for detecting design patterns in code. Our tool is capable
of recognizing 20 of the most commonly used design patterns,
including those described by the ’Gang of Four’.

Index Terms—Design Patterns, Detection, Specification

I. INTRODUCTION

Design patterns have shown a positive impact on the main-
tainability of software [14]. As a result, teaching design pat-
terns has become an important topic in software engineering
education at the university level.

Design patterns were originally described in the book writ-
ten by ’the Gang of Four’ (GoF) [5]. However, the book
primarily uses natural language, class diagrams, and examples
in C++ source code to describe the patterns, without providing
a clear and unambiguous specification. This can make it
challenging for teachers to assess assignments that require
the use of design patterns, and can lead to time-consuming
discussions with students over the correct implementation of
these patterns. As a result, there is a need for tools that can
help automate the process of detecting design patterns in code,
and provide a more objective way of evaluating students’
work. Although automated tools for detecting design patterns
exist, many of them lack transparency in their detection
methodology. In an educational environment, it is essential
for teachers to have access to tools that can accurately detect
design patterns used in student code while being customizable

DOI reference number: 10.18293/SEKE2023-095

to only identify specific patterns. Additionally, the tool should
have a low rate of false positives and false negatives to
ensure accurate pattern detection. Finally, the tool should
be computationally efficient to enable teachers to efficiently
evaluate large amounts of code.

To address this issue, we have developed a more precise
specification of the ’GoF’ patterns [4], which can be cus-
tomized to suit the preferences of individual teachers. In this
article, we will demonstrate the accuracy of our tool, which
is based on this specification. We assess our tool using a test
set that includes all the GoF design patterns, and Java sources
that were found ’in the wild’. By using this approach, we can
ensure that our tool accurately detects design patterns in a
variety of contexts and scenarios.

The contributions of this article are:
• An algorithm based on explicit specifications that can

detect 20 GoF design patterns.
• A reusable test set for the GoF design patterns.
• An assessment where we demonstrate the efficiency and

accuracy of our approach.
The remainder of this paper is organized as follows. Section

II describes related work. In Section III, we outline the speci-
fications we use and describe our tool in detail. In Section IV,
we present the results of our tool’s verification and validation.
Finally, Section V contains our conclusions, a discussion of
our work, and suggestions for future research.

II. RELATED WORK

Hadis Yarahmadi et al. have written a comprehensive sys-
tematic review of design pattern detection methods that are
published in 112 articles between 2008 - 2019 [13].

None of the authors describe the specifications of design
patterns that their software can detect. Nevertheless, they list
the design patterns that can be detected by their software.

The detection methods can be divided into two groups: exact
and inexact. A detection method is inexact if, after detecting
a part of the design pattern, the software can report that the
design pattern has been recognized.

Inexact detection methods will produce more false positives
than exact detection methods.

In an educational environment, we want only to detect
completely implemented design patterns. So, we focus on



an exact detection method, using an explicit specification of
design patterns.

We only found a few works after 2019 complementing the
review from Yarahmadi et al. We will describe them next.

For several years, machine learning has been used to detect
design patterns. An example is a recent study by [8], in which
fifteen features of code are defined, such as class names,
interfaces, methods, parameters, and a number of variables in
a method. These features are used to construct word vectors
[7] of n-grams, which are groups of n consecutive words.

Nazar’s approach is based on an ensemble [10] of random-
ized decision trees, which classifies a design pattern. These
ensembles are combined with a supervised learning algorithm.

To train a supervised neural network, 1300 Java files from
Github were selected. Every Java file either contained one of
twelve design patterns or did not contain any design pattern.
As a benchmark, 1039 Java files from P-Markt1 were used.
The benchmark was used for calculating the precision and
recall.

This resulted in an average precision of 80% and an average
recall of 79%.

III. OUR APPROACH TO DESIGN PATTERN DETECTION

A. Basis of our approach

Our approach builds upon two key foundations. Firstly, it
improves upon an earlier detection tool that we developed [2].
Secondly, it is based on our construction of explicit specifica-
tions for design patterns [4].

The earlier detection tool utilized exact subgraph matching
and relied solely on the names of the participating classes and
their relationships. Consequently, it could only detect design
patterns that were entirely defined by these elements, providing
static decidability [3]. For instance, the Adapter pattern could
be detected using this algorithm as it was defined entirely by
the names of its participating classes and their relationships.
However, the Singleton pattern cannot be detected through an
algorithm that offers only static decidability, as the keywords
’private’ and ’static’ are essential to define this pattern.

Our presented tool addresses this limitation by utilizing an
explicit specification that considers multiple features beyond
class names and class relationships.

Our explicit specification for design patterns provides a
complete definition for all 23 GoF design patterns, with the
exception of the Strategy and State patterns, as they cannot
be distinguished based solely on their structure and must be
identified based on their intended purpose or meaning [4].

Based on our explicit specification for design patterns, our
approach does exact subgraph matching. This method provides
high precision in detecting patterns. Precision is defined as the
number of true positives divided by the sum of true positives
and false positives. In an educational setting, it is crucial to
minimize the number of false positives, ideally to zero. This is
because false positives can erode confidence in the detection
software.

1http://www.ptidej.net/tools/designpatterns

Using subgraph matching based on the explicit specifica-
tions, we can significantly reduce the occurrence of false pos-
itives. However, false positives can still occur if the templates
match the Java sources but the functionality of the methods
does not comply with the intent of the design pattern.

B. Explicit specification of design patterns

The starting point of our specification is, of course, the book
of Gamma et al. [5], which describes design patterns using
natural language, class diagrams, and examples of C++ code.

We summarize our explicit specifications. Details are given
in [4]. Important specification elements are classes, attributes,
operations, relationships, and modifiers.

The keyword ’interface’ does not exist in C++ and OMT
[12], which is used by Gamma et al. as a modeling technique
but does exist in Java and UML. In many cases, an abstract
class is equivalent to an interface. For the exceptions, ’inter-
face’ is added to the specification language of design patterns.

Dependency is a specification element that is used in
Gamma et al. to denote class creating an object of another
class [4].

In source code 1-N associations, aggregates and a compos-
ites are identically implementated, so they are described as
1-N associations [4].

An example of the explicit specification is Listing 1.

Listing 1. Template description of the Singleton pattern
<template name="Singleton">
<class name="Singleton">
<attribute name="uniqInstance"

type="Singleton" modifier="private"
isStatic="true"/>

<operation name="Singleton" modifier="private"/>
<operation name="getInstance" isStatic="true"/>

</class>
</template>

C. Algorithm

The algorithm for detecting design patterns takes Java
source code files as input, along with a file named ’tem-
plates.xml’ that contains explicit specifications for each design
pattern.

The Java sources are parsed by a parser generated by
cup2 because of the produced parser’s speed [11], and the
availability of a grammar of Java3. The Java parser generates
information about the classes, interfaces, and their relation-
ships. This results in a file named ’inputSystem.xml’ with
one template that has the same format as the templates in
’templates.xml’. These two XML-files can easily be parsed by
a SAX4 parser, which is part of Java.

For each design pattern in templates.xml, we search for a
corresponding design pattern inputSystem.xml by a recursive
”depth-first search” using two phases. Phase 1: In each call of
the recursive ”depth-first search”, an edge in the template we

2http://www2.cs.tum.edu/projects/cup/index.php
3https://github.com/joewalnes/idea-community/tree/master/tools/lexer/jflex-

1.4/examples/java
4http://www.saxproject.org/



TABLE I
RESULTS FOR THE TEST SET CODE

Script-
number

Number
of classes

Lines of
code

number of
design

patterns

Total
process
time (sec)

1 15 298 5 3.0
2 18 318 6 3.6
3 5 97 2 1.3
4 42 771 11 8.2
5 8 164 3 1.8
6 3 62 1 0.8
7 8 168 1 1.9

are searching for, is matched with an edge in inputSystem.xml.
The search ends when all edges are matched. Phase 2: Each
class in the design pattern we are searching for, is compared
with the corresponding class in inputSystem.xml by trying to
match the attributes and methods of both classes.

To detect relations in Java sources, we adopt the definition
of an association given by Guéhéneuc [6], neglecting run-time
properties in his definition, because we use static detection.
The definition becomes: An association between class A and
B exists when an instance of class A can send a message to
an instance of class B. Instances of classes occur as a field,
array field, collection, parameter, and local variable.

IV. ASSESSMENT OF THE APPROACH

To assess the accuracy of our approach, we apply it to both a
test set that we have constructed for the purpose of evaluating,
and source code that is available ”in the wild”. The research
questions we will answer are: When given the design pattern
specifications from section III-B:

RQ1 What is the accuracy of our detection software?
RQ2 What is the efficiency of our detection software?
The accuracy of the detection software can be determined

by the ratio of correctly identified and rejected design patterns
to the total number of searched design patterns. In cases where
a design pattern is not detected, we will investigate the reasons
for its failure to be detected. Furthermore, we will also address
the occurrence of false positives in the detection results.

The efficiency is expressed as the total process time. During
processing, Java files are read, parsed, and searched for design
patterns.

The assessments are conducted on a PC with hardware
characteristics Core™ i5-6400 CPU @ 2.70GHz x 4.

A. The test set

We have constructed a new test set comprising seven Net-
beans projects, each containing a total of 23 distributed design
patterns that align with the explicit specifications from section
III-B. The test set has been designed to include classes that
are associated with multiple design patterns, which increases
the complexity of the search process. Furthermore, we ensured
that some of the design patterns are not exact replicas of the
GoF patterns. For instance, the Abstract Factory design pattern
comprises three ConcreteFactories instead of the traditional
two.

The results for running our tool on the test set are in
Table I. The data shows that the design patterns can be
processed within seconds. So the software is fast enough for
an educational environment and therefore efficient.

Moreover, our proposed tool shows to be accurate because
all design patterns, except the Facade pattern, can be detected.
However, the detection software cannot distinguish between
the State and Strategy pattern.

B. Java sources in the wild

We found two repositories for educational purposes with
Java sources containing design patterns we will denominate
RameshMF5 and sourcemaking6. These repositories offer for
each design pattern a map with java sources. We made minor
adjustments for the declaration of an attribute, keywords that
we do not use, such as enum, module, and related keywords
(as described in Section III-C)

The sources of RameshMF contain 18 of the 20 design pat-
terns. This repository has no examples of the design patterns
Interpreter, Mediator, Memento, and Visitor. For these design
patterns, we used the sources of sourcemaking.

The results are shown in Table II.

TABLE II
RESULTS RAMESHMF & SOURCEMAKING

Design pattern Lines
of

code

Detected Total
process

time (sec)
RameshMF
1 Abstract Factory 567 Y 2.9
2 Adapter 330 Y 2.2
3 Bridge 759 N 4.1
4 Builder 430 N A 1.9
5 Chain of Responsibility 437 N A 1.9
6 Command 596 N 3.4
7 Composite 974 N 4.1
8 Decorator 404 N 3.9
9 Factory-pattern 932 Y 12.7

10 Flyweight 472 N A 2.3
11 Iterator 337 N A 1.7
12 Observer 591 N A 1.7
13 Prototype 620 Y 3.3
14 Proxy 275 N 2.1
15 Singleton 313 Y A 1.3
16 State 118 N 2.4
17 Strategy 61 N 1.9
18 Template Method 369 Y 3.0
sourcemaking
19 Interpreter 147 N 1.0
20 Mediator 103 N 1.2
21 Memento 57 Y A 0.5
22 Visitor 82 N 1.8

The meaning of the values in column Detected is:

• A (Adjusted): A small change was made in the detection
code to make detection possible. Examples: declaring an
attribute public, and removing an enum definition.

5https://github.com/RameshMF/gof-java-design-patterns
6https://sourcemaking.com/design patterns/



• N(o): The implementation of the design pattern matches
the intent but not the class diagram as given by Gamma
et al. [5]. Therefore, the implementation does not match
the explicit specification of design patterns.

• Y(es): Detected without any problem.
The values in column Lines of code are the numbers of lines
of Java code in the map containing the design pattern.

The results show the accuracy of our software because seven
(5 * Y + 2 * Y A) detected design patterns are implemented
according to their descriptions, and the implementations of the
other 15 design patterns differ from their descriptions. For an
educational environment, these results are accurate because
the implementation of a design pattern has to match fully and
not partially. The results are efficient because the total process
time is at most 12.7 seconds.

V. CONCLUSIONS

Our main goal is to show that it is possible to build a design
pattern detection tool using an explicit implementation.

The limitation of our tool is that we can make no distinction
between State and Strategy patterns because that is impossible
using static detection. Also, we chose not to include parts of
the grammar that are less relevant to students, such as the
keyword module, lambda expressions, and enum definitions.

Another limitation is that the Facade pattern cannot be
detected. The specification of the Facade pattern in terms of
classes and relations is simply too vague, too broad, to be
usable.

Teachers could adjust the specification of the patterns to
their own needs. The specification of design patterns is easily
adaptable because it is written in XML and documented.
Imaginable is, to make it possible to choose which language
constructs are in- or excluded.

For verification, we used a test set with 22 design patterns.
The positive results of the applied test set contribute to
confidence in the specification of the design patterns and the
qualities of the software.

However, detection of the couple State and Strategy patterns
implies a false negative.

But, if the source code of a method does not contain any
statement then the intent of the class and template is not
realized.

So, the detection of design patterns without false positives
is not guaranteed.

For validation, we used several sources from the Internet.
Design patterns that are present could sometimes not be
recognized. The implementation of these patterns matched the
intent but not the specification of the patterns.

The detection software is useful for an educational envi-
ronment because the student’s elaboration of assignments has
precisely to comply with the assignment.

The answers to our research questions are as follows:
1) The accuracy of the detection software is that all GoF

design patterns, except the Facade pattern, can be de-
tected when they fully match the defining template of
the design pattern. No distinction can be made between

the State and Strategy pattern. The software is not
appropriate for searching for implementations of design
patterns that only comply with the intent of a pattern.

2) The efficiency of the detection software depends on the
number of lines of code and the design pattern. Java
sources with less than 1000 lines of code are processed
for all GoF design patterns within 12 seconds.

3) The new descriptions of design patterns are useful in an
educational environment because a teacher may specify
how design patterns should be implemented, and may
allow only implementations that adhere to this specifi-
cation.

In the future, we will try to improve the ease with which
teachers may adapt the specification. Also, we may work on
the feedback that the tool can give. Of course, we will also
find out whether our tool can be really helpful, for teachers
and/or students.

VI. ACKNOWLEDGEMENT

I thank Prof. Dr. Tanja Vos for her advice, discussions, and
support.

REFERENCES

[1] N. Bozorgvar, A. Rasoolzadegan and A. Harati, Probabilistic detection
of gof design patterns, The Journal of Supercomputing (Aug 2022).

[2] E. van Doorn, Supporting design process by automatically detecting de-
sign patterns and giving some feedback, Master’s thesis, Open University
(8 2016).

[3] E. van Doorn, S. Stuurman and M. van Eekelen, Static detection of
design patterns in class diagrams, in CSERC ’19, eds. E. Rahimi
and D. Stikkolorum (Association for Computing Machinery (ACM),
United States, nov 2019), pp. 79–88. 8th Computer Science Education
Research Conference (CSERC’19), CSERC ; Conference date: 18-11-
2019 Through 20-11-2019.

[4] E. van Doorn and S. Stuurman, Towards more precise descriptions of
design patterns, in Software Engineering Perspectives in Systems, ed.
R. Silhavy (Springer International Publishing, Cham, 2022), pp. 117–
140.

[5] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-oriented Software (Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995).

[6] Y.-G. Guéhéneuc, A reverse engineering tool for precise class diagrams,
in CASCON, 2004.

[7] T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean, Distributed
representations of words and phrases and their compositionality (2013).

[8] N. Nazar, A. Aleti and Y. Zheng, Feature-based software design pattern
detection, Journal of Systems and Software 185 (2022) p. 111179.

[9] R. E. Neapolitan et al., Learning bayesian networks (Pearson Prentice
Hall Upper Saddle River, 2004).

[10] A. Rahman and S. Tasnim, Ensemble classifiers and their applications:
A review, International Journal of Computer Trends and Technology 10
(04 2014).

[11] T. J. Parr, S. Harwell and K. Fisher, Adaptive ll(*) parsing: the power
of dynamic analysis, in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA,
October 20-24, 2014, eds. A. P. Black and T. D. Millstein (ACM, 2014),
pp. 579–598.

[12] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen,
Object-Oriented Modeling and Design (Prentice–Hall, Englewood Cliffs,
NJ, 1991).

[13] H. Yarahmadi and S. M. H. Hasheminejad, Design pattern detection
approaches: a systematic review of the literature, Artificial Intelligence
Review 53 (12 2020).

[14] F. Wedyan and S. Abufakher, Impact of design patterns on software
quality: A systematic literature review, IET Software 14 (02 2020).


