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Abstract—In mobile edge computing, DNN-driven intelligent 

inference service is highly sensitive to latency. Recently, 

collaborative inference between user devices and Edge Servers 

(ESs) based on DNN partition has been used in service acceleration. 

However, due to the limited computing resources of ESs, there is 

resource competition between concurrent requests, resulting in the 

partition tasks cannot be offloaded to ESs in time. Therefore, it is 

necessary to design an efficient offloading scheme for partition-

based concurrent inference tasks. Existing task offloading schemes 

based on Deep Reinforcement Learning (DRL) can solve complex 

decision-making problems in high-dimensional state space, but 

there are problems such as insufficient sample diversity and easily 

falling into local optimum. Therefore, we propose a collaborative 

DNN inference task offloading scheme based on distributed Soft 

Actor-Critic(SAC). It supports SAC Agents to explore samples in 

parallel and share learning experiences, and improves the 

randomness of the policy through the maximum entropy 

mechanism to avoid falling into local optimum, thus achieving 

efficient offloading of concurrent partition tasks. Experimental 

results on DNN benchmarks show that compared with the baseline 

schemes, the average service latency of our scheme is reduced by 

more than 18.3%, and it has a higher convergence speed and task 

success rate, which can make ESs achieve load balancing. 

Keywords-component; mobile edge computing; DNN inference; 

task offloading; distributed SAC; experience sharing 

I.  INTRODUCTION 

Edge intelligent inference services driven by Deep Neural 
Networks (DNN) are rapidly spreading on Internet of Things 
( IoT ) devices [1], such as image recognition, video processing, 
and augmented reality, which are highly sensitive to latency. The 
traditional method uses the powerful computing power of the 
cloud computing center to provide low-latency DNN inference 
services [2], but the long-distance transmission of media data 
will generate high transmission latency and energy consumption, 
while mobile edge computing (MEC) will computing resources 
sink to the edge near the data source, providing users with more 
agile service response by deploying Edge Servers (ESs) [3].  

Recently, collaborative inference between User Devices 
(UDs) and ESs based on DNN partitioning in MEC has been 
widely used in service acceleration [4], because UDs can 
efficiently process the frontend part of DNN requests, greatly 
reducing data transmission latency. However, the computing 
resources of ESs are limited, and there is resource competition 
between partition-based concurrent inference tasks, which may 
lead to uneven task allocation between ESs and even ESs 

overload, thus failing to achieve the acceleration effect of 
collaborative inference. Therefore, how to offload partition-
based concurrent inference tasks to ESs with limited resources 
to reduce service latency and achieve load balancing among ESs 
has become an urgent problem to be solved. 

Recent task offloading methods model the offloading 
process as a Markov Decision Process (MDP), and use Deep 
Reinforcement Learning (DRL) technology to solve the MDP 
problem, and then offload the tasks to appropriate ESs [5], which 
reduces the service latency in a MEC environment with limited 
resources. Because DRL can effectively exert the feature 
extraction ability of deep learning and the learning ability of 
reinforcement learning and solve the complex decision-making 
problems in high-dimensional state space [2]. For example, Liu 
et al. [6] proposed a task offloading algorithm based on Dueling 
Deep Q-Network (DDQN), which realized the online task 
offloading for service acceleration under stochastic task 
generation and dynamic network conditions. Wu et al. [7] 
modeled the offloading problem as a constrained MDP and 
proposed an inference task offloading algorithm based on Deep 
Deterministic Policy Gradient (DDPG) by using the Lyapunov 
optimization technique, which realized the optimal allocation of 
computing resources. However, most of the existing DRL-based 
task offloading schemes use centralized Agent exploration to 
continuously interact with the environment [5], which has the 
problems of insufficient diversity of learning experience and 
high exploration cost. Concurrently, Agent has low exploration 
efficiency and sample learning rate in the exploration process, 
which makes the policy difficult to converge and easy to fall into 
local optimum. 

Therefore, to solve the problem of partition task offloading 
in a high concurrent MEC environment, we propose a 
collaborative DNN inference task offloading scheme CDO-
DSAC based on distributed Soft Actor-Critic (SAC), which 
determines the optimal offloading decision for a set of 
partitioning-based concurrent inference tasks. The main 
contributions of this paper are as follows: 

• We model the offloading problem as MDP with entropy and 
propose CDO-DSAC to solve it. CDO-DSAC supports SAC 
Agents to explore in parallel to share learning experiences 
for policy optimization, and periodically selects the Agent 
with the highest average return to update the optimal policy 
parameters synchronously, which solves the problems of 
insufficient diversity of learning experience and high cost of 
Agents exploration in centralized training. 
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• CDO-DSAC takes the maximum entropy as the goal to 
improve the randomness of the policy, to avoid the policy 
falling into the local optimum, and obtain the offloading 
decision with better latency. Concurrently, it encourages 
Agents to explore through the automatic entropy adjustment 
mechanism to improve their sample learning rate and 
convergence speed. The experimental results show that 
compared with the baseline schemes, CDO-DSAC has better 
performance in terms of acceleration performance and 
reliability, and has higher convergence speed and average 
return, which effectively reduces the exploration cost. 

II. RELATED WORK 

To achieve load balancing between ESs, the method based 
on task offloading offloads computing tasks to appropriate ESs 
accelerates task execution while improving resource utilization. 
Some studies have used traditional heuristic methods based on 
linear/nonlinear optimization, genetic algorithm, and game 
theory to achieve task offloading in MEC, and achieved good 
service acceleration results. For example, Chen et al. [8]modeled 
the task offloading problem in MEC as a mixed integer nonlinear 
optimization problem and designed an efficient task offloading 
scheme SDTO. Literature [9] proposed a distributed computing 
offloading scheme based on a matching game mechanism, which 
offloads partition-based inference tasks to the edge cloud to 
achieve service acceleration. However, the above methods do 
not have sufficient autonomous decision-making capabilities 
and cannot achieve the expected acceleration performance in a 
dynamic MEC environment.  

In recent years, RL and DRL technologies play a key role in 
solving the above problems. For example, Xu et al.[10] designed 
an RL-based inference task online admission algorithm Online 
RL, which generates an offloading strategy for randomly arrived 
tasks. However, RL technology cannot cope with the decision-
making problem of high-dimensional state space and lacks 
versatility and fast adaptability. DRL has strong feature 
extraction ability and learning ability, which provides a solution 
for task offloading problems in high-dimensional state space. 
For example, Literature [11] implemented a real-time offloading 
program based on Asynchronous-Advantage-Actor-Critic(A3C) 
to solve the task offloading problem in MEC stochastic 
environment. Ren et al. Literature [12] proposed an offloading 
optimization algorithm based on Proximal Policy Optimization 
(PPO) to solve the stochastic optimization problem of when and 
where tasks are offloaded. 

 Recent studies have applied advanced DRL algorithms to 
solve the task offloading problem. For example, Wu et al. [7] 
proposed a DDPG-based task offloading strategy to optimize 
resource allocation in continuous state space in the MEC 
environment. Literature [13] modeled the offloading problem as 
an MDP with constrained hybrid action space and proposed a 
DDPG-based offloading strategy D3PG. It optimizes 
computational offloading in a dynamic environment by joint 
task partitioning and computing power allocation. DDPG is a 
DRL algorithm with a deterministic policy gradient, which 
converges fast in continuous state space, but is not suitable for a 
stochastic environment. 

However, the existing DRL-based task offloading schemes 
have two defects. First, centralized agent exploration does not 

consider the distributed characteristics of MEC, and there are 
problems of insufficient diversity of learning experience and 
high exploration cost. Second, in the process of policy training, 
there are problems of poor Agent exploration efficiency and low 
sample learning rate, which leads to difficult policy convergence 
and easy to falls into local optimum. This paper focuses on 
solving the above problems to improve the performance of 
partition-based concurrent inference task offloading in policy 
convergence and service acceleration while ensuring the 
reliability of offloading schemes in extreme MEC environments 
and load balancing between ESs. 

III. PROBLEM MODELING 

At time slot t, we define Ie={Ie,1, Ie,2,…Ie,j…, Ie,n} as a set of 

partition-based concurrent inference tasks offloaded from UDs 
to ESs, and ℰ={e1, e2,…ei…, ek} is denoted as a set of ESs. To 
determine the optimal latency offloading policy, we formulate 
the offloading problem in the MEC network modeled as an MDP 
with an entropy term, where the four elements are defined as 
follows. 

(1) State: At time slot t, the system state is denoted as 

S t=(Ie
 t, ℰ t, N t) , Ie

 t={Ie,1
 t , Ie,2

 t ,…Ie, j
 t …, Ie, n

 t }  describes the state 

information of partition-based concurrent inference tasks; 
ℰ t={e1

 t, e2
 t,…ei

 t… , ek
 t}  describes the workload state of ESs, 

there is ei
 t=(ci, new

 t , ci
 max), where  ci, new

 t =ci
 max-ci

 t-1 represents the 

current acceptable task calculation amount of 𝑒i
t, determined by 

the maximum service capacity ci
max  and the task calculation 

loaded in the time slot t-1; N t describes the network state, which 
means N t=(b t, g t), b t is the network bandwidth, and g t is the 
channel gain. 

(2) Offloading Actions: in the policy exploration phase, 
each ES can be a candidate offloading action for an inference 
task, expressed as aj ={e1, e2,…ei…, ek}, ei∈{0,1}, and there is 

only one ei=1. Therefore, at time slot t, the offloading actions of 

a set of tasks can be expressed as At=(a1, a2,…aj…, an). 

(3) Reward function: once an offloading action is generated 
in the current state, the Agent will obtain a system instant reward 

from the environment, scoring the current offloading action At. 
The goal of collaborative offloading is to minimize the service 
latency of inference tasks, and the offloading actions of 
concurrent inference tasks will affect each other. Therefore, we 
define the reward as the negative value of the total service 
latency of the system under the offloading policy. 

Rt(St,At)= − ∑ 𝑇𝑗
𝑛
1  .                        (1) 

Because the DNN is divisible, we allow UDs to offload part 
of the inference tasks to the ESs, so the service latency Tj of the 

inference task is composed of the inference latency of the UDs 
side, the data transmission latency, the queuing latency and the 
inference latency of the ESs side. 

(4) State-Action entropy: considering the influence of ESs 
workload state on the offloading action, the state-action entropy 

term H(π (At | St))=E[-log π (At
| St)] is added to improve the 

randomness of the policy while encouraging Agent exploration 

to avoid falling into local optimum, where  π (At
| St)  is the 

probability matrix of the offloading action At  under St . 
Specifically, at time slot t, when multiple sets of offloading 



actions are optimal, the Agent will randomly select one, which 
ensures that each set of valuable offloading actions will not be 
ignored. 

We define the behavior of generating offloading actions for 
a set of partition-based concurrent tasks as the collaborative 

offloading policy πφ. The optimal offloading policy πφ
*  can be 

learned by maximizing the expectation of cumulative discount 
reward with entropy, that is to maximize the average return, 
denoted as:  

πφ
* = arg max 

πφ

E[ ∑ λ
t
(Rt+αH(π(At|St)))∞

t=1 ],      (2) 

where φ  is the policy parameter, λ
t∈[0,1)  is the discounted 

factor, and α  is the temperature coefficient that controls the 
randomness of the offloading policy. 

IV. CDO-DSAC: COLLABORATIVE DNN INFERENCE TASK 

OFFLOADING BASED ON DISTRIBUTED SAC 

A. Overview and Workflow 

The overview and workflow of CDO-DSAC is shown in 
Figure 1, which consists of two parts. One part is distributed 
deployed on each ES, consisting of Communication Manager 
and SAC Agent. Communication Manager is responsible for 
communicating with UDs and ESs and collecting system state 
information, such as partition inference tasks status information, 
ESs workload state information, and network state information, 
and is responsible for offloading tasks to the application 
container instances of each ES according to the offloading 

decision, corresponding to steps ①, ② and ③. SAC Agent is a 

DRL network developed based on maximum entropy, which can 
approximate the optimal latency offloading policy according to 

the system state information, corresponding to ④. The other part 

is Centralized Controller deployed at the central node of the 
MEC network, which includes Shared-Experience Replay 
Memory D and Optimal Policy Updater. D is responsible for 
collecting the learning experiences, average return and policy 
parameter information explored by each Agent, corresponding 

to ⑤. Optimal Policy Updater is responsible for periodically 

selecting the SAC Agent with the largest average return as the 
optimal policy according to the information collected in D, 

corresponding to ⑥. 

  
Figure 1.  The overview and workflow of CDO-DSAC 

CDO-DSAC supports SAC Agents distributed exploration 

and shared learning experiences. For each SAC Agent, the 

optimal   offloading    policy  πφei

* ,∀ ei∈ℰ   can  be  obtained  by 

maximizing the average return, which is expressed as: 
πφ

ei

* =arg max 
πφei

 E(S
t
,Aei

t )~Βei
[ ∑ λ

t
(Rei

t +αei
H(πφ

ei
(Aei

t
|St))∞

t=1 )],∀ ei∈ℰ, (3) 

where φ
ei

 is the policy parameter of the SAC Agent deployed on 

ei, Βei
 stores a batch of shared learning experiences randomly 

selected from D, which improves the diversity of learning 

sample and reduces the exploration cost of each SAC Agent 

interacting with the environment.  
To speed up the CDO-DSAC training, we set the optimal 

policy cycle ω to ensure that each SAC Agent can learn the 
optimal offloading policy. Each iteration has an optimal policy 
update cycle, and a SAC Agent with the largest average return 
is selected as the globally optimal policy, and the policy 
parameters are updated through (4). 

πφ
*←ω{arg max 

φei

πφei

* }, ∃ ei ∈ℰ.                   (4) 

B. Network Structure and Update Process of SAC Agents 

The network structure for the SAC Agent of each ES is 
shown in Figure 2, where a SAC Agent is taken as an example, 
with ∀ ei∈ℰ. SAC Agent mainly consists of Actor, Critic, and 
Experience-Cache. Actor is responsible for interacting with the 
environment and determining the offloading action for each 
partition task according to the system state. Critic is responsible 
for evaluating the offloading policy learned by the Actor. 
Experience-Cache consists of Replay Memory, Mini-Batch, 
and Parameter Synchronizer. Replay Memory is used to store 

the historical learning experiences (St, Ae
t , Re

t , St+1) learned by 
SAC Agent. When the learning experience reaches a certain 
amount, it will be uploaded to the Centralized Controller, and 
each SAC Agent shares the collected learning experience. Mini-
Batch is used to store a batch of learning experiences randomly 
selected from D and is used for policy optimization. Parameter 
Synchronizer is responsible for synchronizing the latest policy 
parameters updated by the Optimal Policy Updater to the Actor 
and Critic so that each SAC Agent can learn the optimal policy. 

 
Figure 2.  The network structure for the SAC Agent of each ES  

(1) Critic. The Critic of each SAC Agent consists of two Q 

networks and two target Q networks, where double Q networks 

can overcome the overestimation problem. Q networks take the 

state-action pair (St, π(Aei

t
|St))  under the current offloading 

policy as input, and output corresponding average return to 

evaluate the current policy πφei
, i.e. Q-value. Although the 

complete trajectory cannot be obtained during training, a time 

slot difference is usually used to approximate Q-value, which 

can be calculated by the following:  

Q
πφei (St,Aei

t )=Rei

t +λei

t
E[Q

πφei (St+1,Aei

t+1)], ∀ ei∈ℰ.    (5) 

The Q network parameters θj
ei(j = 1, 2) are trained by minimize 
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the Bellm an residual, which is expressed as: 

JQ(θj
ei)=

1

2
E(St,Aei

t )~Βei
[(Qθj

ei

(St,Aei

t )-Q
πφei (St,Aei

t ))
2

], ∀ ei∈ℰ , j = 1, 2. (6) 

(2) Actor. The Actor of each SAC Agent consists of an actor 
network and a target actor network. We use three fully-
connected layers to fit the state information, which can output 
unbounded offloading actions with Gaussian distribution 
according to the mean and standard deviation. The activat ion 
function tanh normalizes the offloading actions, maps them to 
the ( -1, + 1 ) interval, and the segmented activation function 
Relu is identified as 0 or 1 ( no or yes ), the specific process is 
shown in the Actor in Fig. 2. The parameter φ

ei
 can be trained 

by minimizing the expected KL-divergence [14] , expressed as : 

Jπ(φ
ei

)=ESt∼Βei
[EAei

t ∼πφei

[αei
logπφ

ei
(Aei

t |St)-Q
πφei (St,Aei

t )]], ∀ ei∈ℰ. (7) 

(3) Update. Critic and Actor require multistep gradient 
updates to converge, a stable update target is provided using the 
target network, and the learning stability is improved by 
updating the target network through an exponential smoothing: 

{
θ̅j

ei
←τθj

ei+(1- τ)θj
ei, ∀ ei∈ℰ, j = 1, 2, τ≪1 

φ̅
ei

←τφ
ei

+(1- τ)φ
ei

, ∀ ei∈ℰ, τ≪1
,          (8) 

where, θ̅j

ei
denotes the parameter of the target Q, φ̅

ei
 is the 

parameter of the target actor, τ is the smoothing coefficient. 

(4) Automatic entropy adjustment. Finally, we added an 
automatic entropy adjustment mechanism to the SAC Agent 
network to improve the exploration efficiency of the SAC Agent 
during policy training. When the offloading policy explores a 
new space, the optimal offloading policy is still unclear, and the 
αei

 value is increased to improve the exploration ability of SAC 

Agent. When a state space is learning and the optimal offloading 
policy is determined, the value of αei

 should be appropriately 

reduced. The loss of αei
 is minimized by (9), where H0 is the 

constant of the target entropy, and the specific solution steps are 
given in Algorithm 1. 

J(αei
)=ESt∼Βei

EAei
t ∼πφei

[-αei
log πφei

(Aei

t |St) -αei
H0], ∀ ei∈ℰ.  (9) 

V. EXPERIMENTAL VERIFICATION 

A. Experimental environment and parameter settings  

In a simulated MEC environment, ESs supported inference 
task offloading requests generated by UDs in a circular area with 
a service diameter of 150 m. Considering the heterogeneity of 
computing resources of hardware devices, 5 ESs with the 
computing power of 30 FLOPs/Byte and 80 UDs with the 
computing power of 5 FLOPs/Byte were configured in this 
experiment. Concurrently, we designed a set of environmental 
variables as the initial parameters of the experiment. The serving 
capacity of ESs was 30, the network bandwidth was 6Mbps, the 
transmission power was 20 dB, and the channel gain was 
140.7+36.7 log d, to control the variables as a benchmark in the 
experiment. To simulate the randomness of task arrival, we 
constrained the system task arrival rate to a lognormal 
distribution [8], whose mean and variance was initialized to 2.0 
and 0.7, respectively. 

In the MEC environment that provides intelligent services,  

Algorithm 1: Distributed SAC-based Partition task 
Offloading Algorithm 

Input: System state St, number of episodes ϖ, number of 
initial exploration, Mini-Batch Βei

, Shared-

Experience Replay Memory D, Replay Memory 
Dei

, optimal policy update period ω.  

Output: φ, θ1, θ2, Offloading Actions A. 

Initialization: φ
e1

=…= φ
ek

, θj
e1=…=θj

ek, j=1, 2. 

1. while episode is not terminated do 

2.    for i = 1,2,…,k in parallel do 

3.       while initial exploration is not terminated do 

4.         Input S𝑡 into Actor and get Aei

t ;        

5.         Get reward 𝑅𝑒𝑖
𝑡  and next state St+1; 

6.         Set  Dei
←Dei

∪{(St, Aei

t , Rei

t , St+1)}; 

7.       end while 

8.       Set D←D∪Dei
 

9.    Sample Βei
= {(St, Aei

t , Rei

t , St+1)} from D; 

10.    for i = 1,2,…,k in parallel do 

11.       Update θ1
ei,  θ2

ei,  φ
ei

 based on Βei
 via (6), (7); 

12.       Soft update θ̅1

ei
, θ̅2

ei
, φ̅

ei
 via (8); 

13.       Update αei
 via (9); 

14.    if ϖ mod ω = 0 then 

15.       Select optimal policy πφei

* ; 

16.       Update φ, θ1, θ2 via the optimal policy πφei

* ; 

17.       Update φ
ei

= φ, θ1
ei=θ1, θ2

ei=θ2; 

18.    end if 
19.  end while 

processing image data is the most common in DNN inference. 
Therefore, we selected three classic and advanced CNN models 
as benchmarks of the experiment, namely AlexNet, VGG16, and 
ResNet50, and partitioned the benchmarks according to the 
network structure, data volume, and UDs computing power to 
simulate UDs sending partition-based concurrent DNN 
inference requests to ESs. We used Pytorch to construct AlexNet, 
VGG16, and ResNet50, used the Berkeley Deep Drive dataset 
(BDD 100k) [15] for model training, and then implemented 
CDO-DSAC in the environment to offload target recognition 
tasks. The latency threshold of the task was set according to the 
size and type of DNN benchmarks. We deployed SAC Agents 
on 5 ESs for distributed learning (i.e., k = 5). Each network in 
Critic and Actor was composed of an input layer, an output layer, 
and three fully-connected layers. The number of neurons was set 
to 256, 512, and 256 respectively. In the experiment, t was used 
as the time slot to discretize the time. Table I summarizes the 
main hyperparameter settings in CDO-DSAC. 

In order to evaluate the performance of the CDO-DSAC, we 
selected the following four offloading schemes as baseline 
comparison schemes: 

(1) DDPG [7]: A DRL algorithm based on Deep 
Deterministic Policy Gradient, which is a commonly used task 
offloading method in the MEC; 

(2) Online RL[10]: A RL-based task offloading algorithm to 
solve the problem of inference task offloading in MEC. 

(3) Greedy: It selects the ESs with the smallest predicted 



service latency for offloading, which is the default task 
offloading strategy of many cluster management systems. 

(4) Random: It randomly offloads inference tasks to the ESs 
side. It is the most primitive and easiest-to-think classic 
offloading algorithm, and it is also a commonly used comparison 
object in the field of task offloading [16]. 

TABLE I.  MAIN HYPERPARAMETERS 

Parameters Value 

Optimal policy update period  10
3
 

Optimizer Adam 

Learning rate of Actor  10
-4

 

Learning rate of Critic  3∙10
-4

 

Discount factor  0.99 

Temperature coefficient αei
 0.2 

Learning rate of αei
 10

-4
 

Target smoothing coefficient 𝜏 5∙10
-3

 

Total number of episodes 10
5
 

Unless otherwise specified, the hyperparameters involved in 
the above comparison schemes are consistent with the CDO-
DSAC strategy, and each data point in the experimental results 
is the average of 10 repeated experiments. 

B. Convergence analysis 

We used 105  episodes to train these 5 schemes and 
compared their convergence. As shown in Figure 3 (a), the solid 
curve and the shadow area correspond to the mean and standard 
deviation of the average return of the five schemes, respectively, 
where the return of CDO-DSAC is the mean of the average 
return of all SAC Agents. When the episode is 3.96× 104, CDO-
DSAC is close to convergence. Compared with DDPG and 
Online RL, the convergence speed is increased by 21.1% and 
37.5% respectively, and CDO-DSAC can obtain a higher 
average return. This is because CDO-DSAC based on distributed 
SAC can learn more experience in less sample space, and SAC 
Agent based on maximum entropy has stronger exploration 
ability, and its action selection is more random, to avoid falling 
into local optimum so that CDO-DSAC can achieve 
convergence faster and have higher average return. However, 
the average return of Greedy and Random schemes always 
hovers around the initial value for they have  no learning ability. 

Figure 3 (b) shows the exploration cost of CDO-DSAC, 
DDPG, and Online RL under different task arrival rates. The 
exploration cost is the number of episodes required to explore 
when the strategies converge. It can be seen that as the task 
arrival rate increases, the system state space and the offloading 
action space also increase, and the exploration cost of the three 
offloading schemes gradually increases, while the exploration 
cost of CDO-DSAC is significantly lower than that of DDPG 
and Online RL. This is because CDO-DSAC supports 
distributed learning, which can ensure that each SAC Agent can 
achieve the optimal average return in a cycle, and SAC Agents 
can share the learning experience obtained through exploration, 
thus reducing the exploration cost of each Agent, and more 
sufficient experience data can also help Agents achieve 
convergence faster. Concurrently, the cumulative discount 
reward based on maximizing entropy can improve the 
exploration efficiency of SAC Agents, so that CDO-DSAC has 
a higher sample learning rate, thus accelerating its training speed 
and reducing the exploration cost. 

 
(a)  (b)  

Figure 3.  Comparison of average return under different episodes (a) and 

comparison of exploration costs under different task arrival rates (b). 

C. Accelerating performance evaluation 

To evaluate the acceleration performance of CDO-DSAC 
under different task arrival rates and ESs service capacities, we 
conducted experimental statistics on the average service latency 
of five offloading schemes on three DNN benchmarks. It can be 
seen from Figure 4 that compared with the four comparison 
schemes, CDO-DSAC has the lowest average service latency 
under different task arrival rates, showing better inference 
acceleration performance and meeting the latency requirements 
of benchmarks. However, when the task arrival rate exceeds 1.2, 
most of the baseline schemes cannot meet the latency 
requirements. Especially when the task arrival rate is as high as 
2.0, CDO-DSAC shows a more obvious acceleration advantage, 
and its average service latency is reduced by more than 18.3 % 
and 36.2 % compared with DDPG and Random, respectively. 
Because the task arrival rate is large at this time, the computing 
resources of ESs are limited, and there is fierce resource 
competition among concurrent inference tasks, resulting in the 
average service latency of the baseline schemes not meeting the 
requirements. CDO-DSAC based on distributed SAC fully 
considers the impact of ESs load state and service latency on 
offloading actions. It can encourage SAC Agents to offload tasks 
to ESs with lower workloads to obtain higher returns, achieve 
load balancing among ESs, improve resource utilization, and 
reduce queuing latency. 

 
(a) AlexNet (b) VGG16 (c) ResNet50 

Figure 4.  Comparison of service latency under different task arrival rates. 

It can be seen from Figure 5 that the average service latency 
of CDO-DSAC under different ESs service capacities is always 
the lowest, and is less affected by the change of service capacity, 
showing better acceleration effect and stability than the 
comparison schemes. When the service capacity is 40, the 
average service latency of CDO-DSAC is 19.9% and 38.5% 
lower than that of DDPG and Random, respectively, because the 
SAC Agents based on maximum entropy can improve the 
randomness of the strategy, so that CDO-DSAC can train a 
higher return and better offloading strategy. DDPG based on 
deterministic strategy is easy to fall into local optimum. On the 
other hand, when the service capacity is less than 35, the average 
service latency of the four comparison schemes is greatly 
affected by the service capacity, and most of them do not meet 
the latency requirements of benchmarks, because the service 
capacity of ESs is extremely limited, resulting in serious 
resource contention between concurrent inference tasks. CDO-
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DSAC can effectively alleviate the resource competition 
between tasks to reduce queuing latency. 

 
(a) AlexNet (b) VGG16 (c) ResNet50 

Figure 5.  Comparison of service latency under different service capacities 

D. Reliability evaluation 

We conducted experimental statistics on the task success rate 
of three DNN benchmarks under different task arrival rates and 
serving capacities. It can be seen from Figure 6 that the task 
success rate of CDO-DSAC under different task arrival rates is 
higher than that of the other four comparison schemes, showing 
higher task offloading reliability. Especially when the task 
arrival rate is as high as 2.0, CDO-DSAC shows more obvious 
advantages, and its task success rate is more than 18.9% and 
22.4 % higher than DDPG and Online RL, respectively. Because 
the CDO-DSAC strategy based on distributed SAC can fully 
consider the impact of ESs state and serving latency on 
offloading actions, on the one hand, it balances the workload 
between ESs and improves resource utilization; on the other 
hand, it effectively alleviates the resource competition in the 
concurrent environment and reduces the queuing delay, so that 
CDO-DSAC can improve the task success rate of concurrent 
inference tasks with limited ESs resources. 

 
(a) AlexNet (b) VGG16 (c) ResNet50 

Figure 6.  Comparison of task success rate under different task arrival rates  

It can be seen from Figure 7,the task success rate of CDO-
DSAC strategy is higher than 85% under different ESs serving 
capacities. Compared with the other four baseline comparison 
methods, CDO-DSAC shows higher task offloading reliability. 
Especially when the serving capacity is 25, the task success rate 
of CDO-DSAC is 19.8% and 33.4 % higher than that of DDPG 
and Random respectively, because the serving capacity of ESs 
is extremely limited at this time, it is easy to cause task failure 
due to service overload. CDO-DSAC can balance the load 
between ESs to reduce resource contention caused by resource 
constraints and meet the latency requirements. Therefore, it has 
high task success rate and reliability in extreme environments. 

 
(a) AlexNet (b) VGG16 (c) ResNet50 

Figure 7.  Comparison of task success rate under different service capacities 

VI. CONCLUSION 

In this paper, we model the DNN inference task offloading 

problem as an MDP with entropy and propose the offloading 
schedule CDO-DSAC based on distributed SAC to solve the 
MDP problem. CDO-DSAC is a distributed offloading scheme 
based on the maximum entropy mechanism. It encourages SAC 
Agents to optimize in more samples by improving the 
randomness of exploration, avoiding the policy falling into local 
optimum. The learning experience can be shared among Agents 
to better optimize the network, thereby expanding the scale of 
learning experience data, and reducing the cost of exploration. 
The experimental results show that CDO-DSAC is superior to 
the baseline comparison schemes in convergence performance, 
acceleration performance, stability, and reliability, and has good 
inference acceleration and load balancing effects. In future work, 
we will further study how to reduce the total energy consumption 
of devices in the MEC environment while improving 
acceleration performance.  
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