
A Case Study of Dependency Network for Building
Packages: The Fedora Linux Distribution

Jiman Du1, Jiaxin Zhu2,3,4, Hui Li2, Wei Chen2,3,4, Lijie Xu2,3,4, Jie Liu2,3,4, Zhifeng Chen5
1School of Computer, Electronics and Information, Guangxi University, China

2State Key Lab of Computer Science at ISCAS, University of CAS, China
3University of Chinese Academy of Sciences,Nanjing, China

4Nanjing Institute of Software Technology, China
5MIIT Key Lab of Cloud Computing Standards and Applications, China Electronic Standardization Institute, China
Email: dujiman@st.gxu.edu.cn, {zhujiaxin, lihui2012, chenwei, xulijie, ljie}@otcaix.iscas.ac.cn, chenzf@cesi.cn

Abstract—To port the Linux distributions to a new Instruction
Set Architecture (ISA), developers have to rebuild the software
packages of the distributions. The complex dependencies of the
software packages bring a great challenge. It is important to
understand and properly handle the dependencies. We selected
Fedora, a typical Linux distribution, and studied the dependencies
within the software repositories of aarch64 and x86_64
architecture. We proposed a package dependency network
framework to study the roles played by different packages. We
obtained three network dependency patterns and proposed the
corresponding division strategies which help developer build the
source packages in parallel. Our study reveals that the key
packages located at the root of multiple dependency chains
significantly impact the division of the network, and their builds
should be prioritized. Meanwhile, some packages with external
dependencies can be temporarily masked to make a sub-network
independent. Furthermore, the network dependency patterns are
also observed in Fedora 33 riscv64 and OpenEuler riscv64. Our
findings can help researchers have a better knowledge of Linux
distribution dependency network and help practitioners conduct
efficient package builds.

Keywords—software repository, build dependency, software
porting, dependency network

I. INTRODUCTION
With the advent of new ISAs such as ARM and RISC-V,

developers of Linux distributions are seeking to port their
distributions to these new architectures and establish
corresponding software ecosystems [1]. However, porting a
distribution to a new ISA is far from straightforward. Firstly,
building software from source packages to binaries requires the
support of other software known as build dependencies (reused
software). The building process of a porting has to be started
from scratch and conducted in dependency order. Secondly, the
complex dependencies between source packages can be
overwhelming for developers. Furthermore, porting a
distribution to a new architecture involves rebuilding a large
number of source packages, which is a time-consuming task.

Ye [2] focuses on the order of source packages building,
using topological sorting to give the best building order. In this
paper, we conducted an empirical study of the dependency
relationship between source packages in Linux distribution
software repositories. We crawled all packages, including
source and binary packages, from 4 Fedora repositories for X86
(x86_64) and ARM (aarch64) architectures and 2 repositories of
OpenEuler and Fedora 33 for the emerging RISC-V (riscv64)

architecture. We built a package network for each repository
based on the dependency relationships between source packages,
and studied the networks for efficient porting.

We analyzed the connections of packages in the network to
check whether the network can be divided into sub-networks for
parallel building. Our results show that source packages can be
aggregated into clusters, with sparser connections between the
clusters than within the clusters. It implies that it is possible to
fragment the network into sub-networks. We also obtained some
insights of the role that different source packages play in the
network. We found that the successful builds of the key
packages belonging to multiple dependency chains are
important for the builds of the dependent packages. These key
packages have a significant impact on parallel building. Finally,
according to the prior findings, we attempted to divide the
dependency network into sub-networks and identified three
dependency patterns and the associated division strategies.

The main contributions of this paper are as follows: (1) We
built a package dependency network framework of Linux
distributions; (2) We obtained three dependency patterns to help
developers improve package build efficiency.

The remaining paper is organized as follows. Section 2
introduces our motivation and research questions. Section 3
presents the dataset. Section 4 illustrates our method and reports
and the results. Section 5 introduces related work. Section 6
concludes.

II. MOTIVATION AND RESEARCH QUESTIONS
Porting a Linux distribution to new ISAs often requires

rebuilding all of its software packages from scratch with
unsupported dependencies. As depicted in Fig. 1, since the build
of the source package accountservice [3] relies on the output of
building gobject-introspection, the build of the former cannot be
started until the successful build of the latter. This is a simple
example of a dependency chain of source packages.

The numerous dependency chains form a large network,
which may be split into smaller sub-networks for parallel builds.
As shown in Fig. 2, after the successful builds of the zlib, make,
and gcc, the network becomes two independent sub-networks
which have 4 and 8 packages separately. They can be assigned
to different teams for parallel builds.

To explore the division of the dependency network, we raise
the following two research questions: RQ1: What are the
characteristics of the dependency network? RQ2: How can
a dependency network be divided into independent sub-
networks?

This work is supported by the National Key R&D Program of China
Grant 2021YFB1716000.

DOI reference number: 10.18293/SEKE2023-098

Figure 1. A dependency chain of two source packages.

III. DATASET
The dependency network of a repository can be defined as a

directed network G(V, E). V = {v1, v2, …, vN} is the set of source
packages in the repository, and E = {e1, e2, …, eM} is the set of
dependency edges, where ei = {vs, vt} (i = 1, 2, …, M). Source
packages can be grouped into a cluster, i.e., a sub-network
Gsub(Vsub, Esub), where Vsub ⊆ V, Esub ⊆ E. To examine the
relationships between the sub-networks, some relevant external
source packages are added into the original sub-network, which
forms the merged sub-network.

To collect the edges between source packages in the
dependency network, the following relations were extracted: the
generation relation from an SRPM (source package) to an RPM
(binary package), the providing relation from RPM to binary
modules, and the build dependency relation from the SRPM to
binary modules. These information can be acquired through the
rpmspec [4] and rpm [5] tool. Take the dependency chain in
Fig.1 as an example. Firstly, the rpmspec is used to parse the
SPEC file of gobject-instrospection to extract the generating
relation between the gobject-introspection and the gobject-
introspection-devel. Next, the rpm is utilized to retrieve the list
of modules provided by gobject-introspection-devel, which
includes giscanner. Finally, the SPEC file of accountsservice is
parsed again to obtain its build dependencies using rpmspec. In
consequence, the relations of the source packages from
accountsservice to gobject-introspection are obtained.

TABLE I. STUDIED DEPENDENCY NETWORKS

Architecture Release Version Number of nodes Number of edges

aarch64 Fedora 34a 21494 155990
Fedora 35b 22015 157897

x86_64 Fedora 34c 21620 157249
Fedora 35d 22136 159215

riscv64 Fedora 33e 21949 144063
OpenEulef 992 3483

a. https://mirrors.aliyun.com/fedora/releases/34/Everything/aarch64/.
b. https://mirrors.aliyun.com/fedora/releases/35/Everything/aarch64/.

c. https://mirrors.aliyun.com/fedora/releases/34/Everything/x86_64/.
d. https://mirrors.aliyun.com/fedora/releases/35/Everything/x86_64/.

e. http://fedora.riscv.rocks/repos-dist/rawhide/latest/riscv64/.
f. https://isrc.iscas.ac.cn/mirror/openeuler-sig-riscv/oe-RISCV-repo/riscv64/.

Figure 2. An example of network division.

To answer the two research questions, we crawled all
packages in the 6 repositories mentioned in Section 1, the results
of the network construction are presented in Table 1. Our initial
analysis reveals that over 97% of the source packages are
interconnected in the largest connected component. The
remaining fragmented packages have minimal effect on network
analysis. Thus, they are eliminated.

IV. METHODOLOGY & RESULTS
A. Ans. to RQ1: Attributes of Source Packages Network

Dividing a network into sub-networks requires identification
of community structures. The sparsity between communities can
reduce the complexity of the division. Meanwhile, the efficiency
of the building process may be impacted by the connections
between the packages, as packages with a large number of
dependencies may block the builds of many others. Therefore,
we analyzed the internal structure and the degree distribution
(dependencies distribution) of the dependency network.

Small-World: The average shortest path length (ASPL) [6]
represents the efficiency of dependency transferred in the
network, and the average clustering coefficient (ACC) [7] is the
probability that packages gather into a cluster. We compare
ASPL and ACC of Fedora dependency network (FedoraGraph)
with a random directed network (RandomGraph) of the same
scale. Taking Fedora 34 x86_64 as an example, as shown in Fig.
3, the FedoraGraph has a shorter ASPL (0.42) and a higher ACC
(0.30), which indicates that the network has a small-world
attribute [8], i.e., it is highly connected and aggregated. Nodes
in the network tend to gather into clusters, and the relationships
between the clusters are sparser than those within the clusters.
This finding suggests that the dependency network can be
divided into sub-networks.

Figure 3. APSL and ACC of the FedoraGraph and RandomGraph.

Scale-Free: Fig. 4 shows the log-log plots of the degree
distribution, where the horizontal axis represents the in/out
degree of source packages and the vertical axis is the
corresponding distribution. Our fitting results show that the
degree distribution follows a power-law distribution (𝛾in is 1.836,
and 𝛾out is 2.099), indicating the scale-free attribute [9] of the
network. The majority of the packages in the repository occupy
upstream positions in the dependency chain and do not provide
support for the builds of other packages. A large number of
dependencies are concentrated in a minority of the packages,
which we refer to as key packages. Consequently, the successful
builds of key packages can significantly reduce the overall
number of unsupported dependencies for the packages of a
Linux distribution.

③Depend On ①Generategobject-
spection-

devel

Depend On

gobject-n-
devel

Binary CodeSource Code Module

gobject-
introspection-

devel

gobject-
introspection

accounts
service giscanner

②Provide

game-music-emu

qmmp

gstreamer1-plugins-bad-free

SDL2

zlib make

gcc

Perl-ExtUtils-MakeMaker

findutils

perl-ExtUtils-CBuilder Perl-B-Generate

perl-constant

perl-generators

perl-Test-Simple
perl

0.42

3.48

0.3

0.01
FedoraGraph RandomGraph

0.00

0.08

0.16

0.24

0.32

0.40

3.44

3.52

3.60
 ASPL ACC

Figure 4. Degree distribution of the Fedora 34 x86_64 network.

B. Ans. to RQ2: Dependency Patterns and Network Division
We tried to divide the network through the following steps.

First, we utilize the Louvain algorithm [10] for package
grouping, as it shows good performance in large-scale networks.
Then, we employed a network transformation approach, treating
sub-networks as nodes, to simplify the relations for initial
filtering. Finally, we divided the network and drew conclusions.

We define the average out-degree of a sub-network as shown
in Eq. 1, dout(c, v) represents the out-degree of nodes within sub-
network C to sub-network V, and nc is the number of source
packages in sub-network C.

davg(C, V) = dout(C, V)/nc (1)

Figure 5. Dependency network at sub-network granularity.

To simplify the relationship between sub-networks, only the
cases where davg(C, V) is greater than 0.1 are considered. As
shown in Fig. 5, the network is divided into 14 sub-network
nodes, which still have the scale-free attribute. Except for the
hybrid sub-networks (Core, R/Ocaml/Gap and Mix), the source
packages in a sub-network are developed with the same
programming language or framework. After the simplification,
two isolated sub-networks (Rust and Drupal) emerge, which
have the minimal dependencies on external and can be separated
through masking a few dependencies. The dependencies of the
other sub-networks are still too complex to separate.

Based on the prior observations, we proposed two heuristics
for network division: (1) Key packages in the sub-network must
be made independent to ensure the builds of all related
dependency chains. (2) The sub-network does not need to be
completely independent of external dependencies. Developers
can work on a sub-network when the majority of its packages
can be built. With these heuristics, we identified three patterns
of sub-network dependency as depicted in Fig. 6.

Partial dependency (PD): When the external dependencies
are concentrated on the upstream packages (i.e., nodes with 0 in-
degree), a sub-network has the partial dependency. In this
pattern, although the sub-network still depends on packages
from the external sub-network, the dependencies of most
packages are within the sub-network itself. Developers can build
this kind of sub-networks in advance. Fig. 6(a) depicts the
merged sub-network A (A1-A6) to B (B7-B8). The red nodes
(A1 and A4) are the key packages of sub-network A. A5 and A6
depend on B7 and B8 of sub-network B. In this pattern, the union
of A5 and A6 does not support other source packages. Whether
these nodes are successfully built or not has little effect on most
of the source packages in the sub-network. Developers can put
off the build of A5 and A6 when scheduling.

Core dependency (CD): The external dependencies of a
sub-network are concentrated in the key packages, which are the
foundation of multiple dependency chains and are critical to the
builds of many source packages. The late builds of key packages
will block all the other packages on the dependency chains.
Developers must prioritize the builds of the key packages. As
shown in Fig. 6(b), A1 and A4 are considered the key packages
of sub-network A. A1 has two external dependencies: a direct
dependency B8 and the transitive dependency B7 through A6,
therefore, A1 is not able to be separated from the external, and
the late build of A1 will block sub-network A. In this pattern,
the key packages in the sub-network should have the highest
priority.

General dependency (GD): The dependencies of most
packages of a sub-network are a few external packages. The sub-
network of this pattern cannot be easily separated from the
external. As shown in Fig. 6(c), A2, A3, and A5 in sub-network
A depend on B6 and B7 in sub-network B. Although the two key
packages A1 and A4 do not form core dependency, the sub-
network cannot be divided due to the dependency of B6 and B7.
Developers should complete the builds of a few external source
packages to make the sub-network only have partial dependency.

We also observe these patterns in the sub-networks of
Fedora 33 riscv64 and OpenEuler riscv64. As demonstrated in
Table 2, all the sub-networks, excluding the Mix sub-network,
match one of the patterns and can be divided in the ways
discussed above.

 (a) Partial Dependency (PD) (b) Core Dependency (CD) (c) General Dependency (GD)

Figure 6. Dependency patterns of the sub-networks.

0.196

Rust

Mix

Python

Perl

Core

Golang

Java

Php

Ghc

Mingw

Erlang

R/Ocaml/Gap

Drupal

0.277

0.178

Ruby

0.523

0.698

0.121

0.156

0.2
28

0.5
88

2.441.263 0.218

0.527

1.207

2.79

(a) Partial Dependency (PD) (b) Core Dependency (CD) (c) General Dependency (GD)

TABLE II. THE DIVISION RESULT OF SUB-NETWORKS IN FEDORA 33
RISCV64 AND OPENEULER RISCV64

Repository Sub-Network PD CD GD Divisible

OpenEuler Python - P - P
Perl - P - P

Fedora 33

Drupal7 P - - P
Emacs P - - P
Erlang - - P P

Gap - P P P
Ghc - P - P

Globus - P P P
Golang P - - P
Hyphen - P - P

Java - P - P
Mix - P P -

NodeJs - P - P
Ocaml - P - P

Perl - P - P
PHP - P P P

Python - P - P
R - P - P

Ruby - P - P
Rust - P - P

V. RELATED WORK
Software reuse often leads to dependency problems, and

most of the studies focused on runtime dependencies. Several
tools [11-14] have been proposed to address dependency
conflicts and redundant dependencies in Python programs and
Jar files. Li et al. and Prana et al. [15, 16] studied dependency
conflicts and dependency vulnerability respectively. To our
knowledge, only Ye [2] paid attention to the build dependency
and provides a way to sort the build order of source packages
of Linux distributions. Yao et al. [6] analyzed defects and
changes of resilience during software evolution by modeling
functions in the Android OS kernel. Similarly, Gou et al. and
Gao et al. [17, 18] modeled and studied different software
systems at the function level. Decan et al. [19] conducted an
empirical study on seven software ecosystems and found that
a few binary packages bear most of the dependencies, and the
majority are unable to work without these dependencies.

VI. CONCLUSIONS
One of the biggest challenges faced by emerging ISAs is

building the corresponding software ecosystem from scratch.
For Linux distributions, developers must rebuild the software
repository to support the emerging ISAs, where the build
dependencies are very complex. In this paper, we conducted
an empirical study of multiple repositories to explore whether
the dependency network can be divided into sub-networks.
Our findings reveal that the dependency network presents
scale-free and small-world attributes. Source packages within
the network tend to gather into clusters, which offers the
potential to divide the network into sub-networks. The key
packages in the network significantly impact the
independence of the sub-networks, as they act as the root of
multiple dependency chains and can block the build process
of many other packages. We identified three patterns of sub-
network dependency and provided the corresponding
strategies of division. Our work can inspire further research
on the dependency network and help developers efficiently
conduct parallel builds of source packages.

REFERENCES
[1] “Linux Distro on RISC-V,” https://riscv.or.jp/wp-

content/uploads/Linux_Distros_on_RISC-V_Vietnam.pdf, Accessed:
Apr. 24, 2023.

[2] A. D. Ye, “Research and Implementation of the compiling method for
RPM with complicated dependency relationships,” Master of
Engineering, Institute of Computing Technology Chinese Academy of
Sciences, Beijing, 2016.

[3] “Build Log for Package accountsservice,”
https://build.openeuler.org/package/live_build_log/openEuler:Mainlin
e:RISC-V/accountsservice/advanced_riscv64/riscv64, Accessed: Apr.
24, 2023.

[4] “rpmspec,” https://man7.org/linux/man-pages/man8/rpmspec.8.html,
Accessed: Apr. 24, 2023.

[5] “rpm - RPM Package Manager,” https://rpm-software-
management.github.io/rpm/man/rpm.8.html, Accessed: Apr. 24, 2023.

[6] A. Yao, P. Sun, S. Yang and D. Li, "Evolution of Function-Call
Network Reliability in Android Operating System," in IEEE
Transactions on Circuits and Systems I: Regular Papers, 2020, vol. 67,
no. 4, pp. 1264–1275.

[7] G. Fagiolo, “Clustering in complex directed networks,” Physical
Review E, 2007, vol. 76, no. 2, pp. 026107.

[8] D. Watts, S. Strogatz, “Collective dynamics of 'small-world' networks,”
Nature, 1998, vol. 393(6684), pp. 440-2.

[9] A. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, 1999, vol. 286, pp. 509-512.

[10] V. D. Blondel, J. L. Guillaume, R. Lambiotte and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, 2008, vol. 2008, no. 10, pp. P10008.

[11] J. Wang, L. Li and A. Zeller, "Restoring Execution Environments of
Jupyter Notebooks," 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), Madrid, ES, 2021, pp. 1622-1633.

[12] E. Horton and C. Parnin, "DockerizeMe: Automatic Inference of
Environment Dependencies for Python Code Snippets," 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), Montreal, QC, Canada, 2019, pp. 328-338.

[13] H. Ye, W. Chen, W. Dou, G. Wu and J. Wei, "Knowledge-Based
Environment Dependency Inference for Python Programs," 2022
IEEE/ACM 44th International Conference on Software Engineering
(ICSE), Pittsburgh, PA, USA, 2022, pp. 1245-1256.

[14] C. Soto-Valero, N. Harrand, M. Monperrus, and B. Baudry, “A
comprehensive study of bloated dependencies in the Maven ecosystem,”
Empir Software Eng, 2021, vol. 26(3), pp. 1-44.

[15] S. Li, J. Liu, S. Wang, H. X. Tian and D. Ye, “Survey of State-of-the-
art Third-party libraries Conflict Dependency Problem,” Journal of
Software, doi: 10.13328/j.cnki.jos.006666.

[16] G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, Santosa, et al., “Out of
sight, out of mind? How vulnerable dependencies affect open-source
projects,” Empirical Software Engineering, 2021, vol. 26(4), pp. 1-34.

[17] X. Gou, L. Fan, L. Zhao, Q. Shao, C. Bian, et al., "Multiscale Empirical
Analysis of Software Network Evolution," 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security
Companion (QRS-C), Hainan, China, 2021, pp. 1109-1118.

[18] Y. Gao, Z. Zheng and F. Qin, “Analysis of Linux kernel as a complex
network,” Chaos, Solitons & Fractals, 2014, vol. 69, pp. 246-252.

[19] A. Decan, T. Mens and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging
ecosystems,” Empirical Software Engineering, 2019, vol. 24(1), pp.
381-416.

