
DNN Inference Task Offloading Based on Distributed

Soft Actor-Critic in Mobile Edge Computing
Wenxiu Xu

College of Computer and

 Electronic Information

Guangxi University

Nanning, China

xwx_6838@163.com

Ningjiang Chen*

College of Computer and

 Electronic Information

Guangxi University

Nanning, China

chnj@gxu.edu.cn

Huan Tu

College of Computer and

 Electronic Information

Guangxi University

Nanning, China

th_1998@163.com

Abstract—In mobile edge computing, DNN-driven intelligent

inference service is highly sensitive to latency. Recently,

collaborative inference between user devices and Edge Servers

(ESs) based on DNN partition has been used in service acceleration.

However, due to the limited computing resources of ESs, there is

resource competition between concurrent requests, resulting in the

partition tasks cannot be offloaded to ESs in time. Therefore, it is

necessary to design an efficient offloading scheme for partition-

based concurrent inference tasks. Existing task offloading schemes

based on Deep Reinforcement Learning (DRL) can solve complex

decision-making problems in high-dimensional state space, but

there are problems such as insufficient sample diversity and easily

falling into local optimum. Therefore, we propose a collaborative

DNN inference task offloading scheme based on distributed Soft

Actor-Critic(SAC). It supports SAC Agents to explore samples in

parallel and share learning experiences, and improves the

randomness of the policy through the maximum entropy

mechanism to avoid falling into local optimum, thus achieving

efficient offloading of concurrent partition tasks. Experimental

results on DNN benchmarks show that compared with the baseline

schemes, the average service latency of our scheme is reduced by

more than 18.3%, and it has a higher convergence speed and task

success rate, which can make ESs achieve load balancing.

Keywords-component; mobile edge computing; DNN inference;

task offloading; distributed SAC; experience sharing

I. INTRODUCTION

Edge intelligent inference services driven by Deep Neural
Networks (DNN) are rapidly spreading on Internet of Things
(IoT) devices [1], such as image recognition, video processing,
and augmented reality, which are highly sensitive to latency. The
traditional method uses the powerful computing power of the
cloud computing center to provide low-latency DNN inference
services [2], but the long-distance transmission of media data
will generate high transmission latency and energy consumption,
while mobile edge computing (MEC) will computing resources
sink to the edge near the data source, providing users with more
agile service response by deploying Edge Servers (ESs) [3].

Recently, collaborative inference between User Devices
(UDs) and ESs based on DNN partitioning in MEC has been
widely used in service acceleration [4], because UDs can
efficiently process the frontend part of DNN requests, greatly
reducing data transmission latency. However, the computing
resources of ESs are limited, and there is resource competition
between partition-based concurrent inference tasks, which may
lead to uneven task allocation between ESs and even ESs

overload, thus failing to achieve the acceleration effect of
collaborative inference. Therefore, how to offload partition-
based concurrent inference tasks to ESs with limited resources
to reduce service latency and achieve load balancing among ESs
has become an urgent problem to be solved.

Recent task offloading methods model the offloading
process as a Markov Decision Process (MDP), and use Deep
Reinforcement Learning (DRL) technology to solve the MDP
problem, and then offload the tasks to appropriate ESs [5], which
reduces the service latency in a MEC environment with limited
resources. Because DRL can effectively exert the feature
extraction ability of deep learning and the learning ability of
reinforcement learning and solve the complex decision-making
problems in high-dimensional state space [2]. For example, Liu
et al. [6] proposed a task offloading algorithm based on Dueling
Deep Q-Network (DDQN), which realized the online task
offloading for service acceleration under stochastic task
generation and dynamic network conditions. Wu et al. [7]
modeled the offloading problem as a constrained MDP and
proposed an inference task offloading algorithm based on Deep
Deterministic Policy Gradient (DDPG) by using the Lyapunov
optimization technique, which realized the optimal allocation of
computing resources. However, most of the existing DRL-based
task offloading schemes use centralized Agent exploration to
continuously interact with the environment [5], which has the
problems of insufficient diversity of learning experience and
high exploration cost. Concurrently, Agent has low exploration
efficiency and sample learning rate in the exploration process,
which makes the policy difficult to converge and easy to fall into
local optimum.

Therefore, to solve the problem of partition task offloading
in a high concurrent MEC environment, we propose a
collaborative DNN inference task offloading scheme CDO-
DSAC based on distributed Soft Actor-Critic (SAC), which
determines the optimal offloading decision for a set of
partitioning-based concurrent inference tasks. The main
contributions of this paper are as follows:

• We model the offloading problem as MDP with entropy and
propose CDO-DSAC to solve it. CDO-DSAC supports SAC
Agents to explore in parallel to share learning experiences
for policy optimization, and periodically selects the Agent
with the highest average return to update the optimal policy
parameters synchronously, which solves the problems of
insufficient diversity of learning experience and high cost of
Agents exploration in centralized training.

DOI reference number: 10.18293/SEKE2023-150 This work is supported by the National Natural Science Foundation

of China (No.62162003), and the Nanning Science and Technology

project (No. 20221031).

• CDO-DSAC takes the maximum entropy as the goal to
improve the randomness of the policy, to avoid the policy
falling into the local optimum, and obtain the offloading
decision with better latency. Concurrently, it encourages
Agents to explore through the automatic entropy adjustment
mechanism to improve their sample learning rate and
convergence speed. The experimental results show that
compared with the baseline schemes, CDO-DSAC has better
performance in terms of acceleration performance and
reliability, and has higher convergence speed and average
return, which effectively reduces the exploration cost.

II. RELATED WORK

To achieve load balancing between ESs, the method based
on task offloading offloads computing tasks to appropriate ESs
accelerates task execution while improving resource utilization.
Some studies have used traditional heuristic methods based on
linear/nonlinear optimization, genetic algorithm, and game
theory to achieve task offloading in MEC, and achieved good
service acceleration results. For example, Chen et al. [8]modeled
the task offloading problem in MEC as a mixed integer nonlinear
optimization problem and designed an efficient task offloading
scheme SDTO. Literature [9] proposed a distributed computing
offloading scheme based on a matching game mechanism, which
offloads partition-based inference tasks to the edge cloud to
achieve service acceleration. However, the above methods do
not have sufficient autonomous decision-making capabilities
and cannot achieve the expected acceleration performance in a
dynamic MEC environment.

In recent years, RL and DRL technologies play a key role in
solving the above problems. For example, Xu et al.[10] designed
an RL-based inference task online admission algorithm Online
RL, which generates an offloading strategy for randomly arrived
tasks. However, RL technology cannot cope with the decision-
making problem of high-dimensional state space and lacks
versatility and fast adaptability. DRL has strong feature
extraction ability and learning ability, which provides a solution
for task offloading problems in high-dimensional state space.
For example, Literature [11] implemented a real-time offloading
program based on Asynchronous-Advantage-Actor-Critic(A3C)
to solve the task offloading problem in MEC stochastic
environment. Ren et al. Literature [12] proposed an offloading
optimization algorithm based on Proximal Policy Optimization
(PPO) to solve the stochastic optimization problem of when and
where tasks are offloaded.

 Recent studies have applied advanced DRL algorithms to
solve the task offloading problem. For example, Wu et al. [7]
proposed a DDPG-based task offloading strategy to optimize
resource allocation in continuous state space in the MEC
environment. Literature [13] modeled the offloading problem as
an MDP with constrained hybrid action space and proposed a
DDPG-based offloading strategy D3PG. It optimizes
computational offloading in a dynamic environment by joint
task partitioning and computing power allocation. DDPG is a
DRL algorithm with a deterministic policy gradient, which
converges fast in continuous state space, but is not suitable for a
stochastic environment.

However, the existing DRL-based task offloading schemes
have two defects. First, centralized agent exploration does not

consider the distributed characteristics of MEC, and there are
problems of insufficient diversity of learning experience and
high exploration cost. Second, in the process of policy training,
there are problems of poor Agent exploration efficiency and low
sample learning rate, which leads to difficult policy convergence
and easy to falls into local optimum. This paper focuses on
solving the above problems to improve the performance of
partition-based concurrent inference task offloading in policy
convergence and service acceleration while ensuring the
reliability of offloading schemes in extreme MEC environments
and load balancing between ESs.

III. PROBLEM MODELING

At time slot t, we define Ie={Ie,1, Ie,2,…Ie,j…, Ie,n} as a set of

partition-based concurrent inference tasks offloaded from UDs
to ESs, and ℰ={e1, e2,…ei…, ek} is denoted as a set of ESs. To
determine the optimal latency offloading policy, we formulate
the offloading problem in the MEC network modeled as an MDP
with an entropy term, where the four elements are defined as
follows.

(1) State: At time slot t, the system state is denoted as

S t=(Ie
 t, ℰ t, N t) , Ie

 t={Ie,1
 t , Ie,2

 t ,…Ie, j
 t …, Ie, n

 t } describes the state

information of partition-based concurrent inference tasks;
ℰ t={e1

 t, e2
 t,…ei

 t… , ek
 t} describes the workload state of ESs,

there is ei
 t=(ci, new

 t , ci
 max), where ci, new

 t =ci
 max-ci

 t-1 represents the

current acceptable task calculation amount of 𝑒i
t, determined by

the maximum service capacity ci
max and the task calculation

loaded in the time slot t-1; N t describes the network state, which
means N t=(b t, g t), b t is the network bandwidth, and g t is the
channel gain.

(2) Offloading Actions: in the policy exploration phase,
each ES can be a candidate offloading action for an inference
task, expressed as aj ={e1, e2,…ei…, ek}, ei∈{0,1}, and there is

only one ei=1. Therefore, at time slot t, the offloading actions of

a set of tasks can be expressed as At=(a1, a2,…aj…, an).

(3) Reward function: once an offloading action is generated
in the current state, the Agent will obtain a system instant reward

from the environment, scoring the current offloading action At.
The goal of collaborative offloading is to minimize the service
latency of inference tasks, and the offloading actions of
concurrent inference tasks will affect each other. Therefore, we
define the reward as the negative value of the total service
latency of the system under the offloading policy.

Rt(St,At)= − ∑ 𝑇𝑗
𝑛
1 . (1)

Because the DNN is divisible, we allow UDs to offload part
of the inference tasks to the ESs, so the service latency Tj of the

inference task is composed of the inference latency of the UDs
side, the data transmission latency, the queuing latency and the
inference latency of the ESs side.

(4) State-Action entropy: considering the influence of ESs
workload state on the offloading action, the state-action entropy

term H(π (At | St))=E[-log π (At
| St)] is added to improve the

randomness of the policy while encouraging Agent exploration

to avoid falling into local optimum, where π (At
| St) is the

probability matrix of the offloading action At under St .
Specifically, at time slot t, when multiple sets of offloading

actions are optimal, the Agent will randomly select one, which
ensures that each set of valuable offloading actions will not be
ignored.

We define the behavior of generating offloading actions for
a set of partition-based concurrent tasks as the collaborative

offloading policy πφ. The optimal offloading policy πφ
* can be

learned by maximizing the expectation of cumulative discount
reward with entropy, that is to maximize the average return,
denoted as:

πφ
* = arg max

πφ

E[∑ λ
t
(Rt+αH(π(At|St)))∞

t=1], (2)

where φ is the policy parameter, λ
t∈[0,1) is the discounted

factor, and α is the temperature coefficient that controls the
randomness of the offloading policy.

IV. CDO-DSAC: COLLABORATIVE DNN INFERENCE TASK

OFFLOADING BASED ON DISTRIBUTED SAC

A. Overview and Workflow

The overview and workflow of CDO-DSAC is shown in
Figure 1, which consists of two parts. One part is distributed
deployed on each ES, consisting of Communication Manager
and SAC Agent. Communication Manager is responsible for
communicating with UDs and ESs and collecting system state
information, such as partition inference tasks status information,
ESs workload state information, and network state information,
and is responsible for offloading tasks to the application
container instances of each ES according to the offloading

decision, corresponding to steps ①, ② and ③. SAC Agent is a

DRL network developed based on maximum entropy, which can
approximate the optimal latency offloading policy according to

the system state information, corresponding to ④. The other part

is Centralized Controller deployed at the central node of the
MEC network, which includes Shared-Experience Replay
Memory D and Optimal Policy Updater. D is responsible for
collecting the learning experiences, average return and policy
parameter information explored by each Agent, corresponding

to ⑤. Optimal Policy Updater is responsible for periodically

selecting the SAC Agent with the largest average return as the
optimal policy according to the information collected in D,

corresponding to ⑥.

Figure 1. The overview and workflow of CDO-DSAC

CDO-DSAC supports SAC Agents distributed exploration

and shared learning experiences. For each SAC Agent, the

optimal offloading policy πφei

* ,∀ ei∈ℰ can be obtained by

maximizing the average return, which is expressed as:
πφ

ei

* =arg max
πφei

 E(S
t
,Aei

t)~Βei
[∑ λ

t
(Rei

t +αei
H(πφ

ei
(Aei

t
|St))∞

t=1)],∀ ei∈ℰ, (3)

where φ
ei

 is the policy parameter of the SAC Agent deployed on

ei, Βei
 stores a batch of shared learning experiences randomly

selected from D, which improves the diversity of learning

sample and reduces the exploration cost of each SAC Agent

interacting with the environment.
To speed up the CDO-DSAC training, we set the optimal

policy cycle ω to ensure that each SAC Agent can learn the
optimal offloading policy. Each iteration has an optimal policy
update cycle, and a SAC Agent with the largest average return
is selected as the globally optimal policy, and the policy
parameters are updated through (4).

πφ
*←ω{arg max

φei

πφei

* }, ∃ ei ∈ℰ. (4)

B. Network Structure and Update Process of SAC Agents

The network structure for the SAC Agent of each ES is
shown in Figure 2, where a SAC Agent is taken as an example,
with ∀ ei∈ℰ. SAC Agent mainly consists of Actor, Critic, and
Experience-Cache. Actor is responsible for interacting with the
environment and determining the offloading action for each
partition task according to the system state. Critic is responsible
for evaluating the offloading policy learned by the Actor.
Experience-Cache consists of Replay Memory, Mini-Batch,
and Parameter Synchronizer. Replay Memory is used to store

the historical learning experiences (St, Ae
t , Re

t , St+1) learned by
SAC Agent. When the learning experience reaches a certain
amount, it will be uploaded to the Centralized Controller, and
each SAC Agent shares the collected learning experience. Mini-
Batch is used to store a batch of learning experiences randomly
selected from D and is used for policy optimization. Parameter
Synchronizer is responsible for synchronizing the latest policy
parameters updated by the Optimal Policy Updater to the Actor
and Critic so that each SAC Agent can learn the optimal policy.

Figure 2. The network structure for the SAC Agent of each ES

(1) Critic. The Critic of each SAC Agent consists of two Q

networks and two target Q networks, where double Q networks

can overcome the overestimation problem. Q networks take the

state-action pair (St, π(Aei

t
|St)) under the current offloading

policy as input, and output corresponding average return to

evaluate the current policy πφei
, i.e. Q-value. Although the

complete trajectory cannot be obtained during training, a time

slot difference is usually used to approximate Q-value, which

can be calculated by the following:

Q
πφei (St,Aei

t)=Rei

t +λei

t
E[Q

πφei (St+1,Aei

t+1)], ∀ ei∈ℰ. (5)

The Q network parameters θj
ei(j = 1, 2) are trained by minimize

CDO-DSAC

 ES e1

Communication
Manager

SAC
Agent

. . .Container Container

 ES ek

Communication
Manager

SAC
Agent

...

St

At

Rt

S
t+1

...

Shared-Experience
Replay Memory

1 1

1 1 2, ,
e e

e  

1 2, ,k k

k

e e

e  

...

1 2, ,  

Centralized
Controller

Container

. . .Container ContainerContainer

Optimal Policy
Updater

...

UDs

Ie,1

Ie,2

Ie,n

Replay Memory

Critic

Network : φ

environment

Mean

Standard
Deviation

Gaussian
Distribution

π(Ae
t | St)

FC

tanh

ReLU

Action
a1:{1,0, ,0}

aj:{0,1, ,0}

an:{0,0, ,1}

Target
Network:

Φ

 Network:

 Network:

 Network:

 Network:
Mini-Batch

Actor

Soft-Update

Soft-Update

Shared-Experience
Replay Memory

Centralized
Controller

(S
t
,A

t
,R

t
,S

t+1
)

(S
t
,Ae

t
, Re

t
,S

t+1
)

Random

Sampling

Uploading

S
t

,S
t+1

Soft-
Update

(S
t
, Ae

t
)

(S
t
,π(Ae

t | St))

Optimal Policy
Updater

Parameter
Synchronizer

Update

Update

S
t

S
t+1

Policy

Parameter

Communication
Manager

S
t

Q Network Target Q Network



t

eI
tE

t

1 2, 

1

e

2

e

1 2min(,)e e 

1

e

2

e

J

QJ





e

e

Ae
t

Ae
t

Re
t

Re
t

Experience-Cache

the Bellm an residual, which is expressed as:

JQ(θj
ei)=

1

2
E(St,Aei

t)~Βei
[(Qθj

ei

(St,Aei

t)-Q
πφei (St,Aei

t))
2

], ∀ ei∈ℰ , j = 1, 2. (6)

(2) Actor. The Actor of each SAC Agent consists of an actor
network and a target actor network. We use three fully-
connected layers to fit the state information, which can output
unbounded offloading actions with Gaussian distribution
according to the mean and standard deviation. The activat ion
function tanh normalizes the offloading actions, maps them to
the (-1, + 1) interval, and the segmented activation function
Relu is identified as 0 or 1 (no or yes), the specific process is
shown in the Actor in Fig. 2. The parameter φ

ei
 can be trained

by minimizing the expected KL-divergence [14] , expressed as :

Jπ(φ
ei

)=ESt∼Βei
[EAei

t ∼πφei

[αei
logπφ

ei
(Aei

t |St)-Q
πφei (St,Aei

t)]], ∀ ei∈ℰ. (7)

(3) Update. Critic and Actor require multistep gradient
updates to converge, a stable update target is provided using the
target network, and the learning stability is improved by
updating the target network through an exponential smoothing:

{
θ̅j

ei
←τθj

ei+(1- τ)θj
ei, ∀ ei∈ℰ, j = 1, 2, τ≪1

φ̅
ei

←τφ
ei

+(1- τ)φ
ei

, ∀ ei∈ℰ, τ≪1
, (8)

where, θ̅j

ei
denotes the parameter of the target Q, φ̅

ei
 is the

parameter of the target actor, τ is the smoothing coefficient.

(4) Automatic entropy adjustment. Finally, we added an
automatic entropy adjustment mechanism to the SAC Agent
network to improve the exploration efficiency of the SAC Agent
during policy training. When the offloading policy explores a
new space, the optimal offloading policy is still unclear, and the
αei

 value is increased to improve the exploration ability of SAC

Agent. When a state space is learning and the optimal offloading
policy is determined, the value of αei

 should be appropriately

reduced. The loss of αei
 is minimized by (9), where H0 is the

constant of the target entropy, and the specific solution steps are
given in Algorithm 1.

J(αei
)=ESt∼Βei

EAei
t ∼πφei

[-αei
log πφei

(Aei

t |St) -αei
H0], ∀ ei∈ℰ. (9)

V. EXPERIMENTAL VERIFICATION

A. Experimental environment and parameter settings

In a simulated MEC environment, ESs supported inference
task offloading requests generated by UDs in a circular area with
a service diameter of 150 m. Considering the heterogeneity of
computing resources of hardware devices, 5 ESs with the
computing power of 30 FLOPs/Byte and 80 UDs with the
computing power of 5 FLOPs/Byte were configured in this
experiment. Concurrently, we designed a set of environmental
variables as the initial parameters of the experiment. The serving
capacity of ESs was 30, the network bandwidth was 6Mbps, the
transmission power was 20 dB, and the channel gain was
140.7+36.7 log d, to control the variables as a benchmark in the
experiment. To simulate the randomness of task arrival, we
constrained the system task arrival rate to a lognormal
distribution [8], whose mean and variance was initialized to 2.0
and 0.7, respectively.

In the MEC environment that provides intelligent services,

Algorithm 1: Distributed SAC-based Partition task
Offloading Algorithm

Input: System state St, number of episodes ϖ, number of
initial exploration, Mini-Batch Βei

, Shared-

Experience Replay Memory D, Replay Memory
Dei

, optimal policy update period ω.

Output: φ, θ1, θ2, Offloading Actions A.

Initialization: φ
e1

=…= φ
ek

, θj
e1=…=θj

ek, j=1, 2.

1. while episode is not terminated do

2. for i = 1,2,…,k in parallel do

3. while initial exploration is not terminated do

4. Input S𝑡 into Actor and get Aei

t ;

5. Get reward 𝑅𝑒𝑖
𝑡 and next state St+1;

6. Set Dei
←Dei

∪{(St, Aei

t , Rei

t , St+1)};

7. end while

8. Set D←D∪Dei

9. Sample Βei
= {(St, Aei

t , Rei

t , St+1)} from D;

10. for i = 1,2,…,k in parallel do

11. Update θ1
ei, θ2

ei, φ
ei

 based on Βei
 via (6), (7);

12. Soft update θ̅1

ei
, θ̅2

ei
, φ̅

ei
 via (8);

13. Update αei
 via (9);

14. if ϖ mod ω = 0 then

15. Select optimal policy πφei

* ;

16. Update φ, θ1, θ2 via the optimal policy πφei

* ;

17. Update φ
ei

= φ, θ1
ei=θ1, θ2

ei=θ2;

18. end if
19. end while

processing image data is the most common in DNN inference.
Therefore, we selected three classic and advanced CNN models
as benchmarks of the experiment, namely AlexNet, VGG16, and
ResNet50, and partitioned the benchmarks according to the
network structure, data volume, and UDs computing power to
simulate UDs sending partition-based concurrent DNN
inference requests to ESs. We used Pytorch to construct AlexNet,
VGG16, and ResNet50, used the Berkeley Deep Drive dataset
(BDD 100k) [15] for model training, and then implemented
CDO-DSAC in the environment to offload target recognition
tasks. The latency threshold of the task was set according to the
size and type of DNN benchmarks. We deployed SAC Agents
on 5 ESs for distributed learning (i.e., k = 5). Each network in
Critic and Actor was composed of an input layer, an output layer,
and three fully-connected layers. The number of neurons was set
to 256, 512, and 256 respectively. In the experiment, t was used
as the time slot to discretize the time. Table I summarizes the
main hyperparameter settings in CDO-DSAC.

In order to evaluate the performance of the CDO-DSAC, we
selected the following four offloading schemes as baseline
comparison schemes:

(1) DDPG [7]: A DRL algorithm based on Deep
Deterministic Policy Gradient, which is a commonly used task
offloading method in the MEC;

(2) Online RL[10]: A RL-based task offloading algorithm to
solve the problem of inference task offloading in MEC.

(3) Greedy: It selects the ESs with the smallest predicted

service latency for offloading, which is the default task
offloading strategy of many cluster management systems.

(4) Random: It randomly offloads inference tasks to the ESs
side. It is the most primitive and easiest-to-think classic
offloading algorithm, and it is also a commonly used comparison
object in the field of task offloading [16].

TABLE I. MAIN HYPERPARAMETERS

Parameters Value

Optimal policy update period 10
3

Optimizer Adam

Learning rate of Actor 10
-4

Learning rate of Critic 3∙10
-4

Discount factor 0.99

Temperature coefficient αei
 0.2

Learning rate of αei
 10

-4

Target smoothing coefficient 𝜏 5∙10
-3

Total number of episodes 10
5

Unless otherwise specified, the hyperparameters involved in
the above comparison schemes are consistent with the CDO-
DSAC strategy, and each data point in the experimental results
is the average of 10 repeated experiments.

B. Convergence analysis

We used 105 episodes to train these 5 schemes and
compared their convergence. As shown in Figure 3 (a), the solid
curve and the shadow area correspond to the mean and standard
deviation of the average return of the five schemes, respectively,
where the return of CDO-DSAC is the mean of the average
return of all SAC Agents. When the episode is 3.96× 104, CDO-
DSAC is close to convergence. Compared with DDPG and
Online RL, the convergence speed is increased by 21.1% and
37.5% respectively, and CDO-DSAC can obtain a higher
average return. This is because CDO-DSAC based on distributed
SAC can learn more experience in less sample space, and SAC
Agent based on maximum entropy has stronger exploration
ability, and its action selection is more random, to avoid falling
into local optimum so that CDO-DSAC can achieve
convergence faster and have higher average return. However,
the average return of Greedy and Random schemes always
hovers around the initial value for they have no learning ability.

Figure 3 (b) shows the exploration cost of CDO-DSAC,
DDPG, and Online RL under different task arrival rates. The
exploration cost is the number of episodes required to explore
when the strategies converge. It can be seen that as the task
arrival rate increases, the system state space and the offloading
action space also increase, and the exploration cost of the three
offloading schemes gradually increases, while the exploration
cost of CDO-DSAC is significantly lower than that of DDPG
and Online RL. This is because CDO-DSAC supports
distributed learning, which can ensure that each SAC Agent can
achieve the optimal average return in a cycle, and SAC Agents
can share the learning experience obtained through exploration,
thus reducing the exploration cost of each Agent, and more
sufficient experience data can also help Agents achieve
convergence faster. Concurrently, the cumulative discount
reward based on maximizing entropy can improve the
exploration efficiency of SAC Agents, so that CDO-DSAC has
a higher sample learning rate, thus accelerating its training speed
and reducing the exploration cost.

(a) (b)

Figure 3. Comparison of average return under different episodes (a) and

comparison of exploration costs under different task arrival rates (b).

C. Accelerating performance evaluation

To evaluate the acceleration performance of CDO-DSAC
under different task arrival rates and ESs service capacities, we
conducted experimental statistics on the average service latency
of five offloading schemes on three DNN benchmarks. It can be
seen from Figure 4 that compared with the four comparison
schemes, CDO-DSAC has the lowest average service latency
under different task arrival rates, showing better inference
acceleration performance and meeting the latency requirements
of benchmarks. However, when the task arrival rate exceeds 1.2,
most of the baseline schemes cannot meet the latency
requirements. Especially when the task arrival rate is as high as
2.0, CDO-DSAC shows a more obvious acceleration advantage,
and its average service latency is reduced by more than 18.3 %
and 36.2 % compared with DDPG and Random, respectively.
Because the task arrival rate is large at this time, the computing
resources of ESs are limited, and there is fierce resource
competition among concurrent inference tasks, resulting in the
average service latency of the baseline schemes not meeting the
requirements. CDO-DSAC based on distributed SAC fully
considers the impact of ESs load state and service latency on
offloading actions. It can encourage SAC Agents to offload tasks
to ESs with lower workloads to obtain higher returns, achieve
load balancing among ESs, improve resource utilization, and
reduce queuing latency.

(a) AlexNet (b) VGG16 (c) ResNet50

Figure 4. Comparison of service latency under different task arrival rates.

It can be seen from Figure 5 that the average service latency
of CDO-DSAC under different ESs service capacities is always
the lowest, and is less affected by the change of service capacity,
showing better acceleration effect and stability than the
comparison schemes. When the service capacity is 40, the
average service latency of CDO-DSAC is 19.9% and 38.5%
lower than that of DDPG and Random, respectively, because the
SAC Agents based on maximum entropy can improve the
randomness of the strategy, so that CDO-DSAC can train a
higher return and better offloading strategy. DDPG based on
deterministic strategy is easy to fall into local optimum. On the
other hand, when the service capacity is less than 35, the average
service latency of the four comparison schemes is greatly
affected by the service capacity, and most of them do not meet
the latency requirements of benchmarks, because the service
capacity of ESs is extremely limited, resulting in serious
resource contention between concurrent inference tasks. CDO-

-1000

-800

-600

-400

-200

0

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
g

e
 r

e
tu

rn

Episodes

CDO-DSAC

DDPG

Online RL

Greedy

Random

× 104

0

2

4

6

8

10

0.4 0.8 1.2 1.6 2.0

E
x
p

lo
ra

ti
o

n

C

o
st

s(
E
p

is
o

d
e
s)

The mean of Lognormal distribution

CDO-DSAC DDPG Online RL

30

60

90

120

0.4 0.8 1.2 1.6 2.0

A
v
e
ra

g
e
 s

e
rv

ic
e
 l

a
te

n
c
y
(m

s)

The mean of Lognormal distribution

CDO-DSAC DDPG

Online RL Greedy

Random Latency Requirement

300

500

700

900

1100

1300

0.4 0.8 1.2 1.6 2.0

A
v
e
ra

g
e
 s

e
rv

ic
e
 l

a
te

n
c
y
(m

s)

The mean of Lognormal distribution

CDO-DSAC DDPG

Online RL Greedy

Random Latency Requirement

100

200

300

400

500

600

700

800

0.4 0.8 1.2 1.6 2.0

A
v
e
ra

g
e
 s

e
rv

ic
e
 l

a
te

n
c
y
(m

s)

The mean of Lognormal distribution

CDO-DSAC DDPG

Online RL Greedy

Random Latency Requirement

DSAC can effectively alleviate the resource competition
between tasks to reduce queuing latency.

(a) AlexNet (b) VGG16 (c) ResNet50

Figure 5. Comparison of service latency under different service capacities

D. Reliability evaluation

We conducted experimental statistics on the task success rate
of three DNN benchmarks under different task arrival rates and
serving capacities. It can be seen from Figure 6 that the task
success rate of CDO-DSAC under different task arrival rates is
higher than that of the other four comparison schemes, showing
higher task offloading reliability. Especially when the task
arrival rate is as high as 2.0, CDO-DSAC shows more obvious
advantages, and its task success rate is more than 18.9% and
22.4 % higher than DDPG and Online RL, respectively. Because
the CDO-DSAC strategy based on distributed SAC can fully
consider the impact of ESs state and serving latency on
offloading actions, on the one hand, it balances the workload
between ESs and improves resource utilization; on the other
hand, it effectively alleviates the resource competition in the
concurrent environment and reduces the queuing delay, so that
CDO-DSAC can improve the task success rate of concurrent
inference tasks with limited ESs resources.

(a) AlexNet (b) VGG16 (c) ResNet50

Figure 6. Comparison of task success rate under different task arrival rates

It can be seen from Figure 7,the task success rate of CDO-
DSAC strategy is higher than 85% under different ESs serving
capacities. Compared with the other four baseline comparison
methods, CDO-DSAC shows higher task offloading reliability.
Especially when the serving capacity is 25, the task success rate
of CDO-DSAC is 19.8% and 33.4 % higher than that of DDPG
and Random respectively, because the serving capacity of ESs
is extremely limited at this time, it is easy to cause task failure
due to service overload. CDO-DSAC can balance the load
between ESs to reduce resource contention caused by resource
constraints and meet the latency requirements. Therefore, it has
high task success rate and reliability in extreme environments.

(a) AlexNet (b) VGG16 (c) ResNet50

Figure 7. Comparison of task success rate under different service capacities

VI. CONCLUSION

In this paper, we model the DNN inference task offloading

problem as an MDP with entropy and propose the offloading
schedule CDO-DSAC based on distributed SAC to solve the
MDP problem. CDO-DSAC is a distributed offloading scheme
based on the maximum entropy mechanism. It encourages SAC
Agents to optimize in more samples by improving the
randomness of exploration, avoiding the policy falling into local
optimum. The learning experience can be shared among Agents
to better optimize the network, thereby expanding the scale of
learning experience data, and reducing the cost of exploration.
The experimental results show that CDO-DSAC is superior to
the baseline comparison schemes in convergence performance,
acceleration performance, stability, and reliability, and has good
inference acceleration and load balancing effects. In future work,
we will further study how to reduce the total energy consumption
of devices in the MEC environment while improving
acceleration performance.

REFERENCES

[1] Xu, D., Li, T., Li, Y. "Edge intelligence: Empowering intelligence to the
edge of network." Proceedings of the IEEE 109.11 (2021): 1778-1837.

[2] Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., ...
& Uhlig, S. "AI for next generation computing: Emerging trends and
future directions. " Internet of Things 19 (2022): 100514.

[3] Wang, X., Han, Y., Leung, V. C., Niyato, D., Yan, X., & Chen, X.
"Convergence of edge computing and deep learning: A comprehensive
survey."IEEE Communications Surveys & Tutorials 22.2 (2020): 869-904.

[4] Zhang, L., Chen, L., & Xu, J. "Autodidactic Neurosurgeon: Collaborative
Deep Inference for Mobile Edge Intelligence via Online Learning."
Proceedings of the Web Conference (2021):3111-3123.

[5] Mitsis, G., Tsiropoulou, E. E., & Papavassiliou, S. "Price and risk
awareness for data offloading decision-making in edge computing
systems." IEEE Systems Journal 16.4 (2022): 6546-6557.

[6] Liu, T., Zhang, Y., Zhu, Y., Tong, W., & Yang, Y. "Online computation
offloading and resource Offloading in mobile-edge computing." IEEE
Internet of Things Journal 8.8 (2021): 6649-6664.

[7] Wu, W., Yang, P., Zhang, W., Zhou, C. "Accuracy-guaranteed
collaborative DNN inference in industrial IoT via deep reinforcement
learning." IEEE Transactions on Industrial Informatics (2020): 4988-4998.

[8] Chen, M., & Hao, Y. "Task offloading for mobile edge computing in
software defined ultra-dense network." IEEE Journal on Selected Areas
in Communications 36.3 (2018): 587-597.

[9] Mohammed, T., Joe-Wong, C., Babbar, R., & Di Francesco, M.
"Distributed inference acceleration with adaptive DNN partitioning and
offloading." IEEE INFOCOM 2020-IEEE Conference on Computer
Communications. IEEE, 2020: 854-863.

[10] Xu, Z., Zhao, L., Liang, W., Rana, O. F. "Energy-aware inference
offloading for DNN-driven applications in mobile edge clouds." IEEE
Transactions on Parallel and Distributed Systems 32.4 (2020): 799-814.

[11] Tuli, S., Ilager, S. "Dynamic Offloading for stochastic edge-cloud
computing environments using a3c learning and residual recurrent neural
networks." IEEE Transactions on Mobile Computing (2020): 940-954.

[12] Ren, D., Gui, X., & Zhang, K. "Adaptive Request Offloading and Service
Caching for MEC-Assisted IoT Networks: An Online Learning
Approach." IEEE Internetof Things Journal 9.18 (2022): 17372-17386..

[13] Ale, L., King, S. A., Zhang, N. "D3PG: Dirichlet DDPG for Task
Partitioning and Offloading With Constrained Hybrid Action Space in
Mobile-Edge Computing." IEEE Internet of Things Journal 9.19 (2022).

[14] Christodoulou, P. "Soft actor-critic for discrete action settings." arXiv
preprint arXiv:1910.07207 (2019). Yu, F., Xian, W., Chen, Y., Liu, F.,
Liao, M., Madhavan, V., & Darrell, T.

[15] Yu, F., Xian, W."Bdd100k: A diverse driving video database with
scalable annotation tooling."arXiv preprint arXiv: 1805.046 2.5(2018): 6.

[16] Yao, X., Chen, N., Yuan, X. "Performance optimization of serverless edge
computing function offloading based on deep reinforcement
learning." Future Generation Computer Systems 139 (2023): 74-86.

30

60

90

120

150

25 30 35 40 45 50

A
v
e
ra

g
e
 s

e
rv

ic
e
 l

a
te

n
c
y
(m

s)

Serving capacity of each ES

CDO-DSAC DDPG

Online RL Greedy

Random Latency Requirement

300

600

900

1200

1500

25 30 35 40 45 50

A
v
e
ra

g
e
 s

e
rv

ic
e
 l

a
te

n
c
y
(m

s)

Serving capacity of each ES

CDO-DSAC DDPG

Online RL Greedy

Random Latency Requirement

200

400

600

800

1000

25 30 35 40 45 50

A
v
e
ra

g
e
 s

e
rv

ic
e
 l

a
te

n
c
y
(m

s)

Serving capacity of each ES

CDO-DSAC DDPG

Online RL Greedy

Random Latency Requirement

0.5

0.6

0.7

0.8

0.9

1

0.4 0.8 1.2 1.6 2.0

T
a
sk

 s
u

c
c
e
ss

 r
a
te

The mean of Lognormal distribution

CDO-DSAC DDPG Online RL

Greedy Random

0.5

0.6

0.7

0.8

0.9

1

0.4 0.8 1.2 1.6 2.0

T
a
sk

 s
u

c
c
e
ss

 r
a
te

The mean of Lognormal distribution

CDO-DSAC DDPG Online RL

Greedy Random

0.5

0.6

0.7

0.8

0.9

1

0.4 0.8 1.2 1.6 2.0

T
a
sk

 s
u

c
c
e
ss

 r
a
te

The mean of Lognormal distribution

CDO-DSAC DDPG Online RL

Greedy Random

0.6

0.7

0.8

0.9

1

25 30 35 40 45 50

T
a
sk

 s
u

c
c
e
ss

 r
a
te

Serving capacity of each ES

CDO-DSAC DDPG Online RL

Greedy Random

0.6

0.7

0.8

0.9

1

25 30 35 40 45 50

T
a
sk

 s
u

c
c
e
ss

 r
a
te

Serving capacity of each ES

CDO-DSAC DDPG Online RL

Greedy Random

0.6

0.7

0.8

0.9

1

25 30 35 40 45 50

T
a
sk

 s
u

c
c
e
ss

 r
a
te

Serving capacity of each ES

CDO-DSAC DDPG Online RL

Greedy Random

	I. Introduction
	II. Related Work
	III. Problem modeling
	IV. CDO-DSAC: Collaborative DNN Inference Task Offloading Based on Distributed SAC
	A. Overview and Workflow
	B. Network Structure and Update Process of SAC Agents

	V. Experimental Verification
	A. Experimental environment and parameter settings
	B. Convergence analysis
	C. Accelerating performance evaluation
	D. Reliability evaluation

	VI. Conclusion
	References

