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Abstract—The decision-making process in autonomous driv-
ing systems encounters large uncertainties with environmental
changes and needs to face the complex spatio-temporal evolution
of multiple objectives. Formal analysis and verification are crucial
to establishing reliable and safe standards. In this paper, we pro-
pose an extension of the clock constraint language CCSL to con-
struct spatio-temporal constraint and autonomous driving safety
specifications, leveraging various autonomous driving scenarios.
Additionally, we introduce probabilistic spatio-temporal events
and devise extensions for driving specifications that incorporate
stochasticity. This specification is converted to the UPPAAL-SMC
model for facilitating formal modeling and verification. Specific
schemes and verification are given in conjunction with a typical
autonomous driving scenario.

Keywords—CCSL, uncertainty modeling, autonomous driving
control, statistical model checking

I. INTRODUCTION

Cyber-Physical Systems(CPS) [1] are multi-dimensional
and intricate systems that integrate the physical, network,
and computing environments. As previously discussed, CPS
is a combination of cyber and physical elements, which gives
rise to various types of uncertainties. Autonomous Driving
Systems(ADS) exemplify a typical instance of CPS. The
uncertainties of human behaviors and the physical environment
usually result in unavoidable stochastic behaviors of ADS.

Compared with manual driving, the accident rate of au-
tonomous driving is lower. However, due to the complexity
of the driving environment, improving the safety of the au-
tonomous driving system is still a hot spot and a difficult area
of research. Driving decisions based on rules or based on data
in different scenarios should have different response strategies
as an intelligent body. Unlike human drivers, autonomous
vehicles must timely and accurately respond to the complex
and dynamic environment, adhering to spatial and clock-
related restrictions. In other words, the trigger conditions in
spatio-temporal systems are constrained not only by strictly
temporal limitations and physical time intervals but also by
logical and spatial relationships.
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MARTE [2] extends UML by providing comprehensive
support for dense and discrete time, chronometric and logical
time, as well as simple and multiple time references. As
the companion language of MARTE, CCSL [3] enables the
specification of clock mutual dependence. Thus, as a high-level
formalism in the Formal Specification Level, CCSL accurately
models the causal and temporal timing behaviors of real-time
embedded systems.

In this paper, we focus on the spatio-temporal probability
constraint logic and use this spatio-temporal event containing
uncertainty for driving decisions.

This paper makes the following contributions:

• We propose a stochastic extension of CCSL with prob-
ability clock and stochastic delay to support modeling
uncertainty-aware timing behaviors.

• We represent spatial events as multiform logical clocks
of stochastic CCSL, called Stochastic stCCSL.

• We propose an encoding in SHA of the semantics of
Stochastic stCCSL. Then we can check the safety specifi-
cations with the statistical model checker UPPAAL-SMC.

The rest of this paper is structured as follows: In Section
II, we introduce preliminaries. Section III presents our ex-
tension of CCSL and proposes some transformation rules to
encode Stochastic stCCSL into SHA. Section IV presents our
case study and evaluation results of various solutions with
UPPAAL-SMC. In Section V, we summarize related work and
conclude in Section VI.

II. PRELIMINARIES

A. Spatial Relationship

Based on the topological space, RCC8 spatial relations are
proposed. The main binary relations are shown in Fig. 1:

• DC(AB): A and B are independent of each other, i.e.,
none of the points in A are in B, and vice versa.

• EC(AB): A and B boundaries are tangent to each other,
i.e., A and B just intersect.
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Fig. 1: RCC8 Spatial Relations

• PO(AB): A and B partially overlap, i.e., some points in
A are in B, and vice versa.

• TPP (AB): A is contained in B, the points in A are in
B, and the boundary of A is tangent to B.

• NTPP (AB): A is contained in B, and the points in A
are completely in B.

• EQ(AB): All points in A are contained in B and vice
versa.

B. Clock Constraint Specification Language(CCSL)

Definition 1 (Logical Clock): A logical clock c is defined
as an infinite sequence of ticks: (ci)∞i=1.

Definition 2 (Schedule): A schedule is a function σ : N →
2C , where C is a set of logical clocks. Given an execution
step s ∈ N, σ(s) denotes the set of clocks that tick at step s.

Definition 3 (History): Given a schedule σ : N → 2C , a
history of a schedule σ is a function Hσ : C ×N+ → N such
that for each clock c ∈ C and natural number n ∈ N+:

Hσ(c, n) =


0 if n = 1

Hσ(c, n− 1) if n > 1 ∧ c /∈ σ(n− 1)

Hσ(c, n− 1) + 1 if n > 1 ∧ c ∈ σ(n− 1)
Intuitively, Hσ(c, n) counts the number of c ticks before

moment n.
Table I presents the syntax and semantics of CCSL opera-

tors. The semantics of CCSL is defined by the satisfaction of
a schedule against corresponding constraints. Due to the page
limit, we do not provide full details of the formal semantics of
other CCSL constraints. Please refer to [3] for more details.

C. Stochastic Hybrid Automata(SHA)

Stochastic Hybrid Automata (SHA) [4] is described by a
tuple H = (L, l0, C,Act, I, F, pE), where: 1) L is a finite set
of locations, 2) l0 is the initial location, 3) C is a finite set of
clocks,Act is the set of actions, 4) I : L → Zones(C) assigns
an invariant to each location, where Zones(C) is the set of
zone in C, 5) F is a time delay function for each location, 6)
pE ⊆ L×Act×Zones(C)× prob× 2C ×L is a finite set of
transactions with probability, where prob ∈ [0, 1] is a rational
number presenting the probability.

III. STOCHASTIC EXTENSION OF SPATIO-TEMPORAL CCSL

A. Spatio-temporal constraints

Spatio-temporal constraints events are proposed based on
RCC8 spatial relations and spatial logical S4u. The spatial
relations are shown in Fig. 2:

Fig. 2: Example for spatial relations evolving over time

Spatial events [5] are derived from the evolution of spatial
relationships. CCSL combining time and space constraints in-
troduce the definition of the spatial events, which are generated
by the interaction between areas varying through time.

Definition 4 (Spatial Event): The syntax of spatial events
is defined as Eact, where act = {join(A,B), detach(A,B),
include(A,B), exclude(A,B)}. Specific semantics of spatial
events are as follows:

• Ejoin(A,B) is used to express the transition from relation
DC(A,B) to EC(A,B) ∨ PO(A,B) ∨ TPP (A,B) ∨
NTPP (A,B).

• Edetach(A,B) is used to express the transition from relation
EC(A,B) ∨ PO(A,B) ∨ TPP (A,B) ∨NTPP (A,B)
to DC(A,B).

• Einclude(A,B) is used to express the transition from rela-
tion DC(A,B)∨EC(A,B)∨PO(A,B)∨TPP (A,B)∨
NTPP (A,B) to TPP (A,B) ∨NTPP (A,B).

• Eexclude(A,B) is used to express the transition from
relation TPP (A,B) ∨ NTPP (A,B) to DC(A,B) ∨
EC(A,B)∨ PO(A,B)∨ TPP (A,B)∨NTPP (A,B).

The driving of autonomous vehicles involves spatio-
temporal evolution, where their spatial position changes over
time. Therefore, the driving protocol requires both logical time
constraints to limit the system’s response migration time and
spatial event constraints. The CCSL provides a logical clock
with strong expressive and reasoning abilities.

Fig. 3 shows where Ego, an autonomous vehicle, typically
follows vehicle Preceding. However, there is a potential risk
of rear-end collisions when Ego is driving at high speed.
The autonomous vehicle in this scenario must determine the
logical state of the spatio-temporal relationship between the
two vehicles and modify its driving behavior accordingly.

Fig. 3: A scenario in straight lane

The algorithm of generating Spatial Event Edetach(A,B) is
shown in Algorithm 1.

In this function, obstacles encompass either vehicles or
other obstacles. If there is a vehicle in the same lane as the au-
tonomous vehicle, the function calculates the braking distance
(brakingD) and the distance that the front vehicle can cover
within the autonomous vehicle’s braking time (obstacleD).
On the other hand, if there is an obstacle in the same lane, the
function only considers the autonomous vehicle’s speed for
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TABLE I: The syntax and semantics of CCSL

Name Constraint Semantics

Precedence a[d] ≺ b ∀n ∈ N+. (Hσ(b, n)−Hσ(a, n) = d) ⇒ (b /∈ σ(n))

Causality a ⪯ b ∀n ∈ N+Hσ(a, n) ≥ Hσ(b, n)

Subclock a ⊆ b ∀n ∈ N+.(a ∈ σ(n)) ⇒ (b ∈ σ(n))

Exclusion a#b ∀n ∈ N+.(a /∈ σ(n)) ∨ (b /∈ σ(n))

Union a ≜ b+ c ∀n ∈ N+.(a ∈ σ(n)) ⇔ (b ∈ σ(n) ∨ c ∈ σ(n))

Intersection a ≜ b ∗ c ∀n ∈ N+.(a ∈ σ(n)) ⇔ (b ∈ σ(n)) ∧ (c ∈ σ(n))

Infimum a ≜ b ∧ c ∀n ∈ N+.Hσ(a, n) = max (Hσ(b, n), Hσ(c, n))

Supremum a ≜ b ∨ c ∀n ∈ N+.Hσ(a, n) = min (Hσ(b, n), Hσ(c, n))

Delay a ≜ b$d ∀n ∈ N+.Hσ(a, n) = max (Hσ(b, n)− d, 0)

DelayFor a ≜ b$d on c ∀n ∈ N+.(a ∈ σ(n)) ⇔
(
c ∈ σ(n) ∧ ∃m ∈ N+. (b ∈ σ(m) ∧H′

σ(c, n,m) = d)
)

Periodicity a ≜ b ∝ p ∀n ∈ N+.(a ∈ σ(n)) ⇔ (b ∈ σ(n) ∧ (Hσ(b, n) + 1) mod p = 0)

Algorithm 1 Generate Spatial Event Edetach(A,B)

Input:
Ensemble of obstacles, O(i), i ∈ n;
The gap between the autonomous vehicles, gap;
The current lane by the autonomous vehicle,Vlane

The position of the autonomous vehicle Vpos

Output:
True or False;
Extracting the current lane and pos of obstacles(i);
while i < n do

if Vlane == O(i).lane then
if gap <= gsafe then
Vnew = Vpos + brakingD(vMax);
Onew = O(i).pos+ obstacleD(vMax);
if Onew − Vnew >= gsafe &&!O(i).static then

return True;
else

if O(i).pos− Vnew >= gsafe&&O(i).static then;
return True;

return False;

calculation. If the distance between the autonomous vehicle
and the obstacle exceeds the safety threshold, the function
returns true, otherwise, it returns false.

B. Proposed extension of CCSL: Stochastic stCCSL

Based on the set of these spatial events (In Section III-A)
occurring in time and combined with the concept of logical
clocks, spatial events can be directly transformed into logical
clocks for processing [5].

In this paper, we consider extending the CCSL operators
with stochastic characteristics. This stochastic characterization
helps to clarify the uncertainty of the environment.

Definition 5 (Probability Clock):A logical clock c(p) where
p ∈ [0, 1] is a rational number presenting the probability.

Definition 6 (Interval Parametric DelayFor):

a ≜ b $ [lower, upper] on c (1)

where parameter lower, upper(lower < upper) are two nat-
ural numbers representing the lower and upper delay bounds.

Definition 7 (Stochastic DelayFor):

a ≜ b $ delay(F ) on c (2)

where delay function F is defined as two types of probability
density function:Normal(µ, σ), Exp(θ). delay(F ) describes
the probability distribution of the waiting period before the
timeout is reached.

Semantics of Stochastic stCCSL To conduct thorough
analyzes on CCSL specifications, [6] propose to represent the
semantics using transition systems.

Definition 8 (Labeled Transition System):Labeled
Transition System(LTS) is defined as a tuple
A = (S, s0, T, A),where: 1) S is a set of states, 2)
s0 ∈ S is the initial state, 3) A is a set of labels, 4)
T ⊆ S ×A× S is a set of transitions.

Definition 9 (Clock-Labeled Transition System):Clock-
Labeled Transition System (CLTS) is defined as a tuple
A = (S, s0, T, C), where: 1) S is a set of states, 2) s0 ∈ S is
the initial state, 3) C is a finite set of clocks, 4) T ⊆ S×2C×S
is a set of transitions.

Definition 10 (Stochastic Clock-Labeled Transition System):
Stochastic Clock-Labeled Transition System (SCLTS) is de-
fined as a tuple A = (S, s0, C, P, d, T ), where: 1) S is a set
of states, 2) s0 ∈ S is the initial state, 3) C is a finite set of
clocks, 4) P ⊆ Q is the set of rational numbers between 0
and 1, 5) d is a stochastic variant that follows the exponential
distribution, 6) T ⊆ S × 2C × P × S is a set of transitions.

For instance, the constraint Subclock a ⊆ b, its transition
system is given in Fig. 4. The constraint Delay a ≜ b$d, its
transition system is given in Fig. 5.

C. Transform Stochastic stCCSL to SHA

Some previous work [7] has considered the encoding of
Mode/State-based MARTE/CCSL behavior into Timed Au-
tomata (TA). In this section, we incorporate stochastic and
continuous behavior into SHA to reinforce it. In general, the
mapping rules are summarized in table II.
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Fig. 4: Example for SCLTS:a ⊆ b

Fig. 5: Example for SCLTS: a ≜ b$d

Meanwhile, CCSL utilizes logical clocks to define partial
orders and causal relationships among events. In this study,
we incorporate logical clocks to capture spatial and temporal
constraints during the specification process. Specifically, the
formulation of the spatial events and temporal constraints is
achieved through the Stochastic stCCSL.

TABLE II: The mapping rules between Stochastic stCCSL and
SHA.

Stochastic
stCCSL SHA Remarks

c1 ≜ c1$t It denotes that the time delay in state c1 is t

c2 ≜ c1$delay(Exp(rate))
It denotes exponential time
delay with parameter rate

c2 ≜ c1$[T1, T2]
It denotes uniform distribution

interval time delay

c2 ≜ c1$delay(Normal(a, b)) It denotes Gaussian distribution time delay

c2(p1)#c3(p2)
It denotes probabilistic choice.
p1 + p2 = 1(P1, P2 ∈ [0, 1])

IV. CASE STUDY

A. A right turn scenario for Autonomous Vehicles

The perception devices in autonomous vehicles acquire
environmental information from the surroundings, transmitting
it to the recognizer. The recognizer identifies various elements
such as traffic signs, obstacles, pedestrians, and surrounding
vehicles, and makes judgments. These judgment results are
transmitted to the controller, which generates corresponding
control actions.

Fig. 6 shows a scenario for an autonomous vehicle taking a
right turn at the intersection. In this scenario, the gray vehicle
in the straight line is a human-driven car, and the green vehicle
is an autonomous vehicle. Note that according to traffic rules,
green Vehicle has a higher priority.

First of all, we give several requirements utilizing natural
language. The requirements are as follows:

Fig. 6: A right turn scenario at the intersection

a) : The autonomous vehicle probabilistically executes
a right turn considering the time delay associated with envi-
ronmental information.

b) : Upon receiving the check command, the au-
tonomous vehicle’s sensors collect environmental information
every 50 ms with a jitter.

c) : The classifier computes the spatial relationship be-
tween the autonomous vehicle and the vehicles in the through
lane based on the collected environmental information, assum-
ing the merging process concludes within [25, 30] ms.

d) : Area A represents the autonomous vehicle area, area
B represents the through lane area, and area C represents the
merging area. A must merge into and leave the C area before
B can enter.

e) : If A has not completely left the C area when B is
about to enter the area, A needs to accelerate through the C
area.

f) : If the classifier predicts that both A and B will
enter the C area simultaneously, A will not turn right and
will decelerate until it stops.

g) : The classifier sends the classification result to the
controller within 30 ms.

h) : The three requirements of d, e, and f for right
turns are mutually exclusive, although execution can also be
probabilistic.

B. Build the Stochastic stCCSL and map to UPPAAL-SMC
model

We describe the requirement as the Stochastic stCCSL. Ta-
ble III presents the specifications a–h and their corresponding
verification results obtained after performing 1000 simulation
runs.

Specification a involves receiving a right turn signal
(TurnR) and an environment detection command. Specifica-
tion b indicates a sensor’s completion of environmental data
collection, introducing a delay centered around 50ms with
a Gaussian distribution (mean µ = 50, deviation σ = 5).
The specification of c calculates spatial relationships within
a 25-30ms timeframe. The specification d-f indicates spatio-
temporal constraint. Based on the calculated spatial event
logical relationship function, d indicates that turning is safe,
that is, exclude(A,C) ≺ join(B,C), where exclude(A,C)
and join(B,C) are obtained from the aforementioned spatio-
temporal function calculation. If this spatio-temporal event
logical relationship holds, the detector issues a turn safe
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signal. Similarly, if the e logical relationship is satisfied,
the detector issues a turn risksignal. If f is satisfied, the
detector issues a turn danger signal. g indicates that these
signals are sent to the controller within 30ms. h expresses the
mutual exclusion relationship of the first three spatial events.

C. Build the UPPAAL-SMC model for the whole system

Based on the establishment of Stochastic stCCSL and the
verification of the foundation discussed earlier, Fig. 8 shows
the overall UPPAAL model of the right turn scenario. The
system calculates the transition to three states: ok turn,
risk turn, and slowdown, based on the spatio-temporal
evolution relationship. The vehicle continues normal operation
during the transition from the ok turn state to the normal
state. When a vehicle transitions to the risk turn state,
it signifies a potential rear-end collision with the following
vehicle. Consequently, the vehicle must accelerate to exit the
risk turn state and return to the normal state. If the vehicle
enters the slowdown state, it slows down while receiving the
periodic signal check. The transition of these three parallel
states is currently based on logical spatio-temporal constraints.
It is essential to emphasize the probabilistic nature of right
turns, which are influenced by various environmental factors.
Therefore, assessing the risk associated with right turns and
choosing between normal, aggressive, or impossible options
entails probabilistic decision-making in an uncertain environ-
ment.

(a) (b)

Fig. 7: Probability distribution with confidence 95% and 98%
in the query

In order to verify the probability distribution of the time
interval from when the system sends a right-turn signal to
when it makes a decision, we illustrate a query of the model.

Pr[<= 100](<> Process.decide)
The query means the probability distribution of reaching

state decide within 100-time units
We conducted two trials for this run using various statistical

settings: 1) We set the statistical parameters of UPPAAL-
SMC with α = 0.05, ϵ = 0.04. By simulating 10000 runs,
the quantitative result is shown in Fig. 7(a). We can get a
confidence interval [61.8, 99.3] with a confidence 95%. 2) We
set the statistical parameters of UPPAAL-SMC with α = 0.02,
ϵ = 0.01. By simulating 10000 runs, the quantitative result
is shown in Fig. 7(b). We can get a confidence interval
[59.2, 99.8] with a confidence 98%. In these figs, the x-axis
indicates the time limit, and the y-axis denotes the probability
density distribution.

V. RELATED WORK

This section compares our approach to related works.
Du et al. [8] proposed pCCSL, a stochastic extension to
MARTE/CCSL for modeling uncertainty in CPS, and used
SMC to explore alternative solutions and drive the refine-
ment process. They illustrate their proposition by modeling
an energy-aware building. Huang et al. [9] proposed an
extension of PrCCSL, called PrCCSL*, to specify and verify
dynamic and stochastic behaviors for automotive systems
using UPPAAL-SMC. Gao et al. [10] enhanced CCSL by
adding parameters to constraints in order to represent uncer-
tainties in temporal behaviors. Compared to their approach,
our approach considers both spatio-temporal constraints and
stochastic behavior simultaneously.

VI. CONCLUSION AND FUTURE WORK

In this paper, CCSL is expanded to propose time delay
constraint relations including probability intervals and density
functions. We introduce time-like temporal constraints and
develop logical relation functions for autonomous driving.
A mapping method is proposed for this expanded constraint
language, facilitating the conversion and verification using the
UPPAAL model. This spatio-temporal probabilistic language
is applied to the right turn example, involving formal model-
ing, distribution verification, and overall model evaluation for
the system. These advancements enable more precise modeling
of uncertainties in intelligent vehicle systems

In our future work, we propose integrating deep learning-
based uncertainty models with rule-based mathematical mod-
els to construct comprehensive traffic regulations for typical
autonomous driving scenarios. Additionally, we plan to de-
velop refined models to enhance evaluation and validation.
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