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Abstract—To port the Linux distributions to a new Instruction 
Set Architecture (ISA), developers have to rebuild the software 
packages of the distributions. The complex dependencies of the 
software packages bring a great challenge. It is important to 
understand and properly handle the dependencies. We selected 
Fedora, a typical Linux distribution, and studied the dependencies 
within the software repositories of aarch64 and x86_64 
architecture. We proposed a package dependency network 
framework to study the roles played by different packages. We 
obtained three network dependency patterns and proposed the 
corresponding division strategies which help developer build the 
source packages in parallel. Our study reveals that the key 
packages located at the root of multiple dependency chains 
significantly impact the division of the network, and their builds 
should be prioritized. Meanwhile, some packages with external 
dependencies can be temporarily masked to make a sub-network 
independent. Furthermore, the network dependency patterns are 
also observed in Fedora 33 riscv64 and OpenEuler riscv64. Our 
findings can help researchers have a better knowledge of Linux 
distribution dependency network and help practitioners conduct 
efficient package builds. 

Keywords—software repository, build dependency, software 
porting, dependency network 

I. INTRODUCTION  
With the advent of new ISAs such as ARM and RISC-V, 

developers of Linux distributions are seeking to port their 
distributions to these new architectures and establish 
corresponding software ecosystems [1]. However, porting a 
distribution to a new ISA is far from straightforward. Firstly, 
building software from source packages to binaries requires the 
support of other software known as build dependencies (reused 
software). The building process of a porting has to be started 
from scratch and conducted in dependency order. Secondly, the 
complex dependencies between source packages can be 
overwhelming for developers. Furthermore, porting a 
distribution to a new architecture involves rebuilding a large 
number of source packages, which is a time-consuming task. 

Ye [2] focuses on the order of source packages building, 
using topological sorting to give the best building order. In this 
paper, we conducted an empirical study of the dependency 
relationship between source packages in Linux distribution 
software repositories. We crawled all packages, including 
source and binary packages, from 4 Fedora repositories for X86 
(x86_64) and ARM (aarch64) architectures and 2 repositories of 
OpenEuler and Fedora 33 for the emerging RISC-V (riscv64) 

architecture. We built a package network for each repository 
based on the dependency relationships between source packages, 
and studied the networks for efficient porting. 

We analyzed the connections of packages in the network to 
check whether the network can be divided into sub-networks for 
parallel building. Our results show that source packages can be 
aggregated into clusters, with sparser connections between the 
clusters than within the clusters. It implies that it is possible to 
fragment the network into sub-networks. We also obtained some 
insights of the role that different source packages play in the 
network. We found that the successful builds of the key 
packages belonging to multiple dependency chains are 
important for the builds of the dependent packages. These key 
packages have a significant impact on parallel building. Finally, 
according to the prior findings, we attempted to divide the 
dependency network into sub-networks and identified three 
dependency patterns and the associated division strategies. 

The main contributions of this paper are as follows: (1) We 
built a package dependency network framework of Linux 
distributions; (2) We obtained three dependency patterns to help 
developers improve package build efficiency. 

The remaining paper is organized as follows. Section 2 
introduces our motivation and research questions. Section 3 
presents the dataset. Section 4 illustrates our method and reports 
and the results. Section 5 introduces related work. Section 6 
concludes. 

II. MOTIVATION AND RESEARCH QUESTIONS 
Porting a Linux distribution to new ISAs often requires 

rebuilding all of its software packages from scratch with 
unsupported dependencies. As depicted in Fig. 1, since the build 
of the source package accountservice [3] relies on the output of 
building gobject-introspection, the build of the former cannot be 
started until the successful build of the latter. This is a simple 
example of a dependency chain of source packages. 

The numerous dependency chains form a large network, 
which may be split into smaller sub-networks for parallel builds. 
As shown in Fig. 2, after the successful builds of the zlib, make, 
and gcc, the network becomes two independent sub-networks 
which have 4 and 8 packages separately. They can be assigned 
to different teams for parallel builds. 

To explore the division of the dependency network, we raise 
the following two research questions: RQ1: What are the 
characteristics of the dependency network? RQ2: How can 
a dependency network be divided into independent sub-
networks? 
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Figure 1. A dependency chain of two source packages. 

III. DATASET 
The dependency network of a repository can be defined as a 

directed network G(V, E). V = {v1, v2, …, vN} is the set of source 
packages in the repository, and E = {e1, e2, …, eM} is the set of 
dependency edges, where ei = {vs, vt} (i = 1, 2, …, M). Source 
packages can be grouped into a cluster, i.e., a sub-network 
Gsub(Vsub, Esub), where Vsub ⊆  V, Esub ⊆  E. To examine the 
relationships between the sub-networks, some relevant external 
source packages are added into the original sub-network, which 
forms the merged sub-network. 

To collect the edges between source packages in the 
dependency network, the following relations were extracted: the 
generation relation from an SRPM (source package) to an RPM 
(binary package), the providing relation from RPM to binary 
modules, and the build dependency relation from the SRPM to 
binary modules. These information can be acquired through the 
rpmspec [4] and rpm [5] tool. Take the dependency chain in 
Fig.1 as an example. Firstly, the rpmspec is used to parse the 
SPEC file of gobject-instrospection to extract the generating 
relation between the gobject-introspection and the gobject-
introspection-devel. Next, the rpm is utilized to retrieve the list 
of modules provided by gobject-introspection-devel, which 
includes giscanner. Finally, the SPEC file of accountsservice is 
parsed again to obtain its build dependencies using rpmspec. In 
consequence, the relations of the source packages from 
accountsservice to gobject-introspection are obtained. 

TABLE I.  STUDIED DEPENDENCY NETWORKS 

Architecture Release Version Number of nodes Number of edges 

aarch64 Fedora 34a 21494 155990 
Fedora 35b 22015 157897 

x86_64 Fedora 34c 21620 157249 
Fedora 35d 22136 159215 

riscv64 Fedora 33e 21949 144063 
OpenEulef 992 3483 

a. https://mirrors.aliyun.com/fedora/releases/34/Everything/aarch64/. 
b. https://mirrors.aliyun.com/fedora/releases/35/Everything/aarch64/. 

c. https://mirrors.aliyun.com/fedora/releases/34/Everything/x86_64/. 
d. https://mirrors.aliyun.com/fedora/releases/35/Everything/x86_64/. 

e. http://fedora.riscv.rocks/repos-dist/rawhide/latest/riscv64/. 
f. https://isrc.iscas.ac.cn/mirror/openeuler-sig-riscv/oe-RISCV-repo/riscv64/. 

 

 
Figure 2. An example of network division. 

To answer the two research questions, we crawled all 
packages in the 6 repositories mentioned in Section 1, the results 
of the network construction are presented in Table 1. Our initial 
analysis reveals that over 97% of the source packages are 
interconnected in the largest connected component. The 
remaining fragmented packages have minimal effect on network 
analysis. Thus, they are eliminated. 

IV. METHODOLOGY & RESULTS 
A. Ans. to RQ1: Attributes of Source Packages Network 

Dividing a network into sub-networks requires identification 
of community structures. The sparsity between communities can 
reduce the complexity of the division. Meanwhile, the efficiency 
of the building process may be impacted by the connections 
between the packages, as packages with a large number of 
dependencies may block the builds of many others. Therefore, 
we analyzed the internal structure and the degree distribution 
(dependencies distribution) of the dependency network. 

Small-World: The average shortest path length (ASPL) [6] 
represents the efficiency of dependency transferred in the 
network, and the average clustering coefficient (ACC) [7] is the 
probability that packages gather into a cluster. We compare 
ASPL and ACC of Fedora dependency network (FedoraGraph) 
with a random directed network (RandomGraph) of the same 
scale. Taking Fedora 34 x86_64 as an example, as shown in Fig. 
3, the FedoraGraph has a shorter ASPL (0.42) and a higher ACC 
(0.30), which indicates that the network has a small-world 
attribute [8], i.e., it is highly connected and aggregated. Nodes 
in the network tend to gather into clusters, and the relationships 
between the clusters are sparser than those within the clusters. 
This finding suggests that the dependency network can be 
divided into sub-networks. 

 
Figure 3. APSL and ACC of the FedoraGraph and RandomGraph. 

Scale-Free: Fig. 4 shows the log-log plots of the degree 
distribution, where the horizontal axis represents the in/out 
degree of source packages and the vertical axis is the 
corresponding distribution. Our fitting results show that the 
degree distribution follows a power-law distribution (𝛾in is 1.836, 
and 𝛾out is 2.099), indicating the scale-free attribute [9] of the 
network. The majority of the packages in the repository occupy 
upstream positions in the dependency chain and do not provide 
support for the builds of other packages. A large number of 
dependencies are concentrated in a minority of the packages, 
which we refer to as key packages. Consequently, the successful 
builds of key packages can significantly reduce the overall 
number of unsupported dependencies for the packages of a 
Linux distribution. 

③Depend On ①Generategobject-
spection-

devel

Depend On

gobject-n-
devel

Binary CodeSource Code Module

gobject-
introspection-

devel

gobject-
introspection

accounts
service giscanner

②Provide

game-music-emu

qmmp

gstreamer1-plugins-bad-free

SDL2

zlib make

gcc

Perl-ExtUtils-MakeMaker

findutils

perl-ExtUtils-CBuilder Perl-B-Generate

perl-constant

perl-generators

perl-Test-Simple
perl

0.42

3.48

0.3

0.01
FedoraGraph RandomGraph

0.00

0.08

0.16

0.24

0.32

0.40

3.44

3.52

3.60
 ASPL   ACC



 
Figure 4. Degree distribution of the Fedora 34 x86_64 network. 

B. Ans. to RQ2: Dependency Patterns and Network Division 
We tried to divide the network through the following steps. 

First, we utilize the Louvain algorithm [10] for package 
grouping, as  it shows good performance in large-scale networks. 
Then, we employed a network transformation approach, treating 
sub-networks as nodes, to simplify the relations for initial 
filtering. Finally, we divided the network and drew conclusions. 

We define the average out-degree of a sub-network as shown 
in Eq. 1, dout(c, v) represents the out-degree of nodes within sub-
network C to sub-network V, and nc is the number of source 
packages in sub-network C. 

davg(C, V) = dout(C, V)/nc  (1) 

 
Figure 5. Dependency network at sub-network granularity. 

To simplify the relationship between sub-networks, only the 
cases where davg(C, V) is greater than 0.1 are considered. As 
shown in Fig. 5, the network is divided into 14 sub-network 
nodes, which still have the scale-free attribute. Except for the 
hybrid sub-networks (Core, R/Ocaml/Gap and Mix), the source 
packages in a sub-network are developed with the same 
programming language or framework. After the simplification, 
two isolated sub-networks (Rust and Drupal) emerge, which 
have the minimal dependencies on external and can be separated 
through masking a few dependencies. The dependencies of the 
other sub-networks are still too complex to separate. 

Based on the prior observations, we proposed two heuristics 
for network division: (1) Key packages in the sub-network must 
be made independent to ensure the builds of all related 
dependency chains. (2) The sub-network does not need to be 
completely independent of external dependencies. Developers 
can work on a sub-network when the majority of its packages 
can be built. With these heuristics, we identified three patterns 
of sub-network dependency as depicted in Fig. 6. 

Partial dependency (PD): When the external dependencies 
are concentrated on the upstream packages (i.e., nodes with 0 in-
degree), a sub-network has the partial dependency. In this 
pattern, although the sub-network still depends on packages 
from the external sub-network, the dependencies of most 
packages are within the sub-network itself. Developers can build 
this kind of sub-networks in advance. Fig. 6(a) depicts the 
merged sub-network A (A1-A6) to B (B7-B8). The red nodes 
(A1 and A4) are the key packages of sub-network A. A5 and A6 
depend on B7 and B8 of sub-network B. In this pattern, the union 
of A5 and A6 does not support other source packages. Whether 
these nodes are successfully built or not has little effect on most 
of the source packages in the sub-network. Developers can put 
off the build of A5 and A6 when scheduling. 

Core dependency (CD): The external dependencies of a 
sub-network are concentrated in the key packages, which are the 
foundation of multiple dependency chains and are critical to the 
builds of many source packages. The late builds of key packages 
will block all the other packages on the dependency chains. 
Developers must prioritize the builds of the key packages. As 
shown in Fig. 6(b), A1 and A4 are considered the key packages 
of sub-network A. A1 has two external dependencies: a direct 
dependency B8 and the transitive dependency B7 through A6, 
therefore, A1 is not able to be separated from the external, and 
the late build of A1 will block sub-network A. In this pattern, 
the key packages in the sub-network should have the highest 
priority. 

General dependency (GD): The dependencies of most 
packages of a sub-network are a few external packages. The sub-
network of this pattern cannot be easily separated from the 
external. As shown in Fig. 6(c), A2, A3, and A5 in sub-network 
A depend on B6 and B7 in sub-network B. Although the two key 
packages A1 and A4 do not form core dependency, the sub-
network cannot be divided due to the dependency of B6 and B7. 
Developers should complete the builds of a few external source 
packages to make the sub-network only have partial dependency. 

We also observe these patterns in the sub-networks of 
Fedora 33 riscv64 and OpenEuler riscv64. As demonstrated in 
Table 2, all the sub-networks, excluding the Mix sub-network, 
match one of the patterns and can be divided in the ways 
discussed above. 

 
                                      (a) Partial Dependency (PD)                        (b) Core Dependency (CD)                           (c) General Dependency (GD) 

Figure 6. Dependency patterns of the sub-networks. 
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TABLE II.  THE DIVISION RESULT OF SUB-NETWORKS IN FEDORA 33 
RISCV64 AND OPENEULER RISCV64 

Repository Sub-Network PD CD GD Divisible 

OpenEuler Python - P - P 
Perl - P - P 

Fedora 33 

Drupal7 P - - P 
Emacs P - - P 
Erlang - - P P 

Gap - P P P 
Ghc - P - P 

Globus - P P P 
Golang P - - P 
Hyphen - P - P 

Java - P - P 
Mix - P P - 

NodeJs - P - P 
Ocaml - P - P 

Perl - P - P 
PHP - P P P 

Python - P - P 
R - P - P 

Ruby - P - P 
Rust - P - P 

V. RELATED WORK 
Software reuse often leads to dependency problems, and 

most of the studies focused on runtime dependencies. Several 
tools [11-14] have been proposed to address dependency 
conflicts and redundant dependencies in Python programs and 
Jar files. Li et al. and Prana et al. [15, 16] studied dependency 
conflicts and dependency vulnerability respectively. To our 
knowledge, only Ye [2] paid attention to the build dependency 
and provides a way to sort the build order of source packages 
of Linux distributions. Yao et al. [6] analyzed defects and 
changes of resilience during software evolution by modeling 
functions in the Android OS kernel. Similarly, Gou et al. and 
Gao et al. [17, 18] modeled and studied different software 
systems at the function level. Decan et al. [19] conducted an 
empirical study on seven software ecosystems and found that 
a few binary packages bear most of the dependencies, and the 
majority are unable to work without these dependencies. 

VI. CONCLUSIONS 
One of the biggest challenges faced by emerging ISAs is 

building the corresponding software ecosystem from scratch. 
For Linux distributions, developers must rebuild the software 
repository to support the emerging ISAs, where the build 
dependencies are very complex. In this paper, we conducted 
an empirical study of multiple repositories to explore whether 
the dependency network can be divided into sub-networks. 
Our findings reveal that the dependency network presents 
scale-free and small-world attributes. Source packages within 
the network tend to gather into clusters, which offers the 
potential to divide the network into sub-networks. The key 
packages in the network significantly impact the 
independence of the sub-networks, as they act as the root of 
multiple dependency chains and can block the build process 
of many other packages. We identified three patterns of sub-
network dependency and provided the corresponding 
strategies of division. Our work can inspire further research 
on the dependency network and help developers efficiently 
conduct parallel builds of source packages. 

 

REFERENCES 
[1] “Linux Distro on RISC-V,” https://riscv.or.jp/wp-

content/uploads/Linux_Distros_on_RISC-V_Vietnam.pdf, Accessed: 
Apr. 24, 2023. 

[2] A. D. Ye, “Research and Implementation of the compiling method for 
RPM with complicated dependency relationships,” Master of 
Engineering, Institute of Computing Technology Chinese Academy of 
Sciences, Beijing, 2016. 

[3] “Build Log for Package accountsservice,”  
https://build.openeuler.org/package/live_build_log/openEuler:Mainlin
e:RISC-V/accountsservice/advanced_riscv64/riscv64, Accessed: Apr. 
24, 2023. 

[4] “rpmspec,” https://man7.org/linux/man-pages/man8/rpmspec.8.html, 
Accessed: Apr. 24, 2023. 

[5] “rpm - RPM Package Manager,” https://rpm-software-
management.github.io/rpm/man/rpm.8.html, Accessed: Apr. 24, 2023. 

[6] A. Yao, P. Sun, S. Yang and D. Li, "Evolution of Function-Call 
Network Reliability in Android Operating System," in IEEE 
Transactions on Circuits and Systems I: Regular Papers, 2020, vol. 67, 
no. 4, pp. 1264–1275.  

[7] G. Fagiolo, “Clustering in complex directed networks,” Physical 
Review E, 2007, vol. 76, no. 2, pp. 026107. 

[8] D. Watts, S. Strogatz, “Collective dynamics of 'small-world' networks,” 
Nature, 1998, vol. 393(6684), pp. 440-2. 

[9] A. Barabási and R. Albert, “Emergence of Scaling in Random 
Networks,” Science, 1999, vol. 286, pp. 509-512. 

[10] V. D. Blondel, J. L. Guillaume, R. Lambiotte and E. Lefebvre, “Fast 
unfolding of communities in large networks,” Journal of statistical 
mechanics: theory and experiment, 2008, vol. 2008, no. 10, pp. P10008. 

[11] J. Wang, L. Li and A. Zeller, "Restoring Execution Environments of 
Jupyter Notebooks," 2021 IEEE/ACM 43rd International Conference 
on Software Engineering (ICSE), Madrid, ES, 2021, pp. 1622-1633. 

[12] E. Horton and C. Parnin, "DockerizeMe: Automatic Inference of 
Environment Dependencies for Python Code Snippets," 2019 
IEEE/ACM 41st International Conference on Software Engineering 
(ICSE), Montreal, QC, Canada, 2019, pp. 328-338. 

[13] H. Ye, W. Chen, W. Dou, G. Wu and J. Wei, "Knowledge-Based 
Environment Dependency Inference for Python Programs," 2022 
IEEE/ACM 44th International Conference on Software Engineering 
(ICSE), Pittsburgh, PA, USA, 2022, pp. 1245-1256. 

[14] C. Soto-Valero, N. Harrand, M. Monperrus, and B. Baudry, “A 
comprehensive study of bloated dependencies in the Maven ecosystem,” 
Empir Software Eng, 2021, vol. 26(3), pp. 1-44. 

[15] S. Li, J. Liu, S. Wang, H. X. Tian and D. Ye, “Survey of State-of-the-
art Third-party libraries Conflict Dependency Problem,” Journal of 
Software, doi: 10.13328/j.cnki.jos.006666. 

[16] G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, Santosa, et al., “Out of 
sight, out of mind? How vulnerable dependencies affect open-source 
projects,” Empirical Software Engineering, 2021, vol. 26(4), pp. 1-34. 

[17] X. Gou, L. Fan, L. Zhao, Q. Shao, C. Bian, et al., "Multiscale Empirical 
Analysis of Software Network Evolution," 2021 IEEE 21st 
International Conference on Software Quality, Reliability and Security 
Companion (QRS-C), Hainan, China, 2021, pp. 1109-1118. 

[18] Y. Gao, Z. Zheng and F. Qin, “Analysis of Linux kernel as a complex 
network,” Chaos, Solitons & Fractals, 2014, vol. 69, pp. 246-252. 

[19] A. Decan, T. Mens and P. Grosjean, “An empirical comparison of 
dependency network evolution in seven software packaging 
ecosystems,” Empirical Software Engineering, 2019, vol. 24(1), pp. 
381-416. 


