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ABSTRACT

Web applications are usually installed on and accessed through a Web server. For security reasons, these Web servers

generally provide very few privileges to Web applications, defaulting to executing them in the realm of a guest ac-

count. In addition, performance often is a problem as Web applications may need to be reinitialised with each

access. Various solutions have been designed to address these security and performance issues, mostly independently

of one another, but most have been language or system-specific. The X-Switch system is proposed as an alternative

Web application execution environment, with more secure user-based resource management, persistent application

interpreters and support for arbitrary languages/interpreters. Thus it provides a general-purpose environment for

developing and deploying Web applications.

The X-Switch system’s experimental results demonstrated that it can achieve a high level of performance. Further-

more it was shown that X-Switch can provide functionality matching that of existing Web application servers but

with the added benefit of multi-user support. Finally the X-Switch system showed that it is feasible to completely

separate the deployment platform from the application code, thus ensuring that the developer does not need to

modify his/her code to make it compatible with the deployment platform.
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1 INTRODUCTION

Web applications that once were fairly monolithic
are slowly making the transition to collections of
cooperating services. This trend is being spurred
on by the steady increase in availability of stan-
dard Web Services interfaces to many popular ser-
vices. As a step further, Web Services also may
be aggregated to create new, possibly more use-
ful, services. In this environment every service
interface is mapped onto a component but some
larger components (e.g., learning management sys-
tems) can provide multiple Web-based interfaces to
downstream services (e.g., university portals). In
the limiting case, each component provides at least
one externally-accessible service (e.g., an API to
a search engine component). Now, given that each
component has well-defined external interfaces that
operate over the Web, there is no longer any re-
quirement for standardisation in the choice of pro-
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gramming language or Web technology. As such,
different components could be developed in differ-
ent languages. Unfortunately most current Web
servers do not provide a mechanism to support Web
components/applications in multiple languages eas-
ily. For example, if one component of a larger sys-
tem is coded in Java, another in PHP and a third
in Perl, it is non-trivial (if at all possible) to have a
single Web server software system cater for all lan-
guages and, additionally, keep all interpreters and
virtual machines in memory for faster execution.
To further complicate matters, there is frequently
no simple correspondence between Web applica-
tions and physical machines. Given the complexity
of managing a Unix server, it is often the case that
a more powerful machine is shared among many
users, to amortise the cost of server management.
In this case, many users may be using a single ma-
chine for Web application/component development
and deployment. These Web applications are usu-
ally applications belonging to a particular user ac-
count and they may need to read from or write to
files on the disk. Since the Web applications are ex-
ecuted by the Web server (rather than by the user),
the Web server would need access to write to every
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user’s home directory but, for security reasons, the
Web server instance is run as an ‘unprivileged’ sys-
tem user, the user ‘nobody’. Thus, to allow access
to the users’ files, Web application directories and
files need to be world-readable or world-writable as
necessary. This is clearly undesirable as the Web
application of one user may write to the home di-
rectory of another user and intentionally or inad-
vertently overwrite or delete data or applications.
This solution is untenable in many situations, in-
cluding teaching and learning environments in Web
Programming. Ideally, no Web application should
need to be world-writable.
Solutions currently exist that allow a Web server to
access files or directories that are not world read-
able or world writable. They achieve this by switch-
ing user context from ‘nobody’ to the user con-
text of the owner of the Web component. Exam-
ples include suExec [1] and suPHP [2], where the
‘su’ prefix denotes ‘switch user’. While these so-
lutions are attractive they typically only support
a single Web technology (implementation language
or server) and cannot provide the performance re-
quired by industrial Web applications. High levels
of performance have been achieved by Web applica-
tions implemented using technologies like FastCGI
[3] and SpeedyCGI [4] but SpeedyCGI in particu-
lar only supports a single implementation language,
namely Perl.
This paper thus presents the X-Switch system as an
alternative - a framework that allows multiple users
the option of deploying Web components written in
one of a set of languages on a single Web server,
while maintaining a high level of security and scal-
ability - essentially a ‘universal’ Web application
server.

2 BACKGROUND

The development of modern Web servers has al-
ways been driven by the requirements of its primary
users. Initially these users included military scien-
tists and engineers as well as university scholars and
academics. The early requirements for a Web server
hinged largely around the displaying of simple static
content, but as the demand for commercial Web
applications increased so did the requirements for
higher Web server performance, scalability and dy-
namic content generation.
One of the first standards available that provided
a mechanism for server side applications to service
Web requests was the Common Gateway Interface
(CGI) [5]. CGI-driven applications initialise a new
application instance for each request received by the
server. The overhead of repetitive process initiali-
sation severely hampered the performance of CGI

so the World Wide Web Consortium (W3C) pro-
posed that a more efficient technique be developed
to overcome this shortcoming.
Another shortcoming of the CGI based Web server
was the lack of Web component isolation when used
in a multi-user environment. Web servers using a
standard implementation of CGI are typically un-
privileged for security reasons and are only allowed
to access world-readable Web components. This
is most certainly undesirable for the client’s sake as
their components will be placed in a world-readable
directory (typically ‘cgi-bin’), accessible by all the
system users and open to unauthorised modifica-
tion or even removal. Such a scenario is a major
security risk. As an example, commercial Web ap-
plication servers such as Jakarta Tomcat [6] were
not designed to support secure, multi-user environ-
ments and the Web components deployed on them
can be exploited in exactly the manner described
above. Furthermore, if a Web application compo-
nent, deployed by a user, does not validate its re-
quest data the component may possibly lead to a
hacker taking control of a component process. This
is commonly referred to as a buffer overflow attack.
The Open Web Application Security Project [7] has
listed a buffer overflow attack as one of the ten most
common Web application security problems.
The Apache Software Foundation produced suExec
[1] in a response to the security risks posed above.
Web components can be accessed via an Apache
Web server with an identical set of privileges as the
owner of a Web component. Essentially, a suExec-
enabled Web server has the ability to switch its user
context from ‘nobody’ (an unprivileged user) to the
user context of the component, e.g., ‘Andrew’. The
Web server process running as Andrew can access
any files or directories owned by the user Andrew
and is prohibited from accessing any other user’s
files or directories. Therefore even if a security
breach, such as a buffer overflow attack, did oc-
cur, the rogue process would only be able to access
a single user’s files and directories, effectively pro-
tecting other system users as well as the rest of the
system files and resources.
CGIWrap [8] was developed to provide similar func-
tionality to suExec but aimed to provide context
switching abilities while being Web server indepen-
dent. SBox [9] is another script isolation technique
that executes CGI scripts (target scripts) on be-
half of the Web server process. Like suExec and
CGIWrap, the wrapper script is set up to be SUID
ROOT, which makes it possible for it to change its
process ID to match that of the target script, the
context switch. In addition to being able to per-
form a context switch, the SBox wrapper script per-
forms a series of checks on the target script and pre-
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pares the script execution environment. The pre-
execution checks include ensuring that the script
is non-world-writable and that the script is run as
the user and not anybody else. In addition, Stein
[9] felt it necessary to include component isolation
when preparing the component execution environ-
ment. This includes performing a ‘chroot’ to the di-
rectory that contains the user’s scripts and thereby
effectively sealing the script off from the rest of the
server and limiting the memory, CPU time and disk
space available to the target script before the script
is finally invoked, similar to a sandboxing technique
used by Sun Microsystems.
Sun Microsystems [10] introduced a sandboxing
technique as an integral part of their Java Ap-
plet security framework. The Java SDK 1.0 used
the sandbox metaphor to explain the principle be-
hind the security features of the Java Virtual Ma-
chine (JVM). An untrusted Servlet is loaded into
the JVM dynamically and executed within a very
restricted environment. The restrictions apply to
memory, file I/O privileges and priority of the
Servlet’s execution thread. An important point to
note is that a single Servlet engine (container) typ-
ically services many Servlets belonging to various
users. Untrusted Servlets must be accessible by
a container that typically runs as ‘nobody’ or a
similarly unprivileged user. This implies that all
Servlets must be globally accessible to allow the
container access to them. An untrusted Servlet is
therefore severely restricted, firstly by the operat-
ing system and secondly by the JVM, resulting in
a Servlet that is completely exposed with little or
no file access rights.
Open Market Inc. developed FastCGI [3], a per-
sistent implementation of CGI, which provided
a mechanism for reusing existing application in-
stances to service future requests. FastCGI main-
tains all the existing benefits of CGI, such as pro-
cess isolation and language and architecture in-
dependence, while minimising the delay between
request arrival and request process initialisation.
However, a Web component must use FastCGI li-
braries in order to be compatible with the FastCGI
framework and take advantage of its component use
and reuse. The result is that a Web component that
was previously accessible via CGI would have to be
modified, albeit only slightly, for it to run persis-
tently on a FastCGI enabled Web server. Conse-
quently FastCGI architecture based Web compo-
nents cannot trivially be run by other Web applica-
tion servers. The X-Switch project aims to solve
a different fundamental problem from FastCGI,
which focuses on performance, but the system
created is similar. It may be argued then that
X-Switch validates the FastCGI approach while

attempting to support different Web application
types natively.

Figure 1: The X-Switch universal Web-application

server system

3 DESIGN AND METHODOLOGY

The X-Switch system(see Figure 1) is designed to
combine the principles of process persistence and
context switching into a single solution while main-
taining the benefits of CGI (process isolation, lan-
guage and architecture independence) and process
isolation via a sandboxing technique. The X-Switch
system also introduces the concept of separate sup-
port for multiple languages and development frame-
works. Thus the X-Switch system was designed to
meet three primary goals: efficiency, multiple user
support and multiple technology support, without
modification to the Web component code to ensure
compatibility.

In brief, the major design objectives included
the following aspects:

• Modular design
• Support for multiple users
• Independence of different backend technologies
• Scalability
• Efficiency
• Security

The system is based on three sub tiers: the Web
server module that connects the Web server to X-
Switch; the X-Switch module that manages and
processes requests; and a set of Web applica-
tion processing engines for different languages and
frameworks. These are illustrated in Figure 2.

3.1 Web Server Module

The first sub-tier is the Web server module. This
tier is responsible for routing requests together with
any additional information from the Web Server to
the core X-Switch system(See Figure 3). The X-
Switch system takes a modular approach in order
to make it less dependent on the Web server im-
plementation approach. Therefore the Web server
module implements less functionality and can be
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Figure 2: Performance of the universal Web application

server with an increasing number of concurrent connec-

tions

implemented using any Web server that has an ex-
ternal plugin API. The Apache Web server was used
to implement mod x because of it’s wide spread use
and popularity [11]. The X-Switch Apache mod-
ule (mod x) routes requests from the Apache Web
server to the core X-Switch system.

3.1.1 Web server module/X-Switch communication
protocol

To achieve the use of different kinds of Web server
modules developed using different kinds of Web
server APIs, the X-Switch system defines a sim-
ple protocol for communication between the Web
server module and the X-Switch main module.
The X-Switch main module receives the

1. request method type and content length
2. filename and request arguments
3. request headers
4. default engine type required to process the re-

quest
from mod x using this protocol. After the request
has been processed the X-Switch main module then
sends the

1. response headers
2. response body

to mod x using the Web server module/X-Switch
communication protocol.

3.1.2 Request processing

mod x performs the first and last tasks of the re-
quest processing phases of the universal Web ap-
plication server. It participates in the content
handling phase of the Apache Web server’s re-
quest processing phases. It is called when Apache
encounters a per-directory configuration directive

Figure 3: X-Switch request routing

that the mod x handler has registered a configura-
tion directive hook for. mod x also defines an EN-
GINE TYPE custom configuration directive that
determines the default engine type for that partic-
ular directory. Using the ENGINE TYPE makes
it possible to register one handler for mod x. This
is because the X-Switch processing engine that is
used to handle scripts in that directory is deter-
mined using the defined ENGINE TYPE configu-
ration directive for that directory. The Web server
administrator can define the directory patterns for
which the mod x handler is invoked using Apache’s
‘Directory’ configuration directive [12].
After being invoked, the mod x handler routine first
establishes a TCP socket connection with the X-
Switch main module. If successful mod x then pro-
ceeds to process the request otherwise it sends a
‘service temporary not-available’ response to the
client that requested the resource. After establish-
ing the connection mod x then determines the re-
quest method type. mod x currently only imple-
ments the HTTP POST and GET methods. Af-
ter computing the method type mod x then reads
in the rest of the headers that came with the re-
quest and sends the request information to the X-
Switch main module using the communication pro-
tocol presented in section 3.1.1. mod x receives the
response from the X-Switch main module on the al-
ready established TCP socket and thereafter closes
the connection.

3.2 X-Switch

The second sub-tier is the core X-Switch system.
This tier is responsible for managing the requests
arriving from the Web server module and routing
responses from the processing engines to the Web
server(See Figure 3). This tier reads the core
X-Switch system configuration file for supported
processing engines and the information needed
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to run the engines. It is also responsible for
creating, monitoring and destroying heterogeneous
processing engines for each user, based on available
system resources and the current traffic load.

3.2.1 X-Switch main module/processing engine
communication protocol

The X-Switch system is designed to interface with
multiple engines implemented using different pro-
gramming languages. After identifying the process-
ing engine that will process the particular request,
the X-Switch main module establishes communi-
cation with a processing engine using two socket
pairs. One is for data sending while the other is for
controlling and monitoring the request processing
phase. The X-Switch main module sends the infor-
mation required to process the request to the pro-
cessing engine as two lines of text. The first line is
the interpreted request filename and any arguments
that came with the request while the second line is
the set of headers that are required to process the
request. This information is sent to the processing
engine using the control socket. Only after reading
in this information can the processing engine read
in the request body if present. The request body is
sent using the X-Switch main module’s data input-
output socket while the engine reads it in using its
‘STDIN ’ input stream. After request processing
has started the X-Switch main module reads in the
response from its data input-output socket while
the script being run by the processing engine writes
its output to its ‘STDOUT ’ output stream. The X-
Switch main module then relays this response to the
Web server module using that request’s connection
socket with the Web server module. The processing
engine then signals the end of the response by send-
ing a response end control character via the control
socket to the X-Switch main module.
The X-Switch system uses a polling mechanism to
support multiple connections. Studies by Pariag
et al [13] revealed that an event-driven or hybrid
server achieved up to 18% higher throughput than
the best implementation of the thread based server.
Therefore the X-Switch system uses a single thread
to listen to and poll all its connections.

3.2.2 X-Switch system wrapper script (suexecme)

X-Switch uses a lightweight application, suex-
ecme, to perform the context switching of the
engines. Suexecme runs as a root process and
thus has its ‘suid’ bit set by the root user to
allow any person to execute the application.
Suexecme is run each time an engine is being
created and sets the engine to belong to the
user whose script is being executed. Thus all

scripts run using a processing engine are run with
the privileges of the owner of the processing engine.

3.2.3 Request processing

A central requirement of the X-Switch system is
the ability to support multiple users on a single
Web server implementation. To achieve this X-
Switch evaluates an incoming request to determine
the user and checks if the user owns any existing
engines that are available to process the request
for that particular type/language of component.
If an appropriate engine is identified the request
is forwarded to the existing engine, otherwise the
X-Switch main module spawns off a child process
via suexecme.
The X-Switch system is independent of the
back-end processing technology. Any processing
language that can read from standard input
and write to standard output can be used as a
processing engine. Such an engine should be added
to the X-Switch configuration file together with
the path of execution and X-Switch restarted for
the processing engine to be included in the list of
processing engines supported by X-Switch. There
are only two requirements that a processing engine
has to adhere to: the processing engine must
remain persistent and it must use the defined X-
Switch/Processing engine communication protocol
to correctly interact with the X-Switch module.
This leaves great scope for the processing engine
to be as complex as it needs to be, without adding
much overhead when creating a processing engine.
A successful Web server system should be able to
handle a heavy request load and be able to allocate
resources to users who require them, while still
allowing all users to gain access to a processing
engine. As more requests enter the X-Switch
system, more processing engines are created on
a per-user basis. This ensures that the X-Switch
system provides sufficient processing power for the
users who have a greater request load. Should the
system resources become scarce, the X-Switch sys-
tem will destroy unused engine processes in order
to provide users with pending requests an available
engine for processing. This mechanism ensures
that the X-Switch system remains efficient and
degrades gracefully even under extreme volumes of
requests.
Security and process isolation was an integral
part of the X-Switch system design. The lack of
per-user file and process isolation in conventional
Web server systems formed one of the primary
motivating factors for the development of the
X-Switch system. By isolating each process engine
on a per-user basis, each process is thereby granted
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a user equivalent set of permissions, thus creating a
separate and secure user environment. Finally the
X-Switch modular architecture utilises TCP/IP
socket communication for IPC (interprocess com-
munication). This means that the X-Switch system
can easily be extended to run on a distributed
system where the Web server, X-Switch module
and the user environments are all running on
separate machines as part of a LAN.

3.3 Web Application Processing Engines

The third sub-tier is the processing engines. The
key feature of such engines is that they are persis-
tent implementations, thus avoiding the overhead
associated with repeated process initialisation. The
processing engines are responsible for processing
requests for particular users(See Figure 3). The
X-Switch main module (tier 2) initialises separate
processing engines for each user and for each type
of back-end technology as they are required.
All issues regarding process persistence are han-
dled by the processing engines and not the Web
components, thus any existing Web components
can be used unlike existing solutions which require
that the code be compatible with the technology.
The Web component code should be written using
the standard libraries and APIs that would be used
in a regular Web server environment. Ultimately
Web developers are not required to undergo any
additional training in order to utilise X-Switch.
Processing engines read the request body using
the standard input and write the response to a
request to standard output (see Figure 3). Request
processing information and the request processing
phase are controlled using the communication
control socket. Perl, servlet (Java), Python and
Php engines have been implemented.
The Java servlet engine provides only part of the
functionality provided by industrial Java Web
application servers. X-Switch starts a processing
engine on arrival of the first request. Unlike most
industrial solutions the X-Switch servlet engine
does not preload the deployed servlets and thus
allows for run time deployment and management
of the servlets.
The Php engine provides an environment for
running Php scripts in X-Switch persistently by
providing a wrapper to the command line interface
version of Php. The wrapper sets up an execution
environment and variables needed for the scripts to
execute successfully. The scripts write the output
to the standard output.
The Perl and Python processing engines are simple
and lightweight implementations of persistent
interpreters that read input from the communi-

cation control socket. The parsed information is
then used to retrieve the filename that is used to
execute the appropriate script. The script is then
run using this processing engine. The processing
engine sends a signal to X-Switch to signify the end
of the response after the script finishes generating
the response.

4 EXPERIMENTS AND RESULTS

For the X-Switch system to be accepted as a feasi-
ble solution it would not only have to meet the re-
quirements outlined earlier in this paper but must
do so efficiently. The experimental section of this
paper will examine the efficiency of the X-Switch
system in servicing requests for simple Web com-
ponents written in PHP, Perl, Python and Java.
The results will then be compared with the results
obtained from existing solutions. Further, the per-
formance implications of the modular architecture
will be investigated.
Two machines were used to create a simple network
using a crossover cable. The client was run on a
Pentium IV 3.2 Ghz desktop with 512 Mb RAM
while the server was installed on a Pentium M 1.73
Ghz laptop with 512 Mb RAM. The software used
to simulate user transactions and connections was
Siege 2.65 [14] and Jakarta-jmeter-2.2 [15].
Jmeter was used in most of the experiments as it
logs the results better than Siege. In addition JMe-
ter has the capability of configuring each simulated
connection with different properties. Thus with
JMeter it is easy and possible to simulate differ-
ent popularity for applications. In Jmeter terminol-
ogy, a ramp-up defines the amount of time between
thread startup. A constant throughput timer con-
trols the amount of time between requests issued
by the thread. JMeter also has a Gaussian timer
that issues requests randomly, simulating typical
user patterns. Siege on the other hand tries to start
as many connections as possible per client until the
server goes down. For this reason Siege was used
in experiments that focussed on stress-testing the
universal Web application server. The experiments
focus on the performance of the universal Web ap-
plication server under varying conditions.

4.1 Number of Concurrent users

4.1.1 Aim

A desirable solution for a universal Web server
needs to use resources efficiently. The number of
concurrent users that a Web application server can
handle also helps in determining the return on the
investment in hardware. The higher the number
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Figure 4: Performance of the universal Web application

server with an increasing number of concurrent connec-

tions

of concurrent users, the higher the return on the
hardware and also the more efficient the use of the
hardware is. This test measured the number of con-
current clients that the Web application server can
support.

4.1.2 Methodology

The experiment was carried out by conducting a
series of trials and varying the number of concur-
rent clients with each subsequent run. Siege2.65
was used to manage the client connections. A sim-
ple Perl Web application was used in this experi-
ment. The application produced a 43Kb response of
randomly generated characters. The first run had
25 concurrent clients. The number of concurrent
connections was increased by 25 with each subse-
quent run until Siege could not allocate memory to
run the test. The maximum number of concurrent
clients that was used was 375, which was the max-
imum that Siege could allocate memory for.
Metric 1 : Average response time.
Metric 2 : Throughput of the Web application
server.

4.1.3 Results

The results of this experiment are show in Figure 4

4.1.4 Discussion

The server throughput was more or less constant,
which means that there was a more or less con-
sistent network transfer with the increase in the
number of concurrent clients. In addition, the in-
crease in the response time as the number of concur-
rent clients was increased was as expected - a linear
degradation in the response time was observed and
is arguably ideal.

4.2 Impact of processing layers on
Response time

4.2.1 Aim

The design of the universal Web application server
introduces several layers of processing which can
potentially degrade the performance of the Web ap-
plication server. The purpose of this experiment
was to measure the percentage that each of the lay-
ers contributes to the total response time.

4.2.2 Methodology

This experiment was conducted by issuing 100,000
requests to each layer of processing and the time
required to service the requests was measured and
recorded. The script used in this experiment had
a simple 52 byte response. The experiment was
conducted in the following stages.

1. A simple application for issuing requests di-
rectly to the Web server was implemented in
C. It recorded the total time it took to service
the requests through all the layers of process-
ing.

2. In the second run, Mod x was replaced with a
module that did not connect to the X-Switch
system. The module did not do any process-
ing apart from returning the Http status OK
(200) response. It recorded an approximation
of the time spent in the Apache and Mod x
processing layers.

3. In the third run of the experiment, a simple
script was written that replaced the Apache
Web server and Mod x and directly issued re-
quests to X-Switch. It recorded the time taken
to process the requests through X-Switch and
its lower layers.

4. In the fourth run, a script that spawned a pro-
cessing engine and issued requests directly to
the engine was written and used. It recorded
the time taken to process the requests through
the engine processing layer and its lower layers.

5. Lastly, the time taken to run the script was
measured by running a ‘Hello World’ perl
script 100,000 times in a persistent interpreter
and recording the time taken.

The recorded times were then used to compute the
time taken to process requests through each of the
request processing layers.

4.2.3 Results

The results of this experiment are tabulated in Ta-
ble 1
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Table 1: The percentage of time that each processing

layer contributes to the total processing time

Processing layer Time (%) Time (s)
Web application 24.52 14.957005

Apache 40.13 24.479877
Mod x 14.40 8.781802

Processing engine 11.06 6.033242
X-Switch 9.89 6.748551

4.2.4 Discussion

The results show that most of the processing time
is spent in the Apache and Web application pro-
cessing layers. Thus the modular design of X-
Switch does not substantially degrade the perfor-
mance of the Web application server. Moreover,
the X-Switch processing layer contributes the least
percentage of time to the total processing time of
the requests. The response time for the Web appli-
cation used in this experiment was small because a
trivial response was used. Therefore as the response
size increases the amount of time that the genera-
tion of the response takes would also increase and
the Web application would contribute the bigger
proportion of time.Therefore the request response
time is mostly affected by the time it takes to run
the Web application and not the routing of the re-
quest and the response.

4.3 Average response time

4.3.1 Aim

The aim of this experiment was to measure the re-
sponse time of the universal Web application server
using a synthetic work load and compare it to other
Web application servers. The synthetic workload
was used in order to ensure repeatability and and
a controlled environment.

4.3.2 Methodology

In this experiment Jakarta-jmeter was used to issue
requests with ten concurrent connections (threads).
Each of the threads issued 1,000 requests. The
threads each had a constant timer of 0 seconds
and the ramp-up period for the threads also was
0 seconds. Thus all the threads started issuing re-
quests at the same time while each thread had a 0
lapse between consecutive requests. Simple ‘Hello
World’ applications were used in this experiment.
The setup was repeated with each of the four pro-
cessing engines, that is, the Perl, PHP, Python
and Java processing engines. The same setup
also was repeated with Apache Tomcat, mod php,
mod python, FastCGI and SpeedyCGI.
Metric: Average response time
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4.3.3 Results

The results are graphed in groups of programming
languages. Figures 5,6,7 and 8 are graphs of the
results from the experiment.

4.3.4 Discussion

The response time of the universal Web application
server’s Java engine averages to a slightly higher
value than that of Apache Tomcat ( See Table 2).
The Java processing engine had an initial startup
time of about 450ms and a final average response
time of 54ms whereas Apache Tomcat had a final
average response time of 48ms. The Python engine
for the universal Web application server had a lower
response time as compared to mod python. The
Python processing engine had an initial response
time of about 180ms and a final average response
time of 42ms whereas mod python had a final aver-
age response time of 52ms. The performance of the
universal Web application server Perl engine was
similar to that of FastCGI and SpeedyCGI. The
Perl processing engine had an initial startup time
of about 243ms and final average response time of
39ms. FastCGI had a final average response time of
43ms and SpeedyCGI had a final average response
time of 38ms. The PHP processing engine had a
startup time of 234ms and a final average response
time of 36ms whereas mod php had a final aver-
age response time of 35ms. On average, the univer-
sal Web application server can perform comparably
with other Web application servers. The high val-
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Figure 7: Average response time for the Perl processing

engine, SpeedyCGI and FastCGI
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Figure 8: Average response for the python processing

engine and mod python

ues for the initial response times are the result of
the preparation and engine setup costs. The per-
sistence of the processing engines however leverages
this. It was anticipated that the extra layers of pro-
cessing and the generality would reduce the perfor-
mance but not to a great extent and thus the results
confirm what was anticipated.

5 CONCLUSIONS

The X-Switch system has confirmed that it is in-
deed feasible to create a multi-user and multi-
language Web server extension mechanism without
sacrificing performance or the security framework
that is an implicit feature of less capable systems.
Techniques such as process persistence (reuse) and
component caching enhanced the overall perfor-
mance of the X-Switch system. The servlet en-
gine test results showed that in the simplest case
(‘Hello World’ Web component) the X-Switch sys-
tem produced performance results that were com-
parable with commercial grade Java Web appli-
cation servers. In addition, the X-Switch system
maintained multi-user support as well as run-time
deployment - these features were not supported by
any other Java Web application servers.
The modular design of the X-Switch system allows
for the Web server module to be replaced by an up-
dated or alternative solution and similarly for pro-
cessing engines, provided that the updates adhere
to the X-Switch interface definitions. This design
feature makes it feasible to allow third party devel-

Table 2: The initial (IRT) and average (ART) response

times of X-Switch and other Web application technolo-

gies

Technology IRT (ms) ART (ms)
X-Switch Java 450 54

Apache Tomcat 180 48
X-Switch PHP 234 36

Apache mod php 20 35
X-Switch Perl 243 39
FastCGI Perl 238 43
Speedy Perl 236 38

X-Switch Python 180 42
Apache mod python 88 52

opers to implement and maintain X-Switch engines.
The inclusion of TCP/IP pipes as part of the X-
Switch communications protocol makes it possible
for the system to be hosted on a distributed system
where the Web server module, processing engines
and the X-Switch module may be located on sep-
arate machines, thus providing an effective mecha-
nism to achieve system scalability. With more test-
ing and further implementations of additional pro-
cessing engines, the X-Switch system can possibly
fill a niche left out by conventional commercial Web
Servers. While other systems have provided subsets
of these features, X-Switch attempts to unify Web
server requirements into a single universal system
and provide further evidence that this is indeed pos-
sible.

6 FUTURE WORK

Since the aim of this project was largely to develop
a proof-of-concept prototype, there are various op-
timisations that can be incorporated into the code
base. At a micro-level, the individual processing en-
gines could use a common pool of shared libraries so
that memory efficiency is not sacrificed for process-
ing time efficiency. At a macro-level, the existing
process pool can be interrogated to optimise the
management of processing engines e.g., the system
can maintain a dynamic profile of combined his-
torical and past use to prime engines to match an
expected request pattern. These are both examples
of internal improvements - the impact of the system
is greater when it is considered for its relationship
to other projects.
In an almost trivial example, X-Switch can be used
as part of a Web server installation to teach stu-
dents how to develop Web applications. The ar-
chitecture of X-Switch is fundamentally one where
multiple users can share a single Web server such
that each user has a privileged, i.e., with full access
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to that user’s resources, and distinct sandbox. This
is ideal where students need to be experimental but
do not have access to dedicated computing, a sce-
nario especially suited to large classes of undergrad-
uate students and students in developing countries,
where it cannot be assumed that every student has
a computer at home! This use of X-Switch will fur-
ther vindicate its design philosophy as well as bring
to the fore possible extensions such as individual
user resource allocation and administrative control
systems to monitor large installations.
Primarily, however, the X-Switch system was de-
signed to serve as a platform for future genera-
tions of adaptive Web applications and Web ser-
vices/Services. New generations of digital library
systems (aka Web-based information management
systems) have to deal with both flexibility of sys-
tems and the need for arbitrary scalability - users
of such Web-based systems have been known to ask
for additional pluggable services post-deployment
and data sets can easily range from 5 items to 5
million items. Hence the need for a flexible Web-
based deployment container was identified and X-
Switch was designed. There is still much work to
be done on how generic Web application compo-
nents can be deployed on demand, replicated and
migrated in both cluster and grid computing con-
figurations. X-Switch can provide the language-
agnostic platform as one starting point for this re-
search, but additional work is required to incorpo-
rate support for service deployment mechanisms,
security models for controlled access to individual
suites of components, labelling and management of
service endpoints, component configuration and lo-
cal resource allocation in distributed environments.
The anticipated end-result is a system that allows a
non-privileged user community to easily install and
make accessible software components that are in
essence Web Services, without having to deal with
a myriad of different technologies and without hav-
ing to hardwire hooks into the Web server and sim-
ilar system-level resources, while gaining flexibility,
security and scalability.
X-Switch can serve as a useful common base en-
vironment into which Web applications or compo-
nents can be installed and executed without com-
plex user-specific configuration. This could make it
simpler to install Web applications and Web appli-
cation components in general. Current open source
packaging systems (such as Portage) make it feasi-
ble to define X-Switch and mod x as dependencies
of a processing engine, which is in turn a depen-
dency of a Web component that executes in that
environment. Thus, the installation and use of X-
Switch may be completely transparent to an end-
user.

Ongoing work on the X-Switch system is focussed
on attempts to define the structure of a Web ap-
plication or component, independently of language
or environment, as a redeployable package. This
package would then be supported directly by X-
Switch as a language-independent application for-
mat, with drop-in deployment, supporting not only
rapid installation for single machine systems but
simple relocation and replication in a high perfor-
mance multi-user compute cluster.
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