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ABSTRACT

The level of detail and precision that appears in the experimental methodology section computer science papers is
usually much less than in natural science disciplines. This is partially justified by different nature of experiments.
The experimental evidence presented here shows that the time taken by the same program varies so significantly
on different CPUs that without knowing the exact model of CPU, it is difficult to compare the results. This is
placed in context by analysing a cross-section of experimental results reported in the literature. The reporting of
experimental results is sometimes insufficient to allow experiments to be replicated, and in some case is insufficient
to support the claims made for the algorithms. Comparing the computational costs of two programs by running
them on different computers — even with similar labels and nominal ratings — can be very misleading. New
standards for reporting on algorithms results are suggested.
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“As part of my research, I have obtained from Consider the following hypothetical claims:
others a number of computer codes for algorithms
and have run fairly extensive tests on them. Un-
fortunately, I have discovered that some of them
do not perform as ‘advertised.” Why this should
be I do not know; however, it is clear that there
are cases where an algorithm performs well on
published problems but poorly on others. Because
of such experiences, I have learned to accept the
published results of algorithms only after I have

1. Our algorithm A ran in 96s on an Intel Xeon
2.33 GHz computer. Our competitors report
that their algorithm B runs in 251s on a
Xeon 3.66 GHz machine.

2. Our algorithm A ran in 18.8s on an Intel
Xeon 2.33 GHz computer. Our competitors
report that their algorithm B takes 362s on
an Intel Xeon 2.4GHz machine.

verified their results personally.” [1] At face value, these seem like impressive perfor-
mance gains. However, this paper argues that
1 INTRODUCTION this type of evidence is at best insufficient and

that current standards for reporting experimental
results are inadequate. The paper argues these
points by first showing that ‘evidence’ such as the
hypothetical examples presented above are not
much evidence at all and then shows that such

examples occur often enough.
The objective of this paper is to explore the
Email: Scott Hazelhurst scott.hazelhurst@uits.ac.za standards for the methodology of reporting the
performance of computer algorithms and to show

This paper was motivated by research I was doing
which involved the development of an algorithm
and its implementation. Referees naturally asked
how much better my algorithm was compared to
those before me.
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that how performance results are presented really
matters.

Structure of paper

This paper is organised as follows.

Section 2 presents experimental evidence of
the same program run on over 40 different com-
puters. It shows that the performance of a pro-
gram on computers with apparently similar spec-
ifications can be very different, and that CPU
performance can have a second-order impact on
program performance.

Section 3 considers the trade-off between
quality of result and time taken. In many sci-
entific applications, approximations may be com-
puted due to lack of domain knowledge or because
of underlying computational complexity issues.
Two different programs may tackle the ‘same’
problem from slightly different angles, computing
slightly different results. Making small sacrifices
in quality of result can make very large differences
in time taken.

Section 4 explores the effects of different com-
pilers on compuational costs.

Section 5 presents evidence that show that
claims of the form of the hypothetical example
above are found often in the literature.

Section 6 examines issues related to research
in parallel algorithms.

Section 7 concludes and offers some sugges-
tions for the presentation of results.

Related literature

Complaints about the difficulty in understanding
performance results go back at least 35 years. In a
letter to the editor of Operations Research, Ignizio
[1] describes some common problems and makes
suggestions (like the code being made available).
The editor, while being sympathetic to the prob-
lem, felt that the suggestions were too expensive
to implement. Many of these concerns of practi-
cality have been dealt with by the emergence of
the internet.

In the area of mathematical programming,
there have been several papers which deal with
the issues raised here. Crowder et al. [2] present
an excellent analysis of designing and analysing
experiments as well as reporting previous work
surveying the state of experimental algorithmics.
This includes a nice discussion of reproducibil-
ity — Jackson [3] takes this work forward. Good
computer architecture texts such as [4] are also
important to read.
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McGeoch and Moret [5] present advice to re-
searchers on how to present algorithmics research
papers. Some of the issues discussed are how to
deal with platform dependence, difficulties and
anomalies in experimentation, and the need to
present sufficient detail. They do stress, however,
the need not to overwhelm readers with detail.

Rardin and Uzsoy [6] discuss the interplay be-
tween quality and performance. They give good
suggestions of how quality can be assessed in
some circumstances.

Good references on parallel computing perfor-
mance include [7, 8]. Gustafson [9] discusses the
impact of architecture on performance and speed-
up.

Veretnik et al. [10] discuss how the availability
of software published in the literature affects the
reproducibility of results.

Reproducibility in systems research has also
received attention. A number of papers have
shown that performance figures can easily be mis-
leading. Good examples of such papers include
[11, 12, 13, 14], which point out the pitfalls and
problems in the methodology of reporting system
performance.

Finally, Feitelson presents a philosophical ap-
proach to computer science as an experimental
science [15].

2 EXPERIMENTAL RESULTS

We now look at detailed experimental results be-
cause it helps analysing the literature later on.
This section makes the obvious point that the
performance of an algorithm really does depend
on the exact architecture on which it is run. This
point is stressed in many fundamental texts on
computer architecture (e.g. [4]); but some algo-
rithms texts do not give this enough attention —
it would be fair to say in extreme examples they
ask readers to suspend disbelief.

The code described in this paper can be
downloaded from http://code.google.com/p/
wcdest and the data can be found at http:
//www.bioinf .wits.ac.za/~scott/wcdsupp.

This section shows the results of benchmark-
ing the same program on a number of different
computers. The program is the wed program (ver-
sion 0.3.2) [16]. This program clusters expressed
sequence tags (ESTs), an important application
in computational biology. The problem is compu-
tationally expensive (quadratic in data set sizes,
which are large — several hundred megabytes is
not uncommon). On large data sets, wed can take
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over a day in single processor mode (it is par-
allelised but here we focus on sequential perfor-
mance). Memory representation is compact and
so even with large data sets, the data easily fits
into RAM. I/O costs are negligible.

Figure 1 and Table 1 show the results on
a range of different data sets. Figure 1 sum-
marises the results, plotting CPU speed versus
time taken. Table 1 shows the results in more
detail. The key columns are: processor identifi-
cation; CPU frequency rating; the L2 cache size';
the operating system and gcc compiler used; and
two columns with times (in seconds), 77 and T2.
These show the time wcd takes with different pa-
rameters for heuristics. For the moment, con-
sider only column T1 which shows the time taken
under the default parameters for wed to process
the SANBI 10000 data set: this is a small data
set of 10000 ESTs (about 3.2M of data). The
programs were run at least three times on other-
wise unloaded systems and the average time taken
(though there is very little variability).
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Figure 1: Time versus CPU speed: wcd 0.3.2 on the
SANBI10000 data set. The Pearson correlation coef-
ficient is —0.15.

This table shows how important it is to be
careful in citing machine models. Although CPU
speed has an influence on performance, L2-cache
size is much more important. Other factors such
as front-side bus speed are also likely to play
a role (see the difference between the 5150 and
5355, which both have nominally the same clock

!Some of the machines are multi-core. The program
was run sequentially and so where the L2 cache is split
between the cores, the per-core L2-cache size is shown. Of
course, the meaning of the term “L2-cache” varies across
architectures, so it would have been more accurate to de-
fine this column as “the largest cache for main memory for
the chip”.
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and L2-cache size per core).

Even within the Xeon “family”, we see re-
markable differences. There are numerous mod-
els and within the model different versions (step-
pings). The fastest Xeon time, on the 2.66 GHz
5355, is 3.16 times faster than the 3.6 GHz Xeon,
stepping 9. The 2.3 GHz 5345 is 3.7 times faster
than the 2.4 GHz Xeon (stepping 7). The step-
ping 10 of the 3.6GHz Xeon is 1.7 times faster
than stepping 9. Beyond the Xeon family the dif-
ferences are even bigger.

The column labelled T2 shows the perfor-
mance of wed with a different set of parameters,
which uses more aggressive heuristics. This will
be explored in more detail in Section 3. However,
it is worth noting here that the times are signifi-
cantly different, in some cases by a factor of four.
A big reason for the change is that with these pa-
rameters, the program is much less demanding on
L2 cache. Not only are the times different, but
the order of the machines is different. Even with
closely related machines there are some anoma-
lies: the 3.0 GHz Pentium D is about 10% faster
than the 3.4 GHz Pentium D under the default
parameters; with the more aggressive parameters,
the 3.4 GHz Pentium D is 61% faster than the 3
GHz Pentium D. Figure 2 plots the time T1 ver-
sus the time T2. Although the correlation is high
(Pearson correlation coefficient 0.79), there are
a number of anomalous results which show that
different CPUs are relatively better for slightly
different parameters for the same algorithm.
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Figure 2: Plot of Time T1 versus Time T2

3 COMPARING APPLES WITH ORANGES

Some algorithms have well-defined solutions, and
a program is either right or wrong. However,
many algorithms are fuzzier. There may be many
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Processor GHz OS gece L2 T1T T2
i5 650 3.2 U10.4 443 4M 58 20
Xeon E5462 2.8 X10.5 4.0.1 6M 72 28
Core Duo E8335 2.66 X10.54 4.0.1 oM 79 31
Core Duo P8800 266 X10.6.5 4.2.1 3M 82 25
Xeon E5355 2.66 SL5 4.1.1 4M 83 24
Xeon E5345 (15,7) 2.33 FC7 421 4M 96 30
Xeon E5150 2.66 X10.4 4.0.1 4M 97 30
Core Duo T7700 2.4 X10.5.2 4.0.1 4M 97 32
Xeon E5506 2.13 SL5.14 4.1.2 4M 98 30
Xeon E5320 1.8 CentOS4 - 4M 111 36
Core 2 Duo T7400 2.16 X104 4.0.1 4M 115 36
Core 2 Duo T7200 2 X10.5 4.0.1 4M 115 41
Xeon 5110 GHz 1.6 SuSE10.1 4.1.1 4M 124 41
Pentium E2160 (15,13) 1.8 U710 4.3.0 1M 142 39
Core 2 Duo T5600 1.83 X10.5.2 4.0.1 2M 143 44
AMD Opteron 2218 2.6 SLES9.1 3.3.3 1M 153 40
Power 5 1.656 RHEL4.1 3.4.3 1.875M 153 56
Xeon St 10 (Irwindale) 3.6 SL5.0 4.1.1 2M 155 40
Pentium D (6,4) 3.0 FC7 4.3.0 2M 156 70
Pentium D (6,4) 34 U7.10 4.3.0 2M 172 45
Core Duo T2400 (14,8) 1.8 U7.05 4.1.2 2M 176 51
Pentium 4 (4,3) 3 FC7 412 2M 184 73
AMD 285 (33,2) 2.6 RHEL4 3.4.6 1M 194 41
Xeon (4,10) 3.0 U7.04 412 2M 195 51
AMD 265 1.8 SL5.4 4.1.2 2M 198 96
Core Duo 1.66 X10.4 4.0.1 2M 198 57
Itanium?2 iA-64 (2,2) 1.6 SL4.1 3.4.3 203 73
Powerd+ 1.9 SLES10 4.1.0 1.5M 205 52
Xeon (6,4) 3.2 RH4 4.1.2 2M 212 45
Pentium 4 (4,1) 3.0 U710 4.3.0 1M 229 51
Xeon (4,1) 3.0 FC7 412 1M 231 51
Xeon (4,1) 2.8 RHEL4 3.4.3 1M 234 56
Xeon MP St 9 3.66 SL4.5 4.1.1 1M 251 49
Pentium 4 (3,4) 3.0 SuSe9.2 3.34 1M 261 53
Xeon MP (2,6) 2.2 SLES10 4.1.2 2M 264 76
Pentium 4 (2,5) 2.8 U8.04 4.2.4 516K 295 65
Xeon (2,9) 2.6 SuSE8.2 3.3 512K 306 72
Xeon St 7 2.4 FB 4.11 3.4 512K 362 75
Pentium 4 (2,7) 2.4 FC8 4.1.2 512K 487 94
Celeron St 9 2 FB6.3 346 128K 515 256
PPC970FX rev 3 2.2 SLES10 4.1.0 543 72
Celeron (1,3) 1.7 FC4 402 128K 527 269
Sun Sparcv9 0.75 Solaris — — 560 330
Power G4 1.1 1.5 X10.5.2 4.0.0 512K 630 132
Power G4 1.25 X10.3 — 512K 764 203

Table 1: Comparison of the performance of the sequential version of wed on different architectures. For each
processor the model and stepping is given when known. In all cases gcc was used with the O2 flag. The OS
column gives the operating system: FB — FreeBSD; FC — Fedora Core; RHEL — RedHat Enterprise; SL — Scientific
Linux; X—Mac OS X; U — Ubuntu. Some values in the table are unknown
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ways to model the underlying reality; there may
be heuristics that are used to speed-up the al-
gorithm. In such cases, the question of quality
of answer cannot be separated from timing since
there is no agreed perfect answer, and there is a
trade-off between quality and timing.

To put this into context, look at wcd as an
example. It clusters DNA fragments based on a
measure of distance. If two fragments are less
than a distance 6 apart they are clustered to-
gether. There is no way of determining the ‘right’
value of #. The default value in wcd is 40, but val-
ues between 20 and 60 are used in practice. 0 is
a modelling parameter as we use it to tune our
mathematical model to represent the physical re-
ality accurately. The parameters B and K are
heuristic parameters. By changing these param-
eters we can trade-off time for quality. With an
infinitely fast computer, # would still exist; B and
K would not. Table 2 shows the effects of chang-
ing the parameters on clustering a sample data
set known as the Public Cotton set. We use as
the base, the clustering produced by the default
parameters of wed ((B, K, 6)=(10,1,40)) and com-
pare the quality of the answer using the Jaccard
Index, which is the primary measure used in the
literature. It is clear that changing the modelling
parameter has more of an impact than changing
the heuristic parameters. Using the more aggres-
sive heuristic parameters, clustering is roughly
2.5-4 times faster. (The discussion here is some-
what simplified because there are other heuristic
and modelling parameters.)

Parameters 0=40 0=45 0=47
(B, K)=(10,1) 1.000 0.843 0.733
(B,K)=(8,4) 0.978 0.848 0.764
(B, K)=(8,5) 0.966 0.864 0.766
Table 2: Jaccard Index of clustering produced

with given parameters with respect to the default
(B, K,0)=(10,1,40). JI is measured on a scale of 0
through 1, with 1 being a perfect match.

If we compare different programs that pro-
duce exactly the same results, then we can check
that both produce the correct results and com-
pare the performance results. Our problem is
different: other EST clustering algorithms use
different theoretical frameworks for determining
distance, and use different heuristics for compu-
tational speed-up. Thus, it is impossible to com-
pare programs on some common set of input pa-
rameters. The only way to do a comparison is
to run the codes on the same data set to see the
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quality of the output. In this area there are no
large, universally-agreed benchmarks for quality,
and, the only way to do this properly would be to
do an exhaustive search of the entire parameter
space of both programs being compared to find
the optimal settings for that program (though
there are probably no universal settings for all
data sets).

4 COMPILER EFFECTS

“Computer technology is in such a rapid process
of development that it has become virtually im-
possible to completely reproduce a computational
experiment to any arbitrary order of accuracy.
This is true even in the same computing environ-
ment. Compilers and operating systems change,
resulting in different sequences of operations
for computing the final results. These different
sequences, together with the effect of numerical
variations due to round-off, produce outcomes
that agree only to a limited number of significant

figures.” [2].

Table 3 shows the impact of choice of compiler
and compiler options on the timing of the pro-
gram on two different architectures. The GNU
gcc and Intel icc compilers were used with dif-
ferent flags. The choice of compiler optimisa-
tion level has a very important effect on timing.
This is true of “sensible” compiler options (not
comparing for example switching off optimisation
completely or tuning for specific architectures).

In summary, differences in performance of up
to 25% for sensible optimisation flags are often
found, and in some cases more. Some of the
anomalous results here are:

e Increasing levels of optimisation do not nec-
essarily improve performance — and the pat-
terns differ between compilers and machines.

e On the Xeon tested, for wed 4.5 on the Public
Cotton set, gee 3.3 with =02 is just over 10%
faster than icc with the -02 option. For wcd
3.2 on the SANBI10000 set, icc with the -02
and -fast options is 18% and 25% faster
than gcc 3.3 with the -02 option.

e The use of the -m64 option on the Core Duo
(Apple iMac) makes a very big difference in
performance, but not for the Xeons.

e An additional result not shown in the table
that with wed 3.2 on SANBI10000 with gcc
4.0.1 (flags -03-m64) the Core Duo 2GHz
T7200 (MacMini) is faster than any compiler
and option tested for the Xeon.
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2.4GHz/T7700 2.3GHz/E5345
4.0.1 4.2.2 ‘ 343 421 430 iccl1l0.1 44.1
wed 3.2 on SANBI10000
00 174 174 | 213 188 187 223 186
01 96 95 97 98 90
02 97 96 95 97 82 82 75
02 m64 73 80
03 91 91 84 80 72 80 68
O3* 65 67 75
wcd 4.5 on Public Cotton Set

00 625 625 | 611 608 658 663 621
00 m64 | 597 580
01 273 309 | 260 200 200 205 193
O1 m64 182 184
02 273 311 | 192 196 197 216 189
O2m64 | 175 179
03 271 308 | 195 203 201 214 189
03* 175 180 198
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Table 3: The table shows the performance of two different versions of wcd using different compilers on two
different data sets. The top part of the table shows the performance of wed 3.2 on the SANBI10000 benchmark.
The bottom half shows the performance of wed 4.5 on the Public Cotton data sets. Compiler options — O3*:

-03 -m64 on gcc; -fast on Intel compiler. The -m64 option has no impact on the Xeon. The T7700 is an Intel

Core Duo chip running Mac OS 10.5.2 (an iMac), and has a 4M cache. gec 4.0.1 is Apple’s standard gee release.

The E5345 is a Xeon 2.3GHz chip, and is a dual quad-core processor with 4M per processor. We ran the same

E5345 with two versions of Linux: gcc 4.3.0 and icc10.1 were run under Fedora Core 7 (kernel 2.6.23), and gcc

4.4.1 was run under Ubuntu 9.10 (kernel 2.6.31). The margin of error is 2s.

Note Compiling with the Intel 10.1 compiler
(-fast option) and using (8,4,47) as the pa-
rameters for (B, K, ), the 2.3G E5345 processes
the SANBI10000 set in 18.8s. Compare this to
the 362s that the Xeon 2.4GHz/stepping 7 (gcc
4.1.1 -02) takes with parameters (10,1,40). The
quality of the clusterings produced in the two
cases would be indistinguishable from differences
caused by different methodologies adopted by
competing approaches. But, if we tried to com-
pare by simply scaling CPU speed we could claim
a 20.09251 fold improvement.

The results shown in this section are not ex-
treme. Showing variability of performance as
compilers and systems change is easy? to do, and
a number of experiments have been omitted due
to space constraints>.

2In fact too easy. This research was carried out over a
three year period as a side-project. During this period I
had to re-run experiments several times as operating sys-
tems and compilers changed.

3The most telling of these was an experiment which
compared two tools for multiple sequence alignment, MUS-
CLE [17] and Clustal [18]. On one benchmark, we found
that Clustal was 2.34 times faster than MUSCLE on one
computer with a given compiler and compiler flags, but
15% slower on another machine with a different compiler.

5 CURRENT PRACTICE

Overview

A key part of many research papers in computer
science which contain some experimental algo-
rithmics is the measurement of the time that a
program takes to run. The experimental method-
ology is to pick some data sets, justify the use of
those data sets, run the program on some piece
of hardware, and report the time taken.

This section presents some examples from the
literature and a disclaimer is required first. The
papers presented below are examples and are not
chosen because they are particularly bad — it is
easy enough to find other examples. I am critical
of some of the sections of the papers reviewed be-
low, but do so in the spirit that I have sinned as
much as those I now point fingers at. Most of the
papers I think are of high quality. In the text of
this paper, I refer to these examples as Paper A,
Paper B and so on, so as to semi-anonymise the
papers. In the appendix, a table is given which
allows an interested reader to verify that I have
not taken text out of context. The papers come
from high quality journals or conferences, and are
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chosen because they are good papers in high qual-
ity publications.

A common description of an experimental
methodology in the computer science literature
is to justify the use of some data sets, run them
and report the timing as follows (more detailed
examples are given later).

Time was measured using a personal
computer with an Intel Pentium 2.8
GHz processor with 1024 MB of RAM.
[Paper A]

Comparing to experimental work reported in
other disciplines is instructive. The following
is an example from molecular biology (only two
paragraphs of many are shown):

“For protein labelling in vivo, cultures were
washed, incubated for 30 min in a DMEM
medium lacking met-cys and labelled for 1 h at
36 hours post-transfection with 355-met-cys to a
final concentration of 200 pwCi/ml (48). Total
extracts were prepared in Laemmli sample buffer
and processed by polyacrylamide gel electrophore-
sis and autoradiography.

“RNA samples were co-precipitated with a
molar excess of labelled riboprobe and resus-
pended in 400 mM NaCl-40 mM Pipes-5 mM
EDTA-80% deionised formamide, pH 6.4. After
denaturation for 5 min at 858°C, hybridization
was carried out overnight at 508° C. The mizture
was diluted in a RNAse solution containing
300 mM NaCl-5 mM EDTA-10 mM Tris-HCI,
pH 7.5, 50 mg/ml of RNAse A and 1 u/ml of
RNAse T1 and incubated for 2 h at 378 C. After
proteinase K/SdS treatment as indicated above,
phenol extraction and ethanol precipitation, the
samples were resuspended in formamide loading
buffer and analysed by polyacrylamide-urea gel
electrophoresis and autoradiography.  Quanti-
tation was performed in a phosphorimager.”
[Paper B]

Note the difference in level of detail. Both papers
come from the same journal, Nucleic Acids Re-
search, an impact factor 6 journal with extremely
high standards for accepting papers. In the paper
with a computing emphasis, the equipment used
is described in one line in a footnote — brief and
high-level. In a paper that describes biological ex-
periment, the set up is described in great, boring
detail, describing exact percentages of concentra-
tion, temperature and so on. This is the standard
that is expected.
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One line of argument, might be that it doesn’t
matter, because the nature of experiment in com-
puting and in the biological sciences is quite dif-
ferent — see [19, 20, 21] for a discussion.

One big practical difference is that in com-
puter science, the algorithm/program is both a
means and an end. It is both a part of the ex-
perimental apparatus and what is to be proved
by the experiment. And, generally, the piece of
hardware used is chosen as an example architec-
ture. In the biological experiment cited above, a
mixture was incubated at 378°C. The only things
that matter are that (a) walidity: the choice of
mixture and temperature is valid and (b) replica-
bility: that the experiment can be replicated with
the level of detail given. Other choices of medium
and temperature might or might not work, they
may be cheaper, easier to work with, but that
doesn’t really matter. In the case of the computer
science experiment, the validity and replicability
are important, but usually, generalisability is as
important. The fact that it runs on a 2.5GHz
Mac Gb is usually not as important as that we
expect the results of the experiment to generalise
to a range of other CPUs. (Usually) an algorithm
that works well on a 2.5GHz Mac G5 but doesn’t
work on a 3.2 GHz Intel Xeon, or even a 2.6GHz
Mac G5 would not be interesting.

This line of argument is valid, and explains
at one level why a computer science experiment
can have a lot less detail than a molecular biology
experiment.

However, what this line of argument misses
is the replicability. Sometimes, a computer sci-
ence experiment will justify its algorithm by re-
ferring to the performance of the algorithm with-
out reference to any other algorithm. However,
it is common for an algorithm to be justified by
showing it superiority over other algorithms. [4,
p. 33] argue:

The guiding principle of reporting perfor-
mance measurements is reproducibility — list ev-
erything another experimenter would need to du-
plicate the results.

It is true that [Paper A] appears in a journal
aimed primarily at the biological community, and
in this case the time taken by the program is im-
portant but secondary. However, the same can be
found in many papers in highly respected com-
puter science journals. The rest of this section
gives recent examples from the literature (and
more examples can be found in the appendix).

Perhaps not much has changed since the sur-
vey of Jackson and Mulvey [22] done 30 years
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ago. While no claim to statistical sampling can
be made, the examples below show that the con-
cerns of this paper are not far-fetched.

An examination of the 2008 SIAM Proceed-
ings of the Ninth Workshop on Algorithm Engi-
neering and Ezxperiments, a hard-core algorithms
conference with papers from leading, hard-core
computer science groups confirms the pattern. Of
the 13 papers which reported timed experimental
results

e 5 gave full details of the experimental sys-
tem (full processor identification, configura-
tion and compiler);

e 4 gave a generic description of the architec-
ture and clock frequency (e.g. Pentium 4,
2.4 GHz) but no cache size, plus compiler
details;

e 3 gave a generic description of architecture
and clock frequency, but neither cache nor
compiler details.

e One presented timing without any descrip-
tion of the architecture.

e Two of the above papers attempted a com-
parison of their results with others published
in the literature based on experiments run by
others.

Specific examples from the literature

This section reviews some examples from the lit-
erature. I do not claim that these are represen-
tative, merely that examples are easy enough to
find. These papers were not picked because they
were egregious, but because they are good papers
and the way the experiments are done are not out
of line with what is reported elsewhere in the lit-
erature.

Case 1: The first example comes from the ACM
Journal of Experimental Algorithmics which ap-
pears to have one of the most rigorous standards.

All runtime experiments were performed
on a 2.5 GHz Mac G5 with 4 GB of
RAM. [Paper C]

In [Paper C], the different algorithms are all
run on the same machine and so the results re-
ported are valid and internally consistent. This is
an example of where the central claims of the au-
thors are well substantiated, but the lack of detail
will make replicability by others difficult.

The problem is that there are two “Mac G5
2.5GHz” models, with PowerPC 970fx and 970mp
processors. The latter is a dual core machine.
Among other differences, the former has 512K of
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L2 cache, the latter has 1M of L2 cache per core.
As was shown before, different cache sizes may
have a big impact on program performance. The
fact we cannot tell which G5 it was run on shows
the difficulty in interpreting results. It may make
it difficult for other researchers who wish to tackle
the same problem to understand and to compare
their work.

Case 2: The second example comes from the
ACM/IEEE Transactions on Computational Bi-
ology and Bioinformatics:

“We have run these programs on the same
Linux machine with a Pentium 4 2.40 GHz pro-
cessor and a core memory size of 1 Gbyte. The
results of [other researchers’ program] are the
ones reported in [Paper E] on a machine with
the same processor and core memory size of 512
Mbytes.” [Paper D]

The authors of [Paper D] ran their algorithms
on a Pentium 4 2.4 GHz machine. But, they did
not run the competing algorithm themselves — in-
stead they report what their competitors did. In
[Paper EJ, the researchers also used a “2.4GHz
Pentium 4”. On some of the experiments per-
formed, [Paper D] reports improvements of 8.6s
to 5s, 108 minutes to 53 minutes, and 22 min-
utes to 9 minutes, which shows a roughly 2.5 fold
improvement.

This comparison relies on the assumption that
the two researchers used the same hardware ex-
cept for a different amount of RAM; it relies upon
the term “2.4GHz Pentium 4” being well-defined.
However, Intel’s documentation shows that there
were about 30 Intel Pentium 4s models rated at
2.4GHz (see http://processorfinder.intel.
com/). Some of the variants are minor differ-
ences, but there were differences in manufactur-
ing technology (130 and 90 nm), bus speed (400,
533, 800 MHz), and L2 cache (512K and 1MB),
with at least 4 major steppings. As seen in Sec-
tion 2, a reader should be very sceptical that the
two platforms are equivalent and should ask what
contribution the improved algorithm makes, and
what contribution a different variation of hard-
ware makes.

In an attempt to replicate the experiments,
the programs were obtained from their authors
(who both responded promptly). Both programs
were run on different architectures, and the re-
sults are shown in Table 5. However, the compu-
tations performed are not exactly the same. In
both cases, the results were based on randomly
generated data, but the ways in which it was
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Algorithm Different machines
A B C D E F
3.2GHz 3GHz 2.8GHz 2.6GHz 2.33GHz 1.5GHz
[Paper D] 347 1070 652 1066 535 1066
[Paper E] 174 511 359 874 550 1331
Ratio 0.51 0.48 0.55 0.82 1.03 1.25

Table 4: The programs were both run with parameters (I,d) = (15,5). Time in seconds. Machines listed from
left-to-right in descending chip speed. A: Intel i5 (650), 4M L2 cache; B: Pentium 4 (4,3) 3GHz, 2M L2 cache;
C: Xeon E5462 2.8GHz, 6M L2 cache; D: Xeon (2,9) 2.6GHz 512K L2 cache; E: Xeon E5345 2.33 GHz 4M L2
cache; F: Power 4 1.1 1.5GHz 512K L2 cache;. The row labelled Ratio gives the value of [Paper E] to [Paper D].
On each machine the same compiler/optimisation values were used (though the compilers differed from machine

to machine). Note the ratio appears inversely proportional to nominal chip speed though it is not clear whether

this is chance.

done means that comparisons cannot be made
from the published work*. For these reasons, the
results shown below are not compared to the re-
sults computed in [Paper D], and nor should they
be taken to compare the performances of the two
algorithms per se, but rather illustrate the follow-
ing points:

e The difference in the way the experimental
detail of these papers compared to the exper-
imental detail of biological paper described
above is underlined.

e The relationship between chip speed and per-
formance is weak.

e Even if you compare the two programs on the
same machine, which algorithm you would
say is better would depend on which machine
you ran the code on (assuming for the sake of
arguments that oranges are in fact apples).
If you try to compare the performance of D
on one computer with that of E on another
computer, you could make whatever point
you liked.

Case 3: Another example can be found in a re-
cent paper in Journal of Experimental Algorithms
[Paper F]. There can be no quibbling with the re-
sults of [Paper F] since their results are so over-
whelming, but it is fair to criticise their reasoning,
especially as it legitimates a dangerous line of ar-
gument — the idea that “the” Xeon can be used

4The programs do a type of approximate string match-
ing, finding patterns with a specified Hamming distance.
The [Paper E] experiment generates random data and sam-
ple patterns and then finds all patterns within distance
d. The [Paper D] experiment generates random data and
patterns and then salts the data with patterns that are
exactly distance d from the patterns. Thus, the programs
compute different things. The impact of the differences
may be small, or they may be large, but an independent
reader cannot know.

as a reference machine is misplaced. (To be fair
as well, this also shows the need for source code
to be available for comparison: when faced only
with executables, it is hard to do better.)

“Our evaluations were performed on two dif-
ferent machines, since opt-k-decomp is only avail-
able as Microsoft Windows executable. Thus opt-
k-decomp was evaluated under Microsoft Win-
dows 2000 on a 2.4-GHz Intel Pentium 4 proces-
sor with 512-MB main memory and both det-k-
decomp and BE were evaluated under SuSe Linux
9.2 on a 2.2-GHz Intel Xeon processor (dual)
with 2-GB main memory. Note that the different
memory sizes have no relevant influence on the
results, since the memory usage of det-k-decomp
and BE is far less than 512 MB when applied
to our instances. We chose the Intel Xeon as
reference machine for normalizing the execution
times.”

Case 4: The next example shows a more ex-
treme example. The following comes from [Pa-
per GJ, which appears in an impact factor 3.78
journal. They assess their HECT algorithm as
follows:—

“The performance of HECT 1is compared
against ...d2_cluster ...and PaCE (Paral-
lel Clustering of ESTs) ...There are bench-
marks available for the d2_cluster (http: // www.
sanbi. ac. za/bench. html ), which also influ-
enced our decision in choosing the d2_cluster for
comparison purposes. The running time for clus-
tering is highly dependent on the length of se-
quences in the data set and the number of ex-
act matches. The greater the number of matches,
the less the time required. Unless both algorithms
use the same data set, we would not have a valid
comparison. Fortunately, we had access to the
same benchmark that was used by the d2_cluster
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... For this benchmark, which contained 10,000
sequences, d2_cluster took 18,905 sec to run on a
SUN SPARK [sic] 400-MHz processor. The same
dataset is clustered with HECT on a 650-MHz
SUN Ultrasparc IIi workstation in 317 sec. Re-
verse complement comparison is also performed
by HECT, but this information is not available for
the d2_cluster. Considering the fact that a 650-
MHz machine is (650/400 = 1.625) times faster
than the 400-MHz machine Speed up of HECT
over d2_cluster =18905 / (317*1.625) = 36.67.

“Here, we mote that computing the relative
performance of two programs by using only the
ratio of the processor clock speeds is a gross ap-
proximation. There are a lot of other factors
(memory and cache size, 1/O speed, processor
architecture, etc.) that also affect performance.
Since the detailed information about the systems
used in benchmarking was not available to the au-
thors at the time of this writing, only the pro-
cessor clock speeds are used for computing the
relative performances. A similar comparison is
performed against PaCE ..., which is developed
at Towa State University. PaCE clustered the
10,000-sequence data set in 392 sec on a dual-
processor 1126-MHz Pentium I1I, whereas HECT
took 207 sec on a 1 [sic] Pentium III. This means
HECT runs 4.16 times faster than PaCE.”

An argument is given that leads to a conclusion,
accurate to two decimal places, of the perfor-
mance improvement of their algorithm. There
are disclaimers of the problem with this approach,
but the authors’ take-home message is clear. The
claim of a 36-fold improvement is clearly made
without any qualification in both the abstract and
conclusion. Note the danger in this: the journal
itself is subscription-only; the abstract is free to
anyone who can use Google.

Before criticising the claim, I accept that
HECT is likely to be substantially faster than at
least d2_cluster. But, the claims as published,
especially in the abstract, are not substantiated.
First, as can be seen from Table 1, the correlation
between CPU frequency and performance is low.
It is easy to find examples in Table 1 where ap-
plying the same reasoning as quoted above, one
could claim a 7 fold improvement in performance
with exactly the same piece of code. Thus, while
HECT is likely to be faster than d2_cluster, it
is unlikely to be 36.67 times faster. It might
be 400 times faster, it might be 5 times faster.
The claimed improvement with respect to PaCE
could easily be an artifact of a different architec-
ture. Second, the tools produce different results.
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No comparison of quality is made between the
tools using the same data as was used for perfor-
mance analysis, and the analysis of quality that
was done does not use recognised measures such
as the Jaccard Index. As can be seen by compar-
ing columns 71 and T2 of Table 1, small changes
in parameters can have an important effect on
performance. The reader is invited to re-read the
concluding paragraphs of Section 4. By running
wcd, with slightly different parameters, and using
the same line of argument, we can show a 20-fold
improvement.

Case 5: The next example comes from the
graphics area. Consider the extract from [Paper
H], comparing to the work of [Paper I] (both in
ACM Transactions on Graphics, an impact factor
4, leading edge computer science journal):
“Performance in Frames/Sec. (at 1024 x 1024
pizels including simple shading) for OpenRT, Co-
herent Grid Traversal, MLRT, and BVH. For
Toys, Runner, and Fuairy, a single time step has
been used. MLRT performance data is taken from
[Paper 1], and corresponds to a Xeon 3.2 GHz
with hyperthreading; all other data was gathered
on a 2.6 GHz Opteron Machine.

The algorithm in [Paper H] solves a more gen-
eral problem than that of [Paper I]. The purpose
of the figures quoted above is to show that their
algorithm (BVH) pays a reasonable penalty on
the simpler cases where the algorithm of [Paper
I] can be used. No compiler information is given.
[Paper H] also mistakenly describes the CPU o f
[Paper I] as a Xeon (it was a Pentium 4). There
is no description of cache size.

In turn, [Paper I] compared their results to
previous work published by [Paper J]. The au-
thors of [Paper I] state that their algorithm ran
on a “24GHz P4” and the algorithm of [Paper
J] ran on a “2.5GHz P4”, and claim an improve-
ment of “up to an order of magnitude”. [Paper
I] gives no elaboration of their machine; in [Pa-
per J] the machine is described as a Pentium 4
notebook (notebooks commonly have less power-
ful chips than their desktop or server cousins). No
compiler data is given in either paper. There is
also a two year gap in publication dates. Convinc-
ingly faster — most likely. An order of magnitude
faster — not proved.

Availability of software

In order to make fair comparisons, we need to be
able to run the same code on the same machine
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(or machines). This means that other researchers’
code must be available.

In order to see how whether our anecdotal ex-
perience® was representative, a small survey was
conducted using volume 12 of the ACM Journal
of Experimental Algorithmics as a sample. JEA is
likely to have much higher standards than most
fora for publishing experimental results (indeed
instructions to authors strongly encourages up-
loading of software and data).

There were 18 papers in the volume.

e 5 of the papers had software that was avail-
able from the web (either this was advertised
in the paper itself or was easily found by us-
ing Google).

e [ wrote to the first or corresponding author
of 9 of the papers asking whether the code
was available for experimental evaluation:®

— 2 responded within two days pointing me
to software that was packaged and avail-
able on the web.

— 2 responded within two days offering to
send me their code once it had been pack-
aged neatly for me.

— 1 responded two months later (the person
had moved).

— 1 responded with a binary, saying that the
source code was not available for distribu-
tion. The author could not give any com-
pilation details.

— 1 responded with source code, but indi-
cated that the code required commercial
libraries to run.

— 1 responded saying the code was probably
not in suitable format for others to use.

— 1 failed to respond.

e So as not to be over-scrupulous, I judged 4
papers to be of the sort where the availability
of an implementation of the algorithms dis-
cussed not be necessary or useful for people
building on the work.

Almost all authors responded positively, and of-
fered help. However, some of the code was not
available for various reasons or took trouble to
get. Not all the code had documentation that
would have made it easy for someone else to com-
pile and run the code.

5In our case, we had three months to revise a paper with
additional experimentation. For some software which re-
quired us to sign a non-commercial use licence and be sent
the code it took over four weeks from when we sent our first
request to when we received the correct version of the code
(and the intervention of collaborator of a collaborator).
SWithout explaining why I wanted to know.
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6 PARALLELISATION

In parallelisation papers, the currency is how well
your algorithm parallelises. An examples of such
a paper reports as follows [23].

All the simulations discussed in this sec-
tion were run on a Linux cluster with
total 18 nodes. Fach node has two 3.2
GHz processors and 2G memory. [24]

First, there are more parameters in report-
ing parallel computing: nominal network speed,
switches, software libraries (e.g., versions of
MPI). This makes comparison with other work
much more difficult. Moreover, the choice of data
used to illustrate results may have a much more
profound effect that on a sequential system.

Second, the impact of architecture can be
more significant, especially with the need to take
into account the impact of sequential algorithm
performance.

Better sequential algorithms can lead to worse
parallelisation. Conversely: to show good speed-
up, don’t pay attention to the algorithm. Fig-
ure 3(a) shows how well wed 3.2 and 4.5 paral-
lelises under pthreads on the double quad-core
E5345. A lot of effort went into improving the
parallelisation between the two versions; however
wcd 4.5 scales worse. However, what this hides
is that the fact that wed 4.5 is much faster se-
quentially, which makes the synchronisation costs
much higher. Even though it scales worse, wed 4.5
is always faster.

Figure 3(b) shows the performance of wed 4.5
with three different settings of the heuristics, cho-
sen so as to slow wcd 4.5 down by factors of 1, 5,
and 10. As can be seen, with the two latter set-
tings, the efficiency of parallelisation is close to 1
(the ideal).

The other influence is the impact of architec-
ture. Figure 4 shows the performance of wed on
different multicore architectures. We see differ-
ent performances of exactly the same algorithm.
I also encountered an optimisation which had a
big effect on one architecture (changing efficiency
from 0.42 to 0.58 on one experiment) but had no
effect on other architectures.

7 CONCLUSION

This paper has argued that the current practice
of reporting experimental results is inadequate.
Often the information does not give a referee or a
reader enough information to judge the quality of
the results. Particularly bad are papers in which
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Figure 3: Impact of sequential performance on paral-
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the performance of an algorithm on one computer
is compared to the performance of another algo-
rithm on another computer, as if meaningful com-
parisons can be made.

The points made in this paper are not new —
they have been made by others many times over
the last few decades. But, the message is still
worth hearing and saying again. The contribu-
tion of the paper is to show how seemingly small
changes to the architecture or system can impact
greatly on performance.

It must be emphasised that this study fo-
cussed on few variables. One of the most impor-
tant factors is glossed over — the choice of data
for experimentation and analysis. I/O and vir-
tual memory performance is not addressed.

Guidelines

Very clear and sensible guidelines can be found
in the literature [1, 2, 5, 8], and there is no need
to repeat them here. However, I would like to
emphasise that the availability of the internet
changes what is possible. Some of the ideas of
[1] were not possible 37 years ago. But while the
practical dissemination of code through the post
using punched cards and magnetic tape were real
limitations, the availability of cheap networking
and resources like Sourceforge and Google Code
changes things.
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The most important improvement is to re-
quire that algorithms that are compared should
be compared on the same machine. For this to
be practical, software must be made available for
others to use. We need to learn from other dis-
ciplines. In most biological journals it is a re-
quirement that any DNA or protein sequences
that have been created by the author should
be deposited in an appropriate public database.
Many bioinformatics papers require that software
is made available to referees and even in some
cases that the software is freely available to non-
commercial users for a period of two years. The
benefit of software being open source and avail-
able directly from a web or ftp site over other
arrangements is large.

McGeoch and Moret [5] make the point that
the reader should not be drowned in detail. This
is very important. However, the experimental re-
sults reported in this paper show the importance
of detail. They also underline the importance of
comparing algorithms across different data sets,
and perhaps on different computers. While it
would be wrong to include all of these results in a
paper, the use of supplementary resources as done
in other disciplines allows authors to make judi-
cious choices of experimental results in the pa-
per itself, while providing full details of additional
experimentation and data in the supplementary
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material. The internet means that papers can be
concise and readable without having to sacrifice
accuracy.

e All experimental results should clearly state
which model computer was used for experi-
menting. If necessary, references to the man-
ufacturers’ web sites can be made. To help
a casual reader, information like CPU speed,
memory, and cache configuration should be
given.

e The compiler, compiler flags and operating
system should be stated.

e Sample data sets should be made available
for testing purposes. This should not be an
optional extra.

e [t may be acceptable or useful to cite the
performance figures others have achieved;
however, comparisons should be made cir-
cumspectly, and it is doubtful that promot-
ing performance improvement gains on these
grounds to prominent parts of abstracts or
introductions is justifiable.

e In algorithms where there is no clear right
answer, and where heuristics and approxi-
mations are employed, there must be an ex-
plicit discussion of the relationship between
algorithm computational and quality perfor-
mance.

e It is probably desirable to use more than
one computer system for experimental pur-
poses. The more important the empirical ex-
perimental results are to support the claims
of the paper, the more important this be-
comes. One of the implications of the differ-
ent orderings of the two timing columns in
Table 1 is that an algorithm A may do bet-
ter than algorithm B on one architecture but
not another. This is confirmed by the results
of Table 5 and other experiments we carried
out. Thus, to claim generalisability without
compelling analytic evidence, it may be nec-
essary to explore and elaborate a range of
algorithms.

New tools and systems that would help re-
searchers share tools and results, and to validate
previous results are now possible. Suggestions
such as Dataforge [25], paralleling Sourceforge,
and the use of cloud computing [26] are very
good examples of approaches that would help re-
searchers in experimental algorithmics and sys-
tems research.
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