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Abstract

Relying on large pretrained language mod-
els such as Bidirectional Encoder Represen-
tations from Transformers (BERT) for encod-
ing and adding a simple prediction layer has
led to impressive performance in many clini-
cal natural language processing (NLP) tasks.
In this work, we present a novel extension
to the Transformer architecture, by incorporat-
ing signature transform with the self-attention
model. This architecture is added between em-
bedding and prediction layers. Experiments on
a new Swedish prescription data show the pro-
posed architecture to be superior in two of the
three information extraction tasks, comparing
to baseline models. Finally, we evaluate two
different embedding approaches between ap-
plying Multilingual BERT and translating the
Swedish text to English then encode with a
BERT model pretrained on clinical notes.

1 Introduction

Medical prescription notes written by clinicians
about patients contains valuable information that
the structured part of electronic health records
(EHRs) does not have. Manually extracting and
annotating such information from large amount of
textual fields in medical records such as prescrip-
tion notes is time-consuming, and expensive since
it has to be provided by domain specialists who are
in high demand. Information extraction (IE), a spe-
cialised area in natural language processing (NLP),
refers to the automatic extraction of structured in-
formation such as concepts, entities and events
from free text (Wang et al., 2018). While rule-
base IE systems are still widely used in healthcare
(Banda et al., 2018; Davenport and Kalakota, 2019),
machine learning-based data-driven approaches
have gained much more interest due to their ability
to scale and learn to recognise complex patterns. In
this paper, we present a set of medical prescriptions

written in Swedish and develop a neural network-
based system that extracts important information
from the textual data.

Recent advances in pretraining large-scale con-
textualised language representations, including
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2018), have proven to be a successful strat-
egy for transfer learning and pushed the perfor-
mance in many NLP tasks of general purpose. Clin-
ical notes differ substantially to general-domain
text and biomedical literature, in terms of its lin-
guistic characteristics. Several studies have fine-
tuned general-domain language models such as
BERT on in-domain clinical text (e.g. electronic
health records) (Si et al., 2019; Peng et al., 2019;
Alsentzer et al., 2019; Huang et al., 2020) for down-
stream clinical NLP tasks. As summarised in (Gu
et al., 2020) many such tasks can be formulated
as a classification or regression task, wherein ei-
ther a simple linear layer or sequential models such
as LSTM or conditional random field (CRF) are
added after the BERT encoding of the input text as
task-specific prediction layer.

BERT’s model architecture is based on the Trans-
former model (Vaswani et al., 2017), which em-
ploys the self-attention mechanism to attend to
different positions of the input sequence. As it
doesn’t contain any recurrence or convolution, the
model has to add positional encoding in order to
model the order of the sequence (e.g. word order).
Signature transform, initially introduced in rough
path theory as a branch of stochastic analysis, is
a non-parametric approach of encoding sequential
data while capturing the order information in the
data. It has shown successes in the recent years
in a range of machine learning tasks involving se-
quential modelling (Arribas et al., 2018; Morrill
et al., 2020; Toth and Oberhauser, 2020; Wang
et al., 2020). We hypothesise the signature trans-
form method can be integrated in the Transformer
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model, in which its ability to naturally capture se-
quential ordering complements the ability of attend-
ing to important positions and learning long-range
dependencies in self-attention.

As a preliminary study, our aim is to develop
a machine learning-based system that extracts rel-
evant information from the Swedish medical pre-
scription notes1, namely quantity, quantity tag and
indication. The contributions of this work are as
follows:

1. We experiment two different approaches of
embedding the Swedish prescription notes.
One encodes the Swedish text directly using
Multilingual BERT (M-BERT) (Devlin et al.,
2018) while for the other approach we trans-
late the prescriptions and then apply Clinical-
BERT (Huang et al., 2020) that is pretrained
on clinical text in English.

2. We propose an extension to the Trans-
former model, named Sig-Transformer En-
coder (STE), which integrates signature trans-
form into the Transformer architecture so the
order information in the prescription notes can
be learnt in a more effective way. To the best
of our knowledge, this is the first attempt to in-
tegrate signature transform in the Transformer
architecture.

3. We demonstrate good performance in two of
the three tasks, namely quantity and quantity
tag. As for the indication task, we provide an
analysis on why the models fail.

4. We show one of our proposed STE-based ap-
proaches, namely M-BERT+STE, outperform-
ing other baseline models.

2 Background

Clinical language representation has attracted an in-
creasing interest in the natural language processing
(NLP) community (Kalyan and Sangeetha, 2020).
More recently with the advent of Bidirectional En-
coder Representations from Transformers (BERT)
(Devlin et al., 2018), fine-tuning of general-domain
language models has been widely adopted for
many clinical NLP tasks2. Among them two clin-
icalBERT studies (Alsentzer et al., 2019; Huang

1Our ultimate goal is to apply such model to a much larger
database. However, this is beyond the scope of this paper.

2Gu et al. (2020) have challenged this strategy and reported
better performance for PubMed-based biomedical tasks by
conducting domain-specific pretraining from scratch. How-

et al., 2020) have conducted fine-tuning from ei-
ther BERT or BioBERT (Lee et al., 2020) using
de-identified clinical notes from MIMIC-III (John-
son et al., 2016). In particular, Huang et al. (2020)
showed the effectiveness of its ClinicalBERT-based
model for predicting hospital readmissions.

Many NLP applications in the medical domain
can be formulated as either token classification,
sequence classification or sequence regression, in
which a pretrained language model such as clin-
icalBERT can be used to encode the input token
sequence (which returns either the encoding for
every input token or just the [CLS] token) and then
a task-specific prediction model is added on top to
generate the final output (Gu et al., 2020). In this
section, we describe the Transformer encoder and
the signature transform, which are the bases of our
proposed architecture.

2.1 Transformer Encoder

The Transformer model employs an encoder-
decoder structure (Vaswani et al., 2017). Its en-
coder, which is the model architecture of BERT, is
composed of a stack of N identical layers. Each
layer has a multi-head self-attention mechanism
followed by a position-wise fully connected feed-
forward network. The attention function used in
the Transformer model takes three input vectors:
query (Q), key (K) and value (V ). It generates
an output vector by computing the weighted sum
of the values. The weights are computed by the
dot products of the query and all keys, scaled and
applied a softmax function.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Multi-head attention splits Q, K and V into multi-
ple heads by linearly projection, which allows the
model to jointly attend to information at different
positions from different representation subspaces.
Each projected head goes through the scaled dot-
product attention function, then concatenated and
projected again to output the final values. The
Transformer encoder does not explicitly model po-
sition information in its structure, and instead it re-
quires adding representations of absolute positions
(i.e. positional encoding) to its inputs. Shaw et al.
(2018) presented an extension to self-attention,
which incorporates relative position information

ever, it did not address the clinical domain and has left it for
future work.



for the input data. In this work, we propose to
integrate signature transform with self-attention
given that path signatures have been proven to be
an effective way of capturing the sequential order
information in the data.

2.2 Signature Transform

The theory of rough paths, developed by Lyons
(1998), can be thought of as a non-linear exten-
sion of the classical theory of controlled differ-
ential equations. Path signature or simply signa-
ture, is an infinite collection of statistics charac-
terising the underlying path (a discretised version
of a continuous path), and signature transform is
the map from a path to its signature3. Consider
a d-dimensional time-dependent path P over the
time interval [0, T ] ⊂ R, to a continuous map
P : [0, T ]→ Rd. The signature S(P ) of this path
P over time interval [0, T ] is the infinite collection
of all iterated integrals of P such that every con-
tinuous function of the path may be approximated
arbitrarily well by a linear function of its signature:

S(P )0,T = (1, S(P )10,T , . . . , S(P )
d
0,T , S(P )

1,1
0,T , . . . )

where the 0th term is 1 by convention, and
the superscripts of the terms after the 0th

term run along the set of all multi-index
{(i1, . . . , ik)|k ≥ 1, i1, . . . , ik ∈ [d]} with the co-
ordinate iterated integral being:

S(P )i1,...,ik0,T =

∫
· · ·
∫

t1<···<tk
t1,...,tk∈[0,T ]

dP i1
t1
⊗ · · · ⊗ dP ik

tk

where ∀k ≥ 1, Pt ∈ Rd, ∀t ∈ [0, T ]. S(P )i1,...,ik0,T

is termed as the kth level of the signature. In prac-
tice we truncate the signature to order n, where the
degree of its iterated integrals is no greater than n.
This ensures the path signature has finite dimen-
sional representation. Let TS(P )n0,T denote the
truncated signature of P of order n, i.e.

TS(P )n0,T = (1, S(P )10,T , . . . , S(P )
kn
0,T )

Therefore the dimensionality of the truncated path
signature is (dn+1 − d)(d − 1)−1. We describe
signature transform in more (mathematical) details
in Appendix A.2.

3We refer the reader to (Lyons, 2014) for a rigorous intro-
duction of signature transform, and (Chevyrev and Kormilitzin,
2016) for a primer on its use in machine learning.

In recent years using path signatures as features
in a suitable neural network model has shown suc-
cess in various applications, such as online hand-
written Chinese character recognition (Yang et al.,
2016; Xie et al., 2018), action recognition in videos
(Yang et al., 2017) and speech emotion recognition
(Wang et al., 2019). More recently, Kidger et al.
(2019) proposed to use signature transform deeper
within a network, rather than as a feature transfor-
mation. Kidger and Lyons (2020) developed dif-
ferentiable computation of signature transform on
both CPU and GPU. To the best of our knowledge,
we are the first to incorporate signature transform
in the Transformer architecture.

Figure 1: The Sig-Transformer Encoder. dsig is the
dimension size in the truncated signature, and dmodel

is the dimension size in the embedding layer as well as
before and after the second feed-forward sub-layer.

3 Sig-Transformer Encoder

In this section, we present our proposed exten-
sion to the Transformer Encoder (TE), named Sig-
Transformer Encoder (STE). As depicted in Fig-
ure 1, STE consists of a stack of N identical lay-
ers, and each layer has three sub-layers. It re-
places the multi-head self-attention sub-layer in
TE with our Additive Multi-Head Sig-Attention
mechanism, followed by two position-wise fully
connected feed-forward sub-layers. Same as the
Transformer model, we also employ a residual
connection (He et al., 2016) at the last sub-layer.
followed by layer normalisation (Ba et al., 2016).
The two feed-forward sub-layers and the embed-



Figure 2: (left) Sig-Attention mechanism; (right) Additive Multi-Head Sig-Attention.

ding layers, produce output of the same dimension
dmodel = 768.

3.1 Sig-Attention
The core idea behind our proposed Additive Multi-
Head Sig-Attention is the Sig-Attention mechanism
(Figure 2 left). It takes the query (Q), key (K) and
value (V ) vectors as input, and performs three con-
secutive transformations: (1), scaled dot-product
attention; (2), position-wise fully linear map, for
dimensionality reduction; (3), signature transform.
Its output is computed as follows:

SigAttention(Q,K, V ) =

ReducedSig(Attention(Q,K, V ))

where

• Attention(Q,K, V ) is as defined in Equa-
tion (1);

• ReducedSig(x) = SN (xW + b) for any x;

• SN is the signature truncated at a given order
N ;

• W and b are respectively the weight and bias
matrices of the linear map.

As the size of the truncated signature increases ex-
ponentially with its input dimension, it is important
to reduce the size of attended context vector before
applying signature transform. We refer the read-
ers to Table 5 for examples of how the size of the
truncated signature (dsig) is determined by its in-
put dimension (dpresig) and the order of signature
truncation (ordersig).

3.2 Additive Multi-Head Sig-Attention

In the proposed Additive Multi-Head Sig-Attention
model, we combine the information from the input
sequence with the output of Sig-Attention, in differ-
ent representation subspaces (Figure 2 right). The
model takes the embedding of an input sequence
X as well as the queries, keys and values as input:

AdditiveMultiHead(X,Q,K, V ) =

Concat(head1, ...,headh)

where headi = ReducedSig(X)+

SigAttention(QWQ
i ,KW

K
i , V W

V
i )

and h is the number of parallel heads, the projec-
tions are parameter matrices WQ

i ∈ Rdmodel×dk ,
WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dk and dk =

dmodel/h.
As shown in Figure 2 (right), we linearly project

the queries, keys and values as well as the input em-
beddings to dmodel and dpresig dimensions. Then
the query, key and value vectors will be fed into the
Sig-Attention mechanism, while having been re-
duced its dimensions by the linear projection the in-
put vector X will be applied to signature transform.
The two output signatures are added, resulting in
one signature vector si ∈ Rdsig for each head i.
Finally all the signature vectors are concatenated
and passed onto the next sub-layer.

3.3 Position-wise Feed-Forward Networks

The second sub-layer in Figure 1 is a linear transfor-
mation W ∈ Rdsig×dmodel which is applied to each
position separately and identically. It simply brings



back the dimensions from dsig to dmodel. The third
sub-layer is a ReLU activation followed by another
linear transformation. The dimensionality of its
input and output is dmodel.

3.4 Dropout
Dropout is applied to the output of the three sub-
layers as well as after the ReLU activation in the
third sub-layer. We use a rate of Pdrop = 0.1, as is
used in (Vaswani et al., 2017). Moreover, residual
connection and layer normalisation are used only
in the third sub-layer.

4 Data

Our proposed Sig-Transformer Encoder can be
used for general purpose representation learning,
and any classifier or regressor can be added on top
of it to perform down-stream tasks. We conduct all
of our experiments with a medical prescription data
for the class of “beta-blockers (ATC code C07)”,
provided by the Karolinska University Hospital.
It is sampled from a much larger database of 41
million medical prescription records. This dataset
contains 3,852 non-duplicated prescriptions written
in Swedish. Some examples of annotated prescrip-
tions are shown in Table 1.

The medical practitioners at the hospital have
annotated three labels, in which we use QUANTITY

for regression while QUANTITY TAG and INDICA-
TION as two classification tasks:

• QUANTITY: the total amount of tablets or
capsules prescribed. The values are multiples
of 0.5;

• QUANTITY TAG (5 classes): the label or tag
of the quantity prescribed to the patient;

1. Not Specified: the quantity was not spec-
ified in the prescription;

2. Complex : a range of quantities was
given. In that case, the quantity is an
average between the minimum and the
maximum quantities;

3. PRN : prescription to take only if needed;
4. As Per Previous Prescription: refers to

guidance in previous prescription;
5. Standard: standard prescription;

• INDICATION (5 classes): the purpose of the
prescription. It originally had 44 classes
where many account for only one record4. The

4The original 44 classes and the number of prescriptions
per class, can be found in Figure 5.

medical practitioners have aggregated them
into 5 medically meaningful classes: Cardiac,
Tremors, Migraine, Others, and NA (Not An-
notated).

One challenge of the data is the remarkable class
imbalance in its labels, as shown in Table 2. It’s
still prominent in the INDICATION field after ag-
gregating the original classes, where Cardiac and
NA account for majority of the instances, while the
other 3 classes are seldom annotated in the data.
Another challenge, which is prevalent in electronic
health record (EHR) datasets, is the free-form na-
ture of its text and the writing styles vary consider-
ably between different doctors.

Figure 3: Multi-task learning architecture without Sig-
Transformer Encoder (STE).

Figure 4: Our proposed multi-task learning architecture
with Sig-Transformer Encoder (STE).

4.1 Data Preprocessing

As mentioned in Section 1 we experiment two dif-
ferent embedding models for the Swedish prescrip-
tion records, in which one of them, namely Clinical-
BERT (Huang et al., 2020), requires its input text
to be English. We use the Google Translate API to
obtain translated English prescriptions. Minimal
text preprocessing was taken, and all prescription
text including non-ASCII characters (e.g. å, ä, ö)
was read with UTF-8 encoding.



Swedish Translated English Indication Quantity Quantity Tag
1 TABLETT FOREBYGGANDE

MOT MIGRAN
1 tablet prevention

against migrain
Migraine 1 Standard

MOT HOGT BLODTRYCK
OCHHJARTKLAPPNING

2 TABLETTER KLOCKGAN 08:00
1 TABLETT KLOCKAN 18:00.

Against high blood pressure
and heart palpitations

2 tablets at 08:00,
1 tablet at 18:00.

Cardiac-
hypertension

3 Standard

2 TABLETTER KL. 08,
2 TABLETT KL. 20. DAGLIGEN.

OBS KVALLSDOSEN HAR
HOJTS JFRT MED 070427.

2 tablets kl. 08,
2 tablet kl. 20. Daily.

Note the evening box has
hojts jfrt with 070427.

NA 4 Standard

1 tablett vid behov mot stress 1 tablet if needed against stress Anxiety 1 PRN

FOR BLODTRYCK
OCH HJARTRYTM -

For blood pressure
and heart rhythm -

Cardiac-
hypertension-
dysrhythmia

0 Not Specified

1 tabl pA morgonen och
en halv tabl pA kvAllen

fOr hjArtrytmen.

1 table in the morning and
a half table in the evening

for the heart rhythem.

Cardiac-
dysrhythmia

1.5 Standard

1-2 tablett 2 gAnger dagligen 1-2 tablets 2 times daily NA 3 Complex

Table 1: Example prescriptions with translations and annotations. The second column is the English translation
obtained from Google Translate API. The last three columns are the labels of interest which we aim to extract
automatically. Some longer example prescriptions can be viewed in Table 8.

QUANTITY TAG INDICATION

Standard 3489 90.6% Cardiac 2980 77.4%
PRN 89 2.3% Tremors 81 2.1%
APPP 40 1.0% Migraine 69 1.8%

Complex 29 0.8% Other 15 0.4%
NS 205 5.3% NA 707 18.4%

Table 2: Class distribution for QUANTITY TAG and IN-
DICATION. APPP is an abbreviation for As Per Previ-
ous Prescription, NS stands for Not Specified and NA
stands for Not Annotated.

5 Multi-Task Learning

Our objective is to automatically find the QUAN-
TITY of prescribed medicine as well as QUANTITY

TAG and INDICATION of the prescription, for each
prescription note. We formulate this as a multi-task
learning problem consisting of a regression task
and two classification tasks. As depicted in Fig-
ure 3, such multi-task learning model uses BERT
or any of its variants to encode each input prescrip-
tion note represented by the respective [CLS] token,
then we can add three separate predictors on top
of it and all three jointly learn with the embedding
layer. We use this architecture as one of our base-
line approaches.

In our proposed multi-task learning architecture,
we add Sig-Transformer Encoder (STE) in-between
the embedding layer (BERT) and the three predic-
tors in order to learn the sequential order informa-

tion in the input text encoded by the token-level
BERT representations (instead from [CLS]). The
three predictors and STE are jointly trained. We
compare the two architectures and other baseline
models in Section 6.

6 Experiments

6.1 Experiment Setup

As described in Section 2, BERT and its variants
have been used in a range of clinical machine learn-
ing tasks. Considering our data is in Swedish we
explore two different approaches for encoding the
prescription notes: (1), Apply Multilingual BERT
(M-BERT) (Devlin et al., 2018) directly to the
Swedish text; (2), Translate the prescriptions to
English as described in Section 4.1, and then en-
code the translated text with ClinicalBERT (Huang
et al., 2020). ClinicalBERT is fine-tuned on clini-
cal notes, therefore it has embedded more domain
knowledge and has proven to be more effective
over BERT-base on several clinical tasks. However,
any translation error would affect the performance
of subsequent models.

We use the PyTorch implementation of Trans-
formers by Hugging Face5 for loading M-BERT
and ClinicalBERT, and Signatory6 (Kidger and
Lyons, 2020) for differentiable computations of

5https://github.com/huggingface/transformers
6https://github.com/patrick-kidger/signatory



signatures on GPU. We use a linear layer as the
classifier for QUANTITY TAG, and two-layer net-
work for QUANTITY and INDICATION respectively.
More details of the implementation choices are de-
scribed in Appendix A.1. We use cross-entropy
(CE) loss for the two classification tasks and mean-
square error (MSE) for the regression task. The
overall loss function is a weighted average of the
loss functions of all three tasks:

L =

αqnt ×MSEqnt + βqntt × CEqntt + βind × CEind

where qnt stands for quantity, qntt stands for quan-
tity tag, ind stands for indication, and αqnt+βqntt+
βind = 1. αqnt, βqntt and βind are parameters to
be optimised.

To compare model performance we use the sim-
ple multi-task learning models described in Sec-
tion 5 without adding STE (Figure 3), as the base-
line systems. We also replace STE with LSTM for
comparison as both learn sequential information
from the input data7. All experiments are con-
ducted using 5-fold cross validation, where we use
3 folds for training, 1 fold for validation and 1 fold
as the test set at each iteration. We repeat the ex-
periments for each model with 10 different random
seeds and average the scores as the final result.

6.2 Results

The results for all three tasks are summarised in
Table 3. We first notice all models have failed to
recognise the INDICATION classes, which we will
discuss in Section 6.3. In this section we mainly
discuss the performance for QUANTITY and QUAN-
TITY TAG.

Among the three models without the use of
LSTM or STE, both ClinicalBERT and Multilin-
gual BERT (M-BERT) outperform the BERT-base
model in all three tasks. As for the three LSTM-
based models, using the BERT-base representa-
tions achieves the best performance while Clini-
calBERT and M-BERT are comparable with each
other. Among our proposed STE-based models,
M-BERT+STE outperforms the other two variants.

Comparing the results across the board, adding
LSTM or STE improves the model performance
in most cases except for ClinicalBERT, where the

7Unlike the Transformer model, recurrent neural networks
(RNNs) such as LSTM, model relative and absolute positions
along the time dimension directly through their sequential
structure (Shaw et al., 2018).

addition of LSTM or STE has worsened the per-
formance for ClinicalBERT. We think the poten-
tial discrepancies in the translation of the Swedish
prescriptions have possibly affected the working
of LSTM and STE, as both models take all the
translated token embeddings of each prescription
as input where the simple ClinicalBERT baseline
only takes the encoding of the [CLS] token as input.
Comparing between the two different prescription
embedding approaches, translating them then apply
ClinicalBERT clearly beats using the multilingual-
BERT when LSTM or STE is not added. When we
incorporate LSTM or STE in the model, the mul-
tilingual embedding approach has obtained better
results in most cases. Overall, one of our proposed
models, M-BERT+STE, achieves the best perfor-
mance for the QUANTITY and QUANTITY TAG

tasks8.
In Table 6 we present results obtained by each

model across different classes of QUANTITY TAG.
We can see the Standard class (i.e. standard pre-
scription) followed by PRN (i.e. prescription to
take only if needed) and APPP (i.e. as per previous
prescription) have received better classifications
by the three STE models. The models also per-
formed well in the Not Specified class. The Com-
plex class refers to a range of quantities given in the
prescription. As expected, many models do not per-
form well in this class. The overall best performing
model, M-BERT+STE, also performs consistently
well across different classes of QUANTITY TAG.

6.3 The difficult case of Indication

The class imbalance is remarkable for QUANTITY

TAG and INDICATION in this dataset, as described
in Section 4. The strong results obtained from many
models for QUANTITY TAG suggests albeit the
class imbalance the boundaries between its classes
are distinguishable and can be learnt from fewer
examples. INDICATION is a more challenging task.
The aggregation of the original 44 classes to the
final 5 classes has reduced the severity of the class
imbalance issue9. However, the new classification
becomes much less distinguishable and the new
classes are less distinct as each class now contains

8The results obtained by M-BERT+STE and ClinicalBERT
are different at the significance level of 0.1, with p = 0.068
and 0.065 for QUANTITY and QUANTITY TAG respectively,
using Wilcoxon signed-rank test.

9We have experimented with the original 44 classes, and
obtained terrible results. We have also tried setting class
weights to alleviate the class imbalance issue with no signifi-
cant difference observed in the final results.



Model QUANTITY QUANTITY TAG INDICATION
Base 0.50 0.60 0.08
ClinicalBERT 0.21 0.89 0.09
M-BERT 0.41 0.63 0.10
Base + LSTM 0.45 0.76 0.06
ClinicalBERT + LSTM 0.47 0.64 0.10
M-BERT + LSTM 0.50 0.68 0.02
Base + STE 0.23 0.78 0.03
ClinicalBERT + STE 0.36 0.77 0.06
M-BERT + STE 0.15 0.92 0.05

Table 3: Performance comparison between our proposed STE-based approaches and baseline models. The QUAN-
TITY task is measured in mean squared error (MSE), while for QUANTITY TAG and INDICATION we use Macro
F-1 score. Base refers the original BERT-base model, M-BERT is the Multilingual BERT model pretrained on
Swedish text data. STE refers to Sig-Transformer Encoder.

a range of topics, as shown in Figure 5. Such low
scores are also observed across different classes of
INDICATION in Table 7.

6.4 Ablation Study
The positional encoding proposed in (Vaswani
et al., 2017) is based on sinusoids of varying fre-
quency, and the authors hypothesise this would help
the model to generalise to sequences of variable
lengths during training. Our proposed architecture
has both the absolute positional representations of
words and the signature transform that is also in-
variant to the sequence length for encoding order of
events. Here we conduct ablation study by remov-
ing the positional encoding or the signature trans-
form components from the best performing model,
M-BERT+STE, and compare the results. As shown
in Table 4, we obtain worse performance without
positional encoding or without signature transform,
for all three tasks, suggesting the contributions of
using the absolute positional encoding and the pro-
posed integration of signature transform.

Model Quantity Quantity Tag Indication
Full model 0.15 0.92 0.05
w/o PE 0.38 0.81 0.01
w/o ST 0.31 0.77 0.02

Table 4: Ablation study of the best performing M-
BERT + STE model, removing positional encoding
(PE) or signature transform (ST).

7 Conclusions and Future Work

In this work, we propose a new extension to the
Transformer architecture, named Sig-Transformer

Encoder (STE), by incorporating signature trans-
form with the self-attention mechanism. As a pre-
liminary study, we aimed to automatically extract
information related to quantity, quantity tag and
the indication label from a Swedish medical pre-
scription dataset. We demonstrated good perfor-
mance in two of the three tasks in a multi-task
learning framework. Lastly, we compared two
embedding approaches between applying Clinical-
BERT (on translated text) and Multilingual BERT
(M-BERT). Although one of our proposed models,
namely M-BERT+STE, reported the best perfor-
mance for quantity and quantity tag, all models
failed to perform on the indication task which we
provided possible explanations.

For future work, we plan to apply the pro-
posed STE models to the much larger prescription
database and investigate ways to improve the la-
belling for indication. We also plan to benchmark
our models on other clinical tasks such as predict-
ing hospital readmission (Huang et al., 2020), as
well as the more general NLP tasks evaluated in
(Devlin et al., 2018). Moreover, a further inves-
tigation to better understand the contribution of
signature transform and the interplay between sig-
nature and attentions would be very insightful.
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A Appendices

A.1 Implementation Details
Our classifier for INDICATION is a two-layer net-
work, in which the first layer has the size of 50
and 5 for the second layer. ReLU activation and
dropout are used in-between the two layers. The
dropout rate is set to be 0.1. We also use a two-
layer network for the QUANTITY regression task,
in which the first layer has the size of 10 and its
second layer predicts the value for quantity. We
also add a dropout the rate 0.1 in-between the two
layers. Our classifier for QUANTITY TAG has only
one layer the size of 5.

We reduce the dimension of attended vector be-
fore signature transform from 768 to 32, as de-
picted in Figure 2 (left). We set the order of trun-
cated signature to be 2, and employ 8 parallel atten-
tion layers (or heads). We ran grid-search over two
choices of learning rate lr : [0.00003, 0.00005],
and 10 randomly sampled triplets of αqnt, βqntt
and βind. Each value of αqnt, βqntt and βind is
between 0 and 1 respectively, while we make sure
each combination of the three values sums to 1.

A.2 Signature of paths
We begin with the definition of the signature, using
more traditional notation of stochastic calculus.
Definition 1. Let X = (X1, ..., Xd) be a path in
Rd. The signature of X is defined as the infinite
collection of iterated integrals:

S(X) =

(∫
...

∫
a<t1<...<tk<b

dXt1 ⊗ ...⊗ dXtk

)
k≥0

=

((∫
...

∫
a<t1<...<tk<b

dXi1
t1
...dXik

tk

)
1≤i1,...,ik≤d

)
k≥0

where dXt =
dXt
dt dt and the k = 0 term is taken

to be 1 ∈ R.
Definition 2. The truncated signature of order N
of X is defined as:

SN (X) =

(∫
...

∫
a<t1<...<tk<b

dXt1 ⊗ ...⊗ dXtk

)
0≤k≤N

.

The dimension of the truncated signature explodes
exponentially with the input path dimension:
Proposition 1. For any d ≥ 1, the truncated sig-
nature of order N of a d-dimensional path has the
dimension of:

N∑
k=0

dk =
dN+1 − 1

d− 1

In practice, the term of order 0 is dropped as it is
always equal to 1. For clarity, we define:

S(X)i1,...,ik =

∫
...

∫
a<t1<...<tk<b

dXi1
t1
...dXik

tk

with 1 ≤ i1, ..., ik ≤ d, so that:

S(X) =
((
S(X)i1,...,ik)1≤i1,...,ik≤d

))
k≥0

= (1, S(X)1, ..., S(X)d, S(X)1,1, S(X)1,2, ...).



dpresig ordersig dsig
512 1 512
512 2 262K
256 2 66K
128 2 16K
128 3 2M
64 2 4K
64 3 266K
32 2 1057
32 3 34K
16 2 272

dpresig ordersig dsig
16 3 4K
8 2 72
8 3 584
8 4 5K
4 4 340
4 5 1365
4 6 5K
2 9 1022
2 10 2K
2 12 8K

Table 5: The number of dimensions (dsig) of the truncated signature is determined by the size of its input (dpresig)
and the order of truncation selected (ordersig).

Model QUANTITY TAG QUANTITYStandard APPP PRN Complex NS
Base 0.71 0.50 0.10 0.76 0.95 0.50

ClinicalBERT 0.83 0.97 0.89 0.99 0.79 0.21
M-BERT 0.94 0.41 0.04 0.81 0.98 0.41

Base + LSTM 0.93 0.36 0.99 0.77 0.74 0.45
ClinicalBERT + LSTM 0.90 0.23 0.99 0.61 0.49 0.47

M-BERT + LSTM 0.29 0.99 0.72 0.47 0.93 0.50
Base + STE 0.97 0.84 0.77 0.44 0.88 0.23

ClinicalBERT + STE 0.99 0.70 0.85 0.65 0.65 0.36
M-BERT + STE 0.86 0.97 1.00 0.89 0.86 0.15

Table 6: Model performance comparison for QUANTITY and also across different classes in QUANTITY TAG.
APPP: As Per Previous Prescription; NS: Not Specified.

Model INDICATION
Cardiac Tremors Migraine Others NA

Base 0.03 0.05 0.02 0.27 0.03
ClinicalBERT 0.00 0.24 0.03 0.04 0.13

M-BERT 0.05 0.01 0.09 0.35 0.00
Base + LSTM 0.02 0.00 0.00 0.31 0.00

ClinicalBERT + LSTM 0.01 0.03 0.34 0.08 0.02
M-BERT + LSTM 0.05 0.00 0.00 0.04 0.03

Base + STE 0.00 0.00 0.02 0.08 0.05
ClinicalBERT + STE 0.00 0.26 0.05 0.02 0.00

M-BERT + STE 0.00 0.11 0.00 0.00 0.15

Table 7: Model performance comparison across different classes in INDICATION. NA: Not Annotated.



Figure 5: Number of prescriptions per indication class, where the indication label has the original 44 classes. NA
stands for Not Annotated.
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