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Abstract

There have been various studies on the automation of
mobile app testing. Typical methods for automated testing
of mobile apps are based on random search and on build-
ing state transition models. But there are problems in terms
of the efficiency of search and accuracy of model building.
This paper focuses on applying reinforcement learning to
testing of mobile apps, especially issues such as explosion
of the number of states, fixed rewards for transitions, and
difficulty in convergence of learning. We focus on state
definition, reward function, and a learning method to solve
these problems. Specifically, we define states using discrete
values of UI (User Interface) information on the screen, de-
fine a dynamic reward function, and perform periodic learn-
ing by using the transition history. The proposed method is
implemented and evaluated. Evaluation results show that
our proposed approach shows 1.21 times higher coverage
than an existing tool using reinforcement learning.

1. INTRODUCTION

Mobile apps are applications that run on smartphones
and other devices, and play a very important role in our
daily life. Among smartphone OSs, Android has the largest
market share. Android apps need to be tested just like any
other software, such as through GUI testing. GUI testing
of Android apps involves actually performing operations on
the screen displayed on the device and checking for anoma-
lies. However, manual GUI testing is very expensive when
the scale of the application is large or the frequency of up-
dates is high. Automated GUI testing will reduce this cost.

Several methods have been proposed for Android GUI
testing. One of the most well-known methods of GUI test
automation is random testing. Random testing randomly
selects and executes operations on the screen, and is used
in the well-known tool Monkey [9]. However, since the
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selection of operations is random, there are problems with
the efficiency and stability of the search. For improving
the search efficiency, model-based methods were proposed
[12][4]. In the model-based method, the available actions
and the states that can be reached by the actions in each
state are obtained in advance by static analysis of the code
and are represented in the form of a state transition graph
enabling efficient path searches. However, accurate analysis
of Android apps is difficult, and it is often impossible to
construct state transition diagrams correctly.

Reinforcement learning is a well-known method for au-
tomatic game playing, and recently, several methods have
been proposed using reinforcement learning for automatic
testing of Android [6][7][8]. In reinforcement learning, re-
wards are given for state transitions, and search strategies
are learned so that the rewards obtained are large. The ad-
vantage of this method is that it does not depend on the ac-
curacy of the model since the strategy is based on the actual
state transitions.

However, most approaches give the same reward to the
same transition regardless of the situation, which may lead
to the same transition to be always chosen. Thus, we pro-
pose a method to improve the coverage of the test by giving
rewards for reinforcement learning according to the search
situation. Naive application of this may lead to difficulty for
the learning results to converge. Thus, we propose a method
to cope with this convergence problem by storing the his-
tory of transitions, and periodically repeating the learning
focusing on the most recent transitions.

This paper is organized as follows: Section 2 provides
a brief introduction to reinforcement learning. Section 3
reviews related work. Section 4 describes our proposed
approach and implementation. Section 5 evaluates our ap-
proach and section 6 makes concluding remarks.

2. REINFORCEMENT LEARNING

Reinforcement learning proceeds through the interaction
between the environment and the agent. The basic flow is
as follows:



1. The agent performs an action based on a strategy.

2. Based on the agent’s action, the environment changes
its state.

3. The environment rewards the agent as a result of the
action.

4. The agent improves its strategy based on the reward.

As we will show in the next section, reinforcement learn-
ing has been applied to GUI testing of Android apps, where
environment is the Android device, an action is an operation
on the Android device, and state is a state of the screen.

Q-learning [10] is a popular reinforcement learning algo-
rithm. It represents a strategy in terms of a Q-function, and
is an algorithm for learning a Q-function. The Q-function
Q(s,a) is the value of the action a in the state s. If this
value is correct, the reward can be increased by choosing an
action with a large Q-function in each state. If an action a;
in state s; results in a transition to state s;;; and a reward
74, the value of Q(s¢,a;) is estimated by Q-learning as in
Formula (1). v(0 < 7 < 1) is the discount rate, which indi-
cates how much of the future reward is taken into account.

Q(st,a:) =1y +ymax Q(S¢41, Arq1) (D

With the learning rate «(0 < « < 1), which indicates
how much the Q-function is changed, the value of the Q
function can be updated as in Formula (2).

Q(st,at) = Q(Stvat)
+ ary + ymax Q(Se41, A1) — Q(5¢, ar))
2

3. RELATED WORKS

Monkey [9] is one of the most widely used tools for auto-
mated testing of Android apps. The tool randomly generates
events such as click operations. However, since the selec-
tion of actions is random, there are problems in terms of
efficiency and stability of the search. In this study, we aim
to improve the efficiency of search by using reinforcement
learning.

Some studies have attempted to construct a state tran-
sition model and search on it. Yang et al.[12] proposed
Window Transition Graph, which supports multiple win-
dows and system events, and performed path exploration
and test case generation on the graph. Lai [4] et al. proposed
Screen Transition Graph, which represents the state transi-
tions of the Android screen by static analysis, considering
background execution and screen composition. They have
also developed Goal Explorer, which automatically and ef-
ficiently tests specific functions by prioritizing the direction
near a specific function on the graph. The problems with

these methods are that they are prone to omissions of states
and transitions when analyzing and modeling Android apps
and that they are unable to deal with cases in which transi-
tions include randomness. When reinforcement learning is
used, efficient search can be performed by taking probabil-
ities into account based on the actual execution results.

There are also approaches that focus on heuristics.
TimeMachine [2] saves various states that are expected to
be visited as “interesting states” and takes a snapshot of the
machine state so that it can be resumed from that state at
any time. Then, when the machine is in a situation where
it only visits states that it has already visited, it can resume
from the interesting state to facilitate the search.

Recent testing work has applied reinforcement learning
for testing Android apps [8][7][6]. Qdroid [8] is based on
Deep Q-Network. It groups GUI components according
to their semantics and decides which group of GUI com-
ponents to act on. The reward is larger when the screen
changes, making it easier to avoid meaningless actions that
have no effect on the screen. However, if the reward does
not change with time, the actions taken in each state will be-
come constant when the learning process is completed. This
results in the Q-function to converge to a constant value,
causing the same transition to be repeated. This is contrary
to the purpose of the test, which is to perform a wide vari-
ety of transitions. ARES [7], like Qdroid, gives a large re-
ward when a screen change occurs, and also gives a reward
when a bug is found. Similar to Qdroid, it is highly likely
that the same transitions that eventually yield high rewards
are repeated after the learning process converges. Q-testing
[6], on the other hand, introduces rewards that change with
time. It uses Siamese Network to judge whether the screen
is similar to a screen already visited, and gives higher re-
wards when a similar screen has not been visited. However,
when the reward changes over time, the problem arises that
learning may not converge.

4. PROPOSED APPROACH: IMPROVING
REINFORCEMENT LEARNING ALGO-
RITHM FOR EXPLORATION

Based on the problems in the previous studies, we focus
on three aspects of applying reinforcement learning, and
propose a definition for each of them. First, we focus on
state definitions, and characterize the screen in such a way
that the number of states is reduced by using information
from UIAutomator [11]. Second, we focus on the definition
of rewards, and define it so that it changes according to the
current search status. Finally, we focus on the learning pro-
cess, and make it iterative so that the reward converges even
if the reward is dynamic. We describe each of these in more
detail in the rest of this section.



4.1. State and Action

The state definition is based on the following attributes,
which are obtained from UIAutomator [11].

e Resource ID

e Possible operations: clickable, long clickable, scrol-
lable, checkable, focusable

Resource ID is a feature assigned to each UI element.
For example, Figure 1 is the initial screen of the card game
Hot Death [3]. The NEW GAME button has the Re-
source ID com.smorgasbork.hotdeath:id btn_new_game. In
the screen shown in Figure 1, all five buttons are assigned
different Resource IDs, but there are cases where multiple
UI elements have the same Resource ID. This will be han-
dled using actions, described later in this subsection.

UlAutomator also provides information about possible
operations, such as whether each UI element is clickable or
not, and whether it is long-clickable or not.

Hot Death

CONTINUE
HEW GAME HEW GAME

SETTINGS SETTINGS
HELP HELP
RBOUT Reour
EXIT EXIT

Figure 1. Screen 1 Figure 2. Screen 2

Based on information obtained by UlAutomator, we
group the items whose Resource IDs and possible opera-
tions are the same, and define the state using the size of
each group. For example, in Figure 1, if we assign five but-
tons to the first five components, the state is defined as the
vector (0,1,1,1,1,1). Note the “0” in the first element.
UI elements that are not currently on the screen are also
included in the state definition where the corresponding el-
ement size is 0, Thus, Figure 1 has an element that is not
visible. In Figure 2, we can now see the CONTINUE but-
ton, which makes the vector to be (1,1,1,1,1,1). The size
that is necessary for a screen depends on the app, but Hot
Death requires about 100-dimensional vectors. Coordinates
of each UI element can also be obtained with UlAutoma-
tor, but since they have continuous values, we have omitted
them to avoid an explosion of the number of states.

For a given UI element, one of the possible operations
is chosen as an action. At this point, an action value is de-
fined for the pair of state and that Ul element. There may
be a case where there are multiple Ul elements with the

same Resource ID. Although we do not save the coordi-
nates of the UI elements, the order of the UI elements is
based on the coordinates. This enables us to calculate the
action value even if there are multiple UI elements with the
same Resource ID. Note that we can also check if the action
is a valid operation for the the corresponding Ul element.
For example, a click is always applied to a button for which
only the clickable attribute is true, and a random string is an
input to a UI element of the EditText class.

4.2. Reward

First, we define the penalty penalty(s;, a;) for perform-
ing action a; in state s; as in the following Formula (3).

count(s, at)

penalty(ss, a:) = 3)

— distance(s, s) + 1

where count(s, a;) is the number of times an action a; has
been performed in state s in the past, and distance(s;, s) is
the Manhattan distance between the vectors of state s; and
state s. In other words, the more times the same action has
been performed and the more similar s, is to the state in
which the action was taken, the larger penalty is given.

With the penalty, we define the reward r(s¢, a;) for ac-
tion ay in state s; as in the following Formula (4).

(penalty(s, ar) < P)

(penalty (s, at) > P) “)

Xhigh
r(st,ap) = { Zg)(low

penalty(ss,at)

If the penalty is less than the threshold P, a large constant
reward Xp,;45, is given, and if the penalty is above the thresh-
old, the small reward reduced according to the penalty is
given. The reason for the division according to the threshold
is to emphasize the importance of the first transition which
has a large significance in the test. In the above reward def-
inition, the reward changes according to the situation of the
search. It leads to selecting actions according to the situa-
tion.

In Figure 1, consider the penalty for selecting the
HELP button.  Since the distance from the state of
Figure 1 is naturally O, if the HELP button has been
selected three times in the past, % is added to the
penalty. Since the distance from the state of Figure 2
is distance((0,1,1,1,1,1),(1,1,1,1,1,1)) = 1, if the
HELP button was selected three times in the past in Fig-
ure 2, the penalty is % If the HELP button is selected three
times in each of the two screens, the penalty is 4.5, and the
reward is 2lew if this is greater than or equal to the thresh-

45 °
old value P.




4.3. Learning

Q-function can be kept in a tabular form with each row as
a state and each column as an action. The value of each cell
represents the value of an action in a certain state. When
a new state is visited, a new row is added and the reward
is initialized based on Formula (4). Since it is difficult for
the Q-function to converge by simply learning based on the
update formula of the Q-learning at each state transition, the
learning is periodically iterated as follows:

1. Recalculate the reward for the previous transitions.

2. Take the last N transitions in the order of newest to
oldest and repeat updating the Q-function.

3. Randomly select the previous transitions, and repeat
updating the Q-function.

First, we recalculate the transitions that have been exe-
cuted, since it is highly likely that the rewards have changed
since the transition occurred. Next, we iteratively train with
the most recent transitions that may not have been reflected
yet. In this iteration, the transitions are taken from the most
recent ones so that the most recent results can be efficiently
propagated to the traversed routes. Finally, we aim to bring
the overall Q-function close to the correct value by repeat-
ing the learning process with a random selection of all the
transitions up to now.

4.4. Implementation

Ul Info—»] Q-Table

Ul Info—>{
Interactor Agent

——Update—»|

Android
App

" Action
— Action —
[€—Action ¢ e (—Value

Transition Transition
Info Transition Info
Bug Info N
History

Figure 3. Tool Architecture

We implemented our tool based on Qdroid [8] (Figure 3).
Interactor interacts with the Android app by using UIAu-
tomator [11]. Interactor separates the screen data in XML
format received from UIAutomator into an array of UI el-
ements and sends the UI information to the Agent. Menu
and Back buttons are added as virtual elements to the ar-
ray even if they do not appear on the screen, so that they
can be handled if they are operable. We also add randomly
positioned buttons to the array. These buttons are added as
UIAutomator may not recognize some UI elements.

The Agent obtains Ul information from Interactor, se-
lects the next action, and updates the Q-table. When select-
ing the next action, Agent selects the action which has the

largest Q-function with high probability, and selects the ac-
tion randomly with low probability, based on e-Greedy. The
selected action information is sent to Interactor, which then
performs that action through UIAutomator. Additionally,
Interactor collects stack trace of crashes with logcat [5].

S. EVALUATION

We consider the following three research questions for
evaluation:

e RQI: How is the performance compared to other
tools?

e RQ2: How much influence do our changes have?
e RQ3: How does coverage change over time?

Evaluation was performed on the virtual environment
provided by Androtest [1] in the following execution en-
vironment:

e OS: Ubuntu 14.04.1 LTS
e CPU: AMD Ryzen Threadripper 3990X 64-Core
e Memory: 6113MB

e Emulator: Android 4.4

The target apps are the same as Qdroid. We measured the
average method coverage and the average number of unique
crashes over three trials for each app.

5.1. RQ1: How is the performance compared to
other tools?

We targeted Qdroid, ARES and Q-testing for our evalu-
ation. Unfortunately, although the Q-testing executable was
made available!, we could not make it execute in our envi-
ronment. A similar situation occurred with ARESZ?, where
we could make it execute for some apps, but not the ones we
were targeting. Thus, we focus on Qdroid for comparison.

Table 1 shows the results of the coverage and the num-
ber of crashes between Qdroid and our proposed approach
(““Our tool”). We will discuss Qdroid2 in RQ2.

Both coverage and number of crashes showed
the same trend. First, the coverages of Anymemo,
Multi SMS Sender, MunchLife, and
Weight Chart were improved. This is considered
to be due to the increase of search space by the changes in
the Ul recognition method, including the addition of virtual
UI elements. For example, in MunchLife, menu button

Uhttps://github.com/anlalalu/Q-testing
Zhttps://github.com/H2SO4T/ARES



Table 1. Evaluation results

Coverage (%) # Crashes
Application Qdroid | Qdroid2 | Our Tool | Qdroid | Our Tool
Any Memo 432 47.1 49.3 3.7 6.0
Dalvik Explorer 82.6 80.5 83.7 0 0
Hot Death 64.8 79.0 80.2 0 0.7
Mileage 38.2 432 50.4 0.7 1.7
Mini Note Viewer 59.6 51.4 48.7 1 0.7
Multi SMS Sender 37.9 64.7 66.9 0 0
Munch Life 53.8 92.3 92.3 0 0
My Expenses 62.5 60.4 62.3 0 0
Random Music Player 58.7 58.7 58.7 0 0
Tippy Tipper 56.1 82.8 88.1 0 0
Weight Chart 46.1 64.2 73.6 0 0
‘Who has my stuff 89.1 75.6 83.7 0 0
Average 57.7 66.7 69.8 54 9.1

does not appear as UI on the screen even when the screen
transition by menu button is possible. In our tool, the menu
button is added as a virtual Ul element, so the tool can
reach a state that can only be reached from the menu. In
addition, although there is no corresponding Ul element in
Weight Chart, there is a situation in which touching
any part of the screen causes a screen transition. The
proposed tool can handle this situation by adding random
buttons.

Reinforcement learning worked well in the cases of
Hot Death, Mileage, and Tippy Tipper. For ex-
ample, in the case of Tippy Tipper, the user exits from
the final destination screen by pressing the Back button and
restarting the program. Unless the Back button is used prop-
erly, the efficiency of the program will be reduced.

The coverage was slightly lower for
Who has my stuff and Mini Note Viewer.
This is because we added a virtual menu button regardless
of its existence as a Ul element. Thus this addition was
superfluous.

5.2. RQ2: How much influence do our changes
have?

There are two major differences between our approach
and Qdroid: the method of acquiring UI information
(adding virtual UI elements) and the reinforcement learning
algorithm (state definition, reward function, and periodic
learning). In order to measure the influence of the change in
the reinforcement learning algorithm, we implemented the
part of Qdroid related to the UI acquisition and the opera-
tion of the app in the same way as the proposed method and
measured the coverage. We call this tool “Qdroid2”. The
results are shown in Table 1.

The results show that the change of the Ul acquisition
method (i.e., Qdroid2) improved the coverage of Qdroid
from 57.7% to 66.7%, and the change of the reinforcement
learning algorithm further improved the coverage to 69.8%.
We believe that our UI acquisition method led to a widening

of the search area leading to the increase in coverage.

However, some apps showed a decrease in coverage. For
example, the coverage dropped from Qdroid to Qdroid2
in Dalvik Explorer, Mini Note Viewer,
My Expenses, and Who has my stuff. This sug-
gests that the addition of virtual UI elements will lead to an
increase in the number of extra action options, which may
be unnecessary. Still, except for Mini Note Viewer,
the coverage for our tool increased from Qdroid2 to at
least nearly the same result as Qdroid due to changes in
the reinforcement learning algorithm, most likely due to
avoiding unnecessary actions.

5.3. RQ3: What is the change of coverage over time?

Figures 4 and 5 show how coverage changed over a two
hour period for Munch Life and Mileage, respectively.
The coverage was measured every five minutes, and the re-
sults are the average of three trials. Including other apps
which are not shown (due to space), most of the apps show
a rapid increase in coverage immediately after starting, fol-
lowed by a gradual increase in coverage. This makes sense
as many codes are involved in the process immediately after
starting.

The coverage in some apps, such as Munch Life (Fig-
ure 4), reached its maximum value at an early stage. This
is likely because the app was small and thus the search-
able portions were quickly exhausted. Another app that
showed this same trend was Random Music Player,
where a particular type of input, in this case appropriate
URLSs, were necessary. Our tool cannot automatically gen-
erate such URLSs, but this is an area of future work.

The coverage in other apps, such as Mileage (Figure
5), was still increasing after two hours, especially for our
tool. These apps were large or require complicated proce-
dures to execute their functions. For example, Mileage
has a wide variety of settings for functions related to the
mileage of a car, such as the type of car, the unit of dis-
tance, etc. Any Memo and My Expenses were two other
examples of large app showing an increase after two hours.
On the other hand, Hot Death also was fairly large, but
it did not increase as much, most likely due to code related
to winning which is difficult to reach with automatic execu-
tion.

5.4. Threats to Validity

One threat to validity is the number of apps tested which
was 12. We chose these 12 as they were used in other re-
search. But since even our results showed that coverage
varies greatly depending on the app, we consider further
evaluation as future work.
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Future work includes further evaluation and improve-
ment of our proposed approach. As for the evaluation, more
apps should be included in the experiment to make the eval-
uation more generalizable. We also expect that the per-
formance of our approach can be improved by extending
the supported Ul actions and adjusting various parameters,
states, and rewards.
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