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Abstract

Machine Learning (ML) is so pervasive in our todays life that we don’t even realise that,
more often than expected, we are using systems based on it. It is also evolving faster than
ever before. When deploying ML systems that make decisions on their own, we need to
think about their ignorance of our uncertain world. The uncertainty might arise due to
scarcity of the data, the bias of the data or even a mismatch between the real world and
the ML-model. Given all these uncertainties, we need to think about how to build systems
that are not totally ignorant thereof. Bayesian ML can to some extent deal with these
problems. The specification of the model using probabilities provides a convenient way to
quantify uncertainties, which can then be included in the decision making process.
In this thesis, we introduce the Bayesian ansatz to modeling and apply Bayesian ML
models in finance and economics. Especially, we will dig deeper into Gaussian processes
(GP) and Gaussian process latent variable model (GPLVM). Applied to the returns of
several assets, GPLVM provides the covariance structure and also a latent space embedding
thereof. Several financial applications can be build upon the output of the GPLVM. To
demonstrate this, we build an automated asset allocation system, a predictor for missing
asset prices and identify other structure in financial data.
It turns out that the GPLVM exhibits a rotational symmetry in the latent space, which
makes it harder to fit. Our second publication reports, how to deal with that symmetry.
We propose another parameterization of the model using Householder transformations,
by which the symmetry is broken. Bayesian models are changed by reparameterization,
if the prior is not changed accordingly. We provide the correct prior distribution of the
new parameters, such that the model, i.e. the data density, is not changed under the
reparameterization. After applying the reparametrization on Bayesian PCA, we show
that the symmetry of nonlinear models can also be broken in the same way.
In our last project, we propose a new method for matching quantile observations, which
uses order statistics. The use of order statistics as the likelihood, instead of a Gaussian
likelihoood, has several advantages. We compare these two models and highlight their
advantages and disadvantages. To demonstrate our method, we fit quantiled salary data
of several European countries. Given several candidate models for the fit, our method also
provides a metric to choose the best option.
We hope that this thesis illustrates some benefits of Bayesian modeling (especially Gaus-
sian processes) in finance and economics and its usage when uncertainties are to be quan-
tified.
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Zusammenfassung (Summary in German)

Die vorliegende Arbeit beschäftigt sich mit bayesianischer Statistik und ihrer Anwendung
im Bereich Finanzen und Ökonomie.

Es wurden drei verschiedene Themen behandelt, welche bereits verö↵entlicht sind oder in
einer verö↵entlichungswürdigen Form vorliegen. Diese Dissertation ist eine Erweiterung
der Verö↵entlichungen “Applications of Gaussian process Latent Variable Models in Fi-
nance” (Nirwan and Bertschinger, 2019b) und “Rotation Invariant Householder Param-
eterization for Bayesian PCA” (Nirwan and Bertschinger, 2019a) und der noch nicht
verö↵entlichten Arbeit “Bayesian Quantile Matching Estimation” (Nirwan and Bertschinger,
2020). Die Erweiterung umfasst eine detaillierte Einführung in die Themen und Beschrei-
bung der Modelle und Experimente.

Nach der allgemeinen Einführung in das maschinelle Lernen und der Wichtigkeit der Ein-
schätzung von Unsicherheiten in Kapitel 1, geben wir einen Überblick in die bayesianische
Statistik in Kapitel 2. Der Überblick vergleicht das klassische Vorgehen (frequentistisch)
mit dem bayesianischen Ansatz anhand der linearen Regression (LR). Das mathematisch
sehr simple LR Modell ist gut zu interpretieren und ist analytisch lösbar, kann aber auf-
grund seiner mangelnden Flexibilität die Struktur von komplexen Datensätzen nicht er-
fassen. In diesem Kapitel zeigen wir den Vorteil des bayesianischen Ansatzes gegenüber
des klassischen Ansatzes. Dieser liegt in der Abschätzung von Unsicherheiten in den gel-
ernten Parameterwerten. Die Unsicherheit kann quantifiziert werden, indem man Modelle
durch Wahrscheinlichkeiten beschreibt (Bishop, 2006). Das Resultat ist dann nicht ein
Wert für einen gelernten Parameter, sondern eine Verteilung über mögliche Werte (der
Posterior).

Wie bereits erwähnt, ist die lineare Regression zwar analytisch lösbar, ihr mangelt es aber
an Flexibilität. Flexiblere Modelle können mehr Struktur erfassen, sind aber dafür nicht
mehr analytisch lösbar und müssen approximativ gelöst werden. Es gibt zwei große Klassen
der Approximationen einer Verteilung (in unserem Fall, des Posteriors). Eine davon,
Markov Chain Monte Carlo (MCMC), approximiert den Posterior durch Samples. Die an-
dere, Variational Bayes (VB), approximiert den Posterior durch eine einfachere analytische
Verteilung. In Kapitel 3 stellen wir beide Klassen vor und gehen tiefer auf Hamiltonian
Monte Carlo (HMC, ein MCMC Verfahren) (Betancourt, 2017) und Variational Inference
(VI, ein VB Verfahren) (Bishop, 2006; MacKay, 2002) ein. Wir benutzen sowohl HMC, als
auch VI in den Experimenten. Glücklicherweise muss man diese Methoden (HMC und VI)
nicht selbst programmieren. Es gibt probabilistische Programmiersprachen, die die Im-
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plementierung der bayesianischen Modelle vereinfachen. In dieser Arbeit haben wir Stan
(Carpenter et al., 2017) verwendet, welches wir in Kapitel 3 erläutern. Stan liefert eine
Implementierung von HMC und VI, das man Out-of-the-box verwenden kann. Somit muss
man sich nicht mehr um die Solver kümmern, sondern kann sich voll auf die Modellierung
konzentrieren.
Kapitel 4 und 5 sind Einführungen in die bayesianische Machine Learning Modelle, welche
wir in den Verö↵entlichungen verwenden. Kapitel 4 erklärt detailliert die Funktion-
sweise der Gaußschen Prozesse (Rasmussen and Williams, 2005). Gaußsche Prozesse sind
Wahrscheinlichkeitsverteilungen von Funktionen und werden bei der Interpolation und
Extrapolation von Daten verwendet. Genauso wie eine Gauß-Verteilung sind Gaußsche
Prozesse durch den Erwartungswert und einer Kovarianzfunktion eindeutig bestimmt. Die
Kovarianzfunktion bestimmt die Eigenschaften (Stetigkeit, Di↵erenzierbarkeit, ...) der
Funktionssamples aus dem Prozess. Diese wird auch in unseren Analysen eine wichtige
Rolle einnehmen. Kapitel 5 behandelt Latent Variable Models (LVM) (Bishop, 2006).
Diese werden häufig in Unsupervised-Learning benutzt, wenn Daten ohne Labels vor-
liegen und man an den latenten Variablen interessiert ist, welche die Daten generieren.
Die Kombination von GPs und LVMs ergibt das Gaussian process latent variable model
(GPLVM), eingeführt in Lawrence (2005). Wir benutzen GPLVM, um Struktur in nicht
gelabelten Finanzdaten zu erkennen.
Kapitel 6 bis Kapitel 10 erklären detaillierter die Verö↵entlichungen. Nach der Einführung
in die Themen werden die Erweiterungen der Modelle und die Experimente beschrieben.

Gaussian process latent variable models in Finance

Kapitel 6 führt die Finanz-Modelle ein. Unter anderem werden das Capital Asset Pricing
Model (CAPM, Sharpe (1964)) und Arbitrage theory of capital asset pricing (APT, Ross
(1976)) eingeführt. Diese beschreiben die Abhängigkeit der Rendite eines Assets von
anderen latenten Faktoren. Diese Faktoren sind nicht beobachtbar, sondern werden von
den bereits beobachteten Daten abgeleitet. Es wird eine lineare Abhängigkeit der Faktoren
und der Rendite vorausgesetzt. Das Modell ist bekannt unter Faktor-Modell (Everett,
1984).
Die erste Verö↵entlichung (Nirwan and Bertschinger, 2019b) verallgemeinert diese Mod-
elle durch die GPLVMs. Kapitel 7 zeigt, dass durch das Benutzen eines linearen Kernels,
GPLVM auf APT zurückgeführt werden kann. In den Experimenten schauen wir uns
die Aktienpreise der Unternehmen in den S&P500 an. Die Zeitreihen der Preise für ver-
schiedene Unternehmen werden in einer Matrix zusammengefasst und daraus die Returns
(Änderung des Preises von einem Tag auf den nächsten) berechnet. Die Matrix der Re-
turns bildet die Basis der Experimente. Wir zeigen, dass das GPLVM mit nicht-linearen
Kernels in der Lage ist, mehr Struktur in den Daten zu erfassen als mit linearem Kernel,
welches äquivalent zu APT ist. Die Anwendung der GPLVMs gibt uns die Latent Space
Repräsentation X der Assets. Außerdem liefert das Modell auch die Kovarianz Matrix K

der Assets. Wir benutzen sowohl X als auch K für weitere Analysen.
Es gibt viele verschiedene Finanzanwendungen, in denen man das GPLVM benutzen kann.
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Wir stellen drei davon vor.
Portfolio Allokation: Hier benutzen wir die Kovarianz der Assets K um ein risikoarmes
Portfolio (minimal risk portfolio) zu erstellen. Wir simulieren die Performance auf Basis
historischer Werte und vergleichen das Risiko unseres Portfolios mit anderen Kovarianz-
Schätzern. Dabei benutzen wir die Daten der Unternehmen in den S&P500 von 2002 bis
2018. Die aufgestellten Portfolios durch das GPLVM mit nicht-linearen Kernels ergaben
das geringste Risiko.
Bestimmung der fehlenden Werte: Falls ein Asset an einem Tag nicht gekauft wurde,
gibt es keinen Wert (Kaufpreis) dafür. Als Proxy kann der Wert des letzten Tags genom-
men werden oder ein Durchschnitt der Werte der letzten Tage. Der konstruierte Latent
Space X durch das GPLVM gibt uns eine andere Möglichkeit, den fehlenden Wert zu
bestimmen. Gegeben X, können wir einen standard GP an dem Tag trainieren, an dem
der Wert fehlt und haben somit einen Schätzer für fehlende Werte, der nicht nur die Infor-
mation aus der Historie eines Assets, sondern auch die Korrelation des Assets mit anderen
Assets mitberücksichtigt.
Latent Space Repräsentation: Für stationäre Kernels hat der Abstand zweier As-
sets in den Latent Space einen direkten Einfluss auf deren Korrelation. Assets, die nahe
beieinander sind, haben eine größere Korrelation als Assets, die weiter weg voneinander
liegen. Dies führt zu einer Gruppierung der Assets basierend auf ihrem Teilsektor. Diese
Struktur im Latent Space kann genutzt werden, um Portfolios mit dekorrelierten Assets
zu bilden. Zum Beispiel kann man aus N Assets M viele in das Portfolio aufnehmen,
die den paarweisen Abstand maximieren. Man kann auch ein Portfolio aus der konvexen
Hülle konstruieren.

Rotation invariant Householder parameterization for Bayesian
PCA

GPLVM mit linearen und stationären Kernels hat das Problem, dass der Latent Space
nicht eindeutig festgelegt ist, sondern eine Rotationssymmetrie aufweist. Diese Symme-
trie erschwert nicht nur die Interpretation des Latent Space’s, sondern auch dessen Explo-
ration beim Samplen (z. B.: durch Hamiltonian Monte Carlo). In Kapitel 8 schlagen wir
eine Umparametrisierung des Modells vor, die das Modell nicht ändert (erzeugt dieselbe
Datendichte wie das ursprüngliche Modell), aber trotzdem die Rotationssymmetrie bricht.
Nirwan and Bertschinger (2019a) beinhaltet die Verö↵entlichung.
Bei einem probabilistischen Modell muss man beachten, dass eine Umparametrisierung
(Substituion) auch einer Korrektur des Priors bedarf, damit das Modell gleich bleibt.
Kennt man aber die richtige Verteilung der neuen Parameter, braucht man die Korrektur
nicht zu berechnen. Für einen linearen Kernel entspricht das GPLVM der Principle Com-
ponent Analysis (PCA, Tipping and Bishop (1999)), welches wir als Beispiel für unsere
Umparametrisierung nehmen. PCA bildet die beobachteten Daten Y auf eine niederdi-
mensionale Mannigfaltigkeit ab. Die probabilistische Variante kann man sich als ein gen-
eratives Modell vorstellen, welches die niederdimensionalen Daten X über eine lineare
Abbildung W nach Y = WX + ✏ abbildet. Für einen Gauß Prior auf X kann man X
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analytisch raus integrieren. Die marginale Verteilung (marginal likelihood) p(Y |W ) hängt
dann von dem äußeren Produkt WW

T ab. Eine Rotation von W ändert p(Y |W ) nicht.
Deshalb ist das Modell rotationsinvariant. Wir brechen die Rotationssymmetrie, indem
wir W durch Singulärwertzerlegung in U , ⌃ und V zerlegen (W = U⌃V T ) und statt W
als Parameter, U und⌃ als Parameter verwenden. V kann ignoriert werden, da das äußere
Produkt WW

T nicht von V abhängt1. W in der ursprünglichen Parametrisierung hat
einen Gauß Prior, sodass WW

T eine Wishart Verteilung aufweist. In Kapitel 8 berech-
nen wir die Prior Verteilung auf U und ⌃, sodass U⌃2

U
T auch einer Wishart Verteilung

entspricht. Die Verteilungen auf U und ⌃, die eine Wishart Verteilung auf U⌃2
U

T im-
plizieren, lassen das Modell invariant unter der Umparametrisierung. Außer der Brechung
der Rotationssymmetrie, kommt die neue Parametrisierung mit vielen anderen Vorteilen:
Weniger Parameter: Da U eine orthogonale Matrix ist, hat sie nur DQ�

1
2Q(Q+1) viele

Freiheitsgrade. Wir benutzen Householder Transformationen um U zu parametrisieren,
welche die Anzahl der freien Parameter nicht erhöhen. Zusätzlich kommen Q Freiheits-
grade durch die Singulärwerte⌃ dazu. Im Gegensatz dazu hat W DQ viele Freiheitsgrade.
Rechene�zienz: Da wir die richtige Verteilung auf den neuen Parametern kennen,
brauchen wir die Jacobi-Determinante nicht zu berechnen. Andere Vorschläge, wie zum
Beispiel die givens Rotations (Shepard et al., 2014), brauchen eine Jacobi-Korrektur für
die DQ Parameter, welches eine Komplexität der Ordnung O(D3Q3) hat.
Interpretierbarkeit: Wir zerlegen die Abbildung W über eine Singulärwertzerlegung in
U und ⌃. U ist eine Rotation des Datenraumes und ⌃ sind die Singulärwerte. Diese In-
terpretation erlaubt es, das Wissen über die Rotation des Datenraumes oder die Ordnung
der Singulärwerte in deren Prior einzubinden. Zum Beispiel kann man einen Sparsity-
Prior auf die Singulärwerte legen, wenn man nur wenige latente Dimensionen erwartet.
Im Gegensatz dazu ist W nicht so gut interpretierbar.
Erweiterung auf nicht-lineare Modelle: In den Experimenten zeigen wir, dass wir
auch die Rotation in den Latent Space der nicht-linearen Modelle brechen können. Als
Beispiel nehmen wir wieder das GPLVM mit dem Gauß Kernel.

Bayesian quantile matching estimation

In dem letzten Projekt schlagen wir eine neue Methode für das Lernen von Wahrschein-
lichkeitsverteilungen aus Quantildaten vor. Unsere Methode ist eine Alternative zu der
bisher meist genutzten Mean Squared Error (MSE) Minimierung. In der MSE-Minimierung
wird eine kumulative Dichtefunktion (CDF) an die beobachteten Quantildaten gefittet.
Wir zeigen, dass dabei die Annahme für den Fehler um die CDF nicht gerechtfertigt ist
und die Ränder der echten Verteilung nicht akkurat abgebildet werden. Unsere Methode
benutzt die Ordnungsstatistik der Quantilwerte als Fehlermaß, welches in diesem Fall ein
besseres Maß als die quadratische Abweichung von der CDF ist.

Wir führen die Ordnungsstatistik in Kapitel 9 ein und beschreiben, im darauf aufbauen-
den Kapitel 10, unsere Methode für das Lernen von Verteilungen aus Quantildaten. Die

1 WW T = U⌃V TV ⌃TUT = U⌃2UT

x



vorgeschlagene Methode hat sehr viele Vorteile gegenüber der MSE-Minimierung, welche
im Folgenden aufgelistet sind. Wir zeigen, sowohl mit synthetischen als auch mit echten
Daten, dass für das Fitten von Quantildaten unsere Methode besser geeignet ist.
Abbildung der Ränder der Verteilung: Beobachtete Quantildaten haben eine höhere
Unsicherheit an den Rändern, weil empirisch weniger Samples aus den Rändern zur Verfügung
stehen, um diese Abzuschätzen. Das Fehlermaß, welches wir über die Ordnungsstatistik
bekommen, bildet diese Unsicherheit korrekt ab und ist somit besser geeignet für die Ab-
schätzung der Ränder.
Abschätzung der Parameterunsicherheit: Der bayesianische Ansatz liefert eine Un-
sicherheit der Modellparameter in Form der Posterior Verteilung. Unsere Experimente
mit synthetischen Daten zeigen, dass der bayesianische Ansatz mit MSE-Minimierung die
echte Unsicherheit vollkommen unterschätzt. Im Gegensatz dazu kann der bayesianische
Ansatz mit unserer Methode die Unsicherheiten deutlich besser abschätzen.
Modell Auswahl: Wir zeigen, wie man mit unserer Methode aus mehreren Verteilun-
gen die Beste auswählt. Dazu analysieren wir Gehaltsdaten von mehreren europäischen
Ländern aus 2016. Gegeben sind die 25%, 50% und 75% Quantile der Gehaltsverteilungen.
Wir zeigen, dass die Weibull-, Log-normal- und Gamma-Verteilung die besten Verteilungsan-
nahmen für diese Art von Daten sind.

Zum Schluss beinhaltet Kapitel 11 das Fazit und fasst noch einmal die Dissertation zusam-
men.

xi



ABSTRACT

xii



Contents

Abstract v

1 Introduction 1

1.1 Why uncertainty matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Frequentist vs Bayesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Bayesian modeling 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Frequentists linear regression . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Bayesian linear regression . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Approximations to the posterior 17

3.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Monte Carlo sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Markov chain Monte Carlo (MCMC) . . . . . . . . . . . . . . . . . . 20

3.1.3 Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Variational inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Probabilistic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Gaussian processes 29

4.1 Gaussian process as a limit to Gaussian distribution . . . . . . . . . . . . . 29

4.2 Gaussian process regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Weight space view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Function space view . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3 Mercer’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Kernel function and its Fourier transformation . . . . . . . . . . . . . . . . 36

4.4 Computational complexity and approximations . . . . . . . . . . . . . . . . 37



CONTENTS

5 Bayesian latent variable models 41
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Principle Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Classical PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Probabilistic PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.3 Connection of classical PCA and probabilistic PCA . . . . . . . . . 44
5.2.4 Bayesian PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Gaussian process Latent Variable Models . . . . . . . . . . . . . . . . . . . 45

6 Finance 47
6.1 Latent space models in finance . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.1 Capital Asset Pricing Model (CAPM) . . . . . . . . . . . . . . . . . 47
6.1.2 Arbitrage theory of capital asset pricing . . . . . . . . . . . . . . . . 48
6.1.3 Fama-French three-factor model . . . . . . . . . . . . . . . . . . . . 49

6.2 Modern Portfolio Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Estimation of covariance matrices . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Gaussian process latent variable models in finance 53
7.1 Nonlinear extension of APT using GPLVMs . . . . . . . . . . . . . . . . . . 53
7.2 Modeling and data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2.1 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3.1 Portfolio allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3.2 Fill in missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3.3 Interpretation of the latent space . . . . . . . . . . . . . . . . . . . . 61

8 Rotation invariant Householder parameterization for Bayesian PCA 65
8.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.2.1 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . 67
8.2.2 Random Matrix Theory . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2.3 Householder transformations . . . . . . . . . . . . . . . . . . . . . . 69

8.3 Unique PPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.3.2 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3.3 Computational complexity and runtime analysis . . . . . . . . . . . 77
8.3.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.3.5 Interpretation of the parameters and other than Gaussian priors . . 78

8.4 Extension to nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Order Statistics 83
9.1 Order Statistics of a Uniform distribution . . . . . . . . . . . . . . . . . . . 83
9.2 Generalization to non-Uniform distributions . . . . . . . . . . . . . . . . . . 84
9.3 Joint distribution of Order Statistics . . . . . . . . . . . . . . . . . . . . . . 85

xiv



CONTENTS

10 Bayesian quantile matching estimation 87
10.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.2 Fit a non-Uniform distribution given quantile information . . . . . . . . . . 89

10.2.1 Joint distribution of observed quantile values . . . . . . . . . . . . . 89
10.2.2 Generative model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.2.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10.3 CDF regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.4.1 Bayesian quantile matching estimation . . . . . . . . . . . . . . . . . 91
10.4.2 Dependency on N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.4.3 Robustness to change of a single point in the sample . . . . . . . . . 93
10.4.4 Penalty for OS and CDF-fit . . . . . . . . . . . . . . . . . . . . . . . 95

10.5 Matching salary data of di↵erent countries . . . . . . . . . . . . . . . . . . . 96

11 Summary and conclusion 101
11.1 Gaussian process latent variable models in finance . . . . . . . . . . . . . . 102
11.2 Rotation invariant Householder parameterization for Bayesian PCA . . . . 102
11.3 Bayesian quantile matching estimation . . . . . . . . . . . . . . . . . . . . . 103

A Appendix 111
A.1 Normalization Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xv



CONTENTS

xvi



Chapter 1

Introduction

The field of machine learning is evolving faster than ever before. The methods that were
only applied to toy data are now being deployed in real life settings. Machine learning will
profoundly change every aspect of our life in the next decades. It starts from mobility,
where we will have self-driving cars and ends with medical treatments, where robots will
take over critical interventions.

Machine learning systems are built to automatically track people’s health to warn them
before something bad happens (personalized medicine). If diseases are detected early they
can be treated in a state when it is easier for the patient and also for the doctor. A good
example of such an early warning system is the TREWScore for septic shocks (Henry
et al., 2015).

Machine learning is not just applied in medicine, but also in many other areas as Neuro-
science (understanding the brain, Chai et al. (2017)), Engineering (robotic and optimal
control, Kober et al. (2013)), Linguistics (natural language processing, Vaswani et al.
(2017)), Cognitive Science and Psychology (how learning takes place in humans, Bassett
and Sporns (2017); Chai et al. (2017)), Economy (decision and game theory), Biology
(decoding the human genome) and many more fields. Also the financial sector is already
changing. Machine learning helps us to spot patterns that humans cannot spot. It might
be fraud detection (Awoyemi et al., 2017), credit risk assessment (Bao et al., 2019) or just
an agent giving advice on how to invest your money and what assets to buy. So, machine
learning has been studied and used in many di↵erent fields, but the underlying methods
are all coming from basic mathematics/statistics and are independent of the field they are
used in. Machine Learning is an interdisciplinary field.

Due to the high success in many fields people are starting to allow machines to make
automated decisions without active surveillance. With this, questions about safety are
arising, and the demand of AI systems being aware of their uncertainty is increasing.

One of the challenges we have to deal with is to distinguish between when the model really
knows something because it detected a pattern and when the model is just guessing at
random. If we only receive a “yes” or “no” or a single number from the machine, we
can never distinguish between, when the model guesses or when it makes true predictions
based on the information it picked up. Fortunately, there is a framework that helps
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to distinguish exactly between these two possibilities. This framework which will be very
important for critical systems is machine learning as probabilistic modeling. Uncertainties
can be expressed via probabilities. Probabilistic models therefore are very well suited to
incorporate those uncertainties in the input as well as to express believability of their
predictions (Ghahramani, 2015).

1.1 Why uncertainty matters

Despite the negative touch associated with uncertainty, it is very important to know as
much of the unknowns as possible. Even though we would like to know things with
certainty, there are many things, where we cannot (e.g. unknown unknowns). There
might be intrinsic factors of a problem that we cannot control that lead to uncertainty in
modeling as well as decision making.
Uncertainty can arise in many di↵erent ways: e.g. if we simply do not have enough data
to pinpoint a model (scarcity of the training data), if the collected data do not represent
the full data distribution (biased training data). Also a mismatch between the model we
choose and the actual model (the real world) that generated the data can lead to wrong
inferences. The e↵ect of the first two points (Scarcity1 and the bias of training data2)
can be mitigated to some extent by using probabilities to encode these uncertainties and
building probabilistic models. Also the last point (mismatch between the model and the
real world) is an ongoing research topic3 and not fully solved, if ever solvable.
The paragraph above stated the problems that we have during the modeling phase. How-
ever, after modeling there is one more phase, the decision making phase, where based
on the modeling and the predictions a decision has to be made. Here also another kind
of uncertainty arises, which is the uncertainty related to not knowing the actual objec-
tive/utility function of the person the decision is actually a↵ecting. The quantification of
uncertainty in these settings is very challenging and we most certainly cannot quantify all
of them. That is also not the goal of modeling in general4. However, we can still try to
model as much uncertainty as we can and hope for the best.
So, if we want machine learning systems to make decisions for us we should, whenever
possible, use models that can capture most of the above stated problems. Especially when
the system is not just making predictions and assisting other people to make decisions but
makes decisions by itself based on these predictions. Therefore, it is really essential that

1 If not much data is available the posterior parameter distribution will be broader than in the presence
of a lot of data, where the posterior distribution will become narrower reflecting the reduced uncertainty
of the parameter estimate.

2 The bias can be coped with to some degree by using informative priors. But also that is limited in
its scope and introduces other kind of biases.

3 See (Bishop, 2006) on Bayesian model averaging (BMA) and (Clyde and Iversen, 2013) on Bayesian
model averaging in the “M-Open” framework, where goal is to come up with with a reasonably good
description (combination of models) of the data while still assuming that the “true” data generating model
is outside the space of models to be combined.

4Note that also intelligent people make decisions by reasoning despite scarcity of data, despite the bias
of the data (not to forget: their own, sometimes very strong, biases) and despite not knowing what peoples
objective is, who are a↵ected by their decisions.

2
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systems know when they “don’t know”, i.e. they are aware of the ignorance/uncertainty
in their ability to predict. Probabilities provide a nice way to do exactly that. Using the
probabilistic framework in machine learning is known as Bayesian machine learning. In
some aspects, it is di↵erent from the classical frequentists approach, even though in some
settings they provide the same result.

1.2 Frequentist vs Bayesian

In a parametric model, for example, frequentists and Bayesians have the same setup. Both
assume that there is an underlying function f✓(x) that maps the input x to the observed
space y by noising the function value y = f✓(x) + ✏. However, frequentists assume that
there are some true parameter values ✓⇤, which can be obtained by optimizing an objective
L✓(y, ŷ), where ŷ are the predictions. E.g. minimizing some kind of loss

✓opt = argmin
✓

X

n

L✓(yn, ŷn) . (1.2.1)

The hope is that the model f✓opt resembles the true model with parameters ✓
⇤, which is

hidden from us. The Bayesians on the other hand define a likelihood, which is similar
to the objective of the frequentists (however, more generalized: the objective can be
constructed by some statistics of the likelihood5). But instead of optimization, Bayesians
assume a prior distribution p(✓) on the parameters ✓ and infer the posterior p(✓|D) of the
parameters conditioned on the observed data D by Bayes rule

p(✓|D) =
p(D|✓)p(✓)

p(D)
. (1.2.2)

That way they do not approximate the true parameters ✓
⇤ by a single point ✓opt, which

summarizes the data, but summarize the data with a full distribution p(✓|D). By not
modeling the data with a single point estimate, but by many (a distribution), Bayesians
naturally incorporate uncertainties that arise due to the limited data observed so far. By
observing more and more data, the posterior will collapse in the limit of infinite data to
a delta function at the true parameter ✓

⇤ (as long as the prior has a finite support for
✓
⇤). If true values are not supported by the prior then the posterior converges to a delta

function that supports values that minimize the KL-divergence between true data density
and the inferred data density. This e↵ect is referred to as asymptotic certainty.
In addition to the ease of incorporation of uncertainties, Bayesian framework also has a
unique way of model averaging. Where as the frequentist framework suggests one best
(according to some measure) function that fits the data, Bayesians average over di↵erent
functions, weighted by the explainability and complexity of the function. This leads to an
automated Occams razor e↵ect (MacKay, 2002; Rasmussen and Ghahramani, 2001). This
point is further discussed in later chapters. In this thesis, we choose the Bayesian way,
which might be better suited if uncertainties are to be quantified. In their paper Bayarri
and Berger (2004) discuss further the interplay of Bayesian and frequentist methods.

5 The maximum/mode of the likelihood, for example, can be an objective.

3
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1.3 Structure of the thesis

The first part of the thesis (Chapter 2 to Chapter 6) introduces the tools used in the
work during the PhD. Some of the work in this thesis has been published in Nirwan and
Bertschinger (2019a,b). This thesis provides a more extended version of the published
papers. The extensions are included in Chapter 7, Chapter 8 and Chapter 10. Chapter 9 is
again an introduction to the tools needed for Chapter 10. Finally, Chapter 11 summarizes
and concludes the work in this thesis.
We start with the basics of Bayesian modeling in Chapter 2 and continue building upon
that. In Chapter 3 methods for approximating the posterior are presented. Here, we also
look into the tools available for approximate inference. Chapters 4 and 5 give a short
introduction to Gaussian processes and Gaussian process latent variable models. Chapter
6 introduces financial concepts and models that we use in the proceeding chapter. In
Chapter 7 we describe and extend the work on the usage of Gaussian process latent
variable models for financial modeling, which is published in Nirwan and Bertschinger
(2019b). Chapter 8 is a description and extension of the work published in Nirwan and
Bertschinger (2019a), which deals with a problem arising due to the rotation invariancy in
latent space models. The tools for the final work on quantile matching estimation (order
statistics) are introduced in Chapter 9. Chapter 10 builds upon that and introduces a
Bayesian method for matching a distribution to observed quantile values (Nirwan and
Bertschinger, 2020).
The code for the experiments in this thesis is available at https://github.com/rsnirwan.

4
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Chapter 2

Bayesian modeling

As motivated in the Introduction (Chapter 1), probabilities provide a very nice way to deal
with uncertainties. In this chapter, we look into the fundamentals of Bayesian modeling by
first introducing Bayes rule and the predictive distribution and then applying the learning
to the simplest model: Linear regression. We fit the linear regression model first within the
frequentist framework and then within the Bayesian framework. The goal is to understand
the Bayesian philosophy and how it is connected to the frequentist point of view.

2.1 Introduction

Let’s first start with the description of a model. In a more general sense a model is an
approximation of a system. When we are dealing with data, the model describes a set of
data one could observe from the modeled system. It defines a data generating process.
Learning happens, when we allow many di↵erent models to be true in principle and the
data is choosing the best of them based on some kind of goodness measure (frequentist)
or weights them by their ability to generate a particular kind of data (Bayesian)1.
So one of the biggest di↵erences between frequentist and Bayesian is that the former
chooses one particular model for prediction, but the latter takes all of the models from a
particular model class. The prediction of all the models is weighted based on the ability
of the models to generate the observed data. So we assume that a given data set D is
generated by a model m. Since we do not know, how the model m looks like that generated
D, we have to reverse engineer starting from the data D and ending with the right model
m. This process is called inference. We infer the right model m based on the data D we
saw. This, however, is not a one-to-one mapping. Because of the scarcity of the data and
the noise in the data, there might be more than just one model m that generated the data
set D. So, we can never be sure about the true model m and have somehow to incorporate
that uncertainty.
Bayesian modeling provides a way to deal with that uncertainty. Instead of taking just
one model m, we allow for more than one model to be true. This is done by assigning a

1 As we will see, this weighting is performed with respect to the posterior distribution.
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probability (score) p(m) to each model m based on our prior believes for the ability of m
to generate similar data sets to D. Doing so incorporates the uncertainty related to the
scarcity of the data. The uncertainty related to the noise in the data can be captured by
assigning a probability p(D|m) to the data set D generated by a particular model m2. The
reverse engineering that leads to models with high probability of generating the observed
data D is done using Bayes rule

p(m|D) =
p(D|m)p(m)

p(D)
. (2.1.1)

This quantity is called the posterior. It is the updated believe (updated prior p(m)) for
the models that could have generated data sets like D. The update is performed by the
likelihood p(D|m). So, the prior is changed through the likelihood to the posterior. The
quantity in the denominator p(D) is called the marginal likelihood. It is a constant with
respect to the model m and renormalizes the product of the likelihood and the prior.
At this point every information about the data is contained in the posterior. The posterior
is our updated belief about which models are more likely than others to have generated D.
For prediction we use all the models that the posterior allows and weight them by their
score (posterior probability) that the posterior puts on each of them. The probability of
new data D

⇤ conditioned on the already seen data D is given by

p(D⇤
|D) =

Z
p(D⇤

|m)p(m|D)dm . (2.1.2)

These two equations, the posterior in Equation (2.1.1) and the predictive distribution in
Equation (2.1.2), build the foundation of Bayesian modeling.
This chapter introduces the basics of Bayesian modeling. First, we start with the frequen-
tist version of linear regression. After that we extend that to the Bayesian version.

2.2 Linear regression

To understand probabilistic modeling or Bayesian machine learning we will start with
the simplest model: Linear Regression. Linear Regression is easy to understand and to
interpret, but its flexibility is very limited. Nevertheless, it is very helpful to understand
the connection and di↵erences between frequentists and Bayesians. In the chapter about
Gaussian processes, we will also build upon the linear regression model.
In this subsection we solve the Linear Regression problem first with the frequentists ap-
proach and then within the Bayesian framework and compare both approaches. We provide
a brief review here. For a more detailed description, see Bishop (2006).
In supervised machine learning settings, we are given a data set D of N input points
X = (x1, . . . ,xN )T , where each xn 2 RD and N corresponding targets y = (y1, . . . , yN )T .

2 Not just the prior p(m), but also the likelihood p(D|m) makes prior assumptions about the data
generating process. The prior allows or discards models by placing a finite or zero probability on models.
The likelihood on the other hand makes assumption about the noise around a particular model. This is
an assumption about the variability of the data D that is not captured by the model m.

6
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In a regression task yn is a continous (yn 2 R) and in a classification task yn is discrete
(in binary classification for example yn 2 {0, 1}).

2.2.1 Frequentists linear regression

In the frequentists setting, one tries to model the data D = {(xn, yn)}Nn=1 by fitting a
function fw parameterized by w

3. The targets y are assumed to be noisy. The modeling
assumption is that the observed values are coming from a true data generating function
ftrue and are corrupted by a noise. The goal is to find/learn a function that is close to the
true data generating function. In other words: Take the set of parameters w that results
in a function closest to all of the data points (points we have seen so far but also that we
have not seen yet). So, we want to find the function that generalises best.

Model

In the case of linear regression, we fit a linear function to the data D of the form

yn = fw(xn) + ✏n = w
T
xn + ✏n, (2.2.1)

where ✏n is the noise. This type of model is very limited in its flexibility, since it only
can pick up linear relationship between the input xn and the target yn. Therefore, one
extends the model by a linear combination of fixed nonlinear functions � = (�1, . . . ,�D)T

of the input. Equation (2.2.1) then becomes

yn = fw(xn) + ✏n = w
T
�(xn) + ✏n . (2.2.2)

As already mentioned, the goal is to find the best approximation within the model class
to the true function ftrue. The information we have about ftrue is coming only from the
observed data D. Thus, we have to define a metric that uses our modeling choice fw and
the observed data D and encodes our understanding of what “best” means.
The idea is the following: We want the predictions ŷn = fw(xn) of our model fw to be
close to the observed data, since they are coming from ftrue. So, we define a function L
that takes ŷn and yn as inputs and outputs a value related to their closeness. This function
is the penalty for the prediction ŷn being di↵erent from the observed value yn and is called
a loss function or error function. One of the most used loss functions is the mean-squared
error (MSE)

Ln,MSE = L(yn, ŷn) = (yn � ŷn)2 . (2.2.3)

We can now define the total loss as the mean of the losses over all observed points. However,
only minimizing the loss defined that way leads to overfitting if the model fw is too flexible.
Therefore, we have to penalize too flexible functions by including a regularization term to

3 One can also use one of the many non-parametric models (e.g. Support Vector Machines, Random
Forest, ...). In this section, however, we will only focus on the parametric linear regression.

7



CHAPTER 2. BAYESIAN MODELING

the total loss. The regularization term is responsible to keep the weights w low and thus
prohibit unnecessary flexibility. For a l2 regularization the total loss becomes

LD(w) =
1

N

NX

n=1

Ln + �kwk
2
2

=
1

N

NX

n=1

(yn � fw(xn))2 + �kwk
2
2, (2.2.4)

where � 2 R+ is a constant and determines the tradeo↵ between bias and variance. There
is a direct correspondence between this loss function and the Bayesian linear regression4.
This point is further discussed in Chapter 2.2.2.

Learning

Learning means to find the optimal parameters wopt for the data set D and the model fw
under the given metric (e.g. MSE with l2 regularization). In particular

wopt = argmin
w

LD(w) . (2.2.5)

In the case of linear regression (where the model can be written as in Equation (2.2.2))
there is a closed form solution to the minimisation problem (Bishop, 2006)

wopt = (�T�� �I)�1�T
y , (2.2.6)

where for M basis functions �(x) = (�1(x), . . . ,�M (x))T the matrix � 2 RN⇥M is defined
as

� =

0

B@
�1(x1) �M (x1)

. . .

�1(xN ) �M (xN )

1

CA . (2.2.7)

For a more complicated/flexible model, when there is no analytical expression for the
optimal weights wopt, one has to elude to iterative gradient methods. Ruder (2016)
provides a nice overview of many gradient descent optimization algorithms.
Left plot in Figure 2.2.1 shows a toy data set created with a third order polynomial as the
true function. Figure 2.2.2 shows how the MSE changes when we change the intercept of
a linear function without any nonlinear basis functions according to the gradient of the
loss-function. The MSE is getting lower the closer we get to the data points. By choosing
nonlinear basis functions in addition and minimizing the error according to the weights
of all the basis functions, we can even further decrease the MSE. This is shown in the
right hand side of Figure 2.2.1, where the red line represents the fit with polynomial basis
functions up to order three.

4 The MSE-function corresponds to a Gaussian noise model and the l2 regularization corresponds to a
Gaussian prior for the weights in Bayesian linear regression.
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Figure 2.2.1: Left: Toy data set with a third order polynomial as the true funtion. Right:
linear regression fit with polynomial basis function up to order three.
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Figure 2.2.2: Gradient decent applied to the intercept of a linear model.

Prediction

After we have learned the optimal parameters wopt, we can make predictions for input we
have not seen so far. For that, we evaluate the function fwopt with the optimal parameters
wopt at the new input location xtest

ypred = fwopt(xtest) . (2.2.8)

The right side of Figure 2.2.1 shows the input location with the vertical back line. The
predicted value is the cut of the black line with the trained function (red). The true value
is the cut with the true function (green).

There is an error when we take the value of the red line as the prediction, which is
the distance of the red line to the true function (green). However, this error cannot
be quantified in this setting. First of all because in general we do not know the true
function (green) but also because we are not modeling the uncertainties that arise due
to the scarcity of the data and the observation noise. These points are addressed by the
Bayesian framework, that we look into in the next section.
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2.2.2 Bayesian linear regression

Also in the Bayeisan setting, the goal is to model the observed data D = {(xn, yn)}Nn=1.
However, in contrast to the frequentists approach, Bayesians use probabilities for modeling.
We already discussed the advantages of using probabilities for modeling in the beginning
of this chapter. One of which is the ability to average over all possibilities of the model
class. Whereas the frequentists take one out of all possible models from the model class
fw, Bayesian take all of them and weight the prediction for each of them based on some
metric. This metric is the posterior distribution for each set of the parameters w. All this
naturally arises from only the sum and product rule of probabilities.
The sum rule states that the marginal distribution is given by the summation (for discrete)
or the integral (for continuous) of the other variable

p(x) =

Z
p(x, y)dy . (2.2.9)

The second one is the product rule

p(x, y) = p(y|x)p(x) , (2.2.10)

which states that the joint distribution can be decomposed into a conditional and a
marginal distribution. Those two basic rules will allow us to learn the parameter dis-
tribution after the observation of the data and also allow us to make predictions for
unseen data. Let us first start by defining the model and we will come back to the sum
and product rule in the learning/inference and the prediction section.

Model

As already mentioned, the goal of Bayesian machine learning is also to model the observed
data D = {(xn, yn)}Nn=1. Therefore, also here we need to make an assumptions for the form
of the function we believe the data is coming form. For the linear model, that assumption
is the same as in the frequentists case (Equation 2.2.1).

yn = fw(xn) + ✏n = w
T
�(xn) + ✏n . (2.2.11)

where � = (�1, . . . ,�D)T are fixed nonlinear functions of the input and ✏n is the noise5.
But now, instead of defining a penalty for the deviation from fw as the MSE in the fre-
quentists case, we define a probability function that tells us, how probable it is to see a
point in a certain distant from the function fw. Bayesian linear regression chooses a Gaus-
sian distribution with mean fw. The standard deviation � of this Gaussian distribution

5 Note how we separated the variability in the data into noise and structure. Equation (2.2.11) defines
the noise as the variability in the data which cannot be captured by fw. If we would change fw to some
other function f̃w it would pick up di↵erent variability in the data and thus the variability denoted as
noise would change as well. So, without the model specifications (which also includes the likelihood and
the prior), there is no interpretation of the data. That makes it even more important to know your model,
as all the information we get from our data is subjective to the definition of the model. First footnote of
Chapter 5 includes some more thoughts similar to this one.
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Figure 2.2.3: Illustration of the likelihood function.

determines, how much data points can depart from fw. So, for a single data point xn this
distribution takes the from

p(yn|w,�) = N
�
yn|w

T
�(xn),�

�
. (2.2.12)

This equation is called the likelihood for a single data point (xn, yn) and is illustrated for
a single data point in Figure 2.2.3. The black Gaussian in the plot is bound to the red
function and its width is given by �. It defines, how likely it is to observe the data point
for a particular choice of w and �.
The likelihood for all of the N data points, if we make the assumption that the data is
drawn for the same model independently (i.i.d. - independent and identically distributed),
is then given by the product of the likelihood of each single point6

p(y|w,�) =
NY

n=1

p(yn|w,�) =
NY

n=1

N
�
yn|w

T
�(xn),�

�
. (2.2.13)

Right plot in Figure 2.2.3 illustrates the likelihood for all data points. The Gaussian
“bumps” kind of behave like a tunnel. The width of the tunnel (departure from the mean
w

T
�(xn)) is given by �. If for a set of parameters w the “tunnel” is too far away from the

data points, the model assigns small likelihood value to that model. On the other hand if
the likelihood value is high for a set w, the set w gets a higher likelihood score. Thus, it
will also contribute more to the expected value under the posterior7.
The maximum likelihood solution wopt = argmaxw p(y|w,�) leads to the MSE8. Here we
see the correspondence between the two methods: Linear regression with MSE assumes a

6Note that we do not assume the data to be i.i.d. in general but the data to be i.i.d. conditioned on
the input and the parameters. This leads to an i.i.d. assumption only for the noise, not the data. If the
data were i.i.d. learning would not be possible. Also, the model assumption that the conditioning lead to
i.i.d. data means that, all the information we want to get out of the data has to be encapsulated in the
parameters.

7The likelihood score is scaled by the prior score that we assign to a particular w before we take the
expectation.

8 argmaxw p(y|w,�) = argminw

PN
n=1

�
yn �wT�(xn)

�2
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Gaussian noise around the learned function fw. As a Bayesian, however, learning is not
associated with optimization of objective functions like the likelihood. Instead, learning is
the use of Bayes rule. For that a crucial part of the model is still missing. Before we can
use Bayes rule, we need to specify a prior for the unknowns (parameters) of our model.
The prior encodes our beliefs about the possible values of the parameters before we see
the data. In the linear regression case the prior for the parameters w is also a Gaussian

p(w) = N (0,↵I) , (2.2.14)

where ↵ 2 R+ determines the magnitude of the parameters w. It acts a regularizer and
is equivalent to � in Equation (2.2.4), penalizing high value of w. So, with the likelihood
(Equation 2.2.13) and the prior (Equation 2.2.14) we have defined the full model. The
next step is learning.

Learning/Inference

Bayes rule (Equation 2.1.1) tells us how to make inference over the unknown parameters
from the data

p(w|y) =
p(y|w)p(w)

p(y)
, (2.2.15)

where in the numerator on the right hand side we have the likelihood of the data p(y|w)
and the prior p(w). The denominator p(y) is called the marginal likelihood and is given
by the sum rule p(y) =

R
p(y|w)p(w)dw. The term p(w|y) on the left hand side is the

posterior of our parameters. The posterior is our updated belief of the parameters after
seeing the data y

9. The Gaussian prior is a so called conjugate prior to the Gaussian
likelihood in the linear model for fixed �. For conjugate priors the posterior also has the
same functional form as the prior and is analytically tractable. In our case the Gaussian
posterior of the parameters w is given by (Bishop, 2006)

p(w|y) = N (w|mN ,SN ) , (2.2.16)

where mN and SN are the mean and the covariance of our parameters w after seeing the
N data points and are given by

mN =
1

�2
SN�

T
y

SN =

✓
↵�1

I +
1

�2
�T�

◆�1

, (2.2.17)

where � is defined in Equation (2.2.7). Note that for a Gaussian distribution the mean
and the mode are the same point. The mode of the posterior is also called the maximum
a posteriori (MAP). In this particular example the MAP estimate is given by the mean
mN . The mode of the likelihood function only is called the maximum likelihood estimate.

9 We start with the prior as our belief of the parameters without seeing the data and the likelihood
changes our beliefs. The updated belief is then given by the posterior.
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Figure 2.2.4: The posterior p(w|y) is show in blue. Maximum likelihood estimate of the
parameters is shown with the red vertical line, the MAP estimate is the green line and
the true parameters are shown with the black vertical line.

The maximum likelihood estimate of the linear regression yields the same solution as the
optimized solution in the frequentists setting (Equation 2.2.6) without regularization. The
optimized solution with regularization (finite �) corresponds to the MAP estimate10.

Now we fit the same data as in the previous section (Figure 2.2.1) again. The marginal
posterior distribution p(w|y) for each w of a third order polynomial fit is shown in Figure
2.2.4 together with the true value (black line) and the MAP and maximum likelihood
(ML) estimate (green and red line). In contrast to the other estimates, the fully Bayesian
treatment provides the full posterior distribution including the uncertainty over the weights
w. This quantification of the uncertainty over w can now be used to not only make
prediction for unseen data but also to quantify the uncertainty in the prediction.

Prediction

After inferring the posterior the prediction together with the prediction uncertainty (pre-
dictive distribution) p(ypred|y) for a test data point xtest is given by the integral of the

10 For corresponding ↵, � and �:

mN = argmaxw p(w|y) = argminw

h
1
N

PN
n=1(yn � fw(xn))

2 + �kwk22
i
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CHAPTER 2. BAYESIAN MODELING

likelihood of the test point with respect the posterior distribution11

p(ypred|y) =

Z
p(ypred|w) p(w|y)dw . (2.2.18)

This is also what is meant by averaging over all possible models. The integration is
weighting all parameters w for the prediction, which are allowed by the prior p(w) and the
likelihood p(y|w). Also the ones that under the frequentists setting would have considered
as really bad (huge loss). Those “bad” fits are included by the Bayeisan framework but
their posterior weight (contribution to the predictive distribution) will be very low. On
the other hand, functions that fit the data perfectly (have very low loose according to
e.g. MSE) but are very complex/flexible are also not weighted high. In those cases the
likelihood score might be high but the prior will weight their contribution down. The idea
that simple explanations are usually better than complicated ones is called Occam’s Razor
and is naturally embodied in Bayesian statistics (Je↵erys and Berger, 1992; Rasmussen
and Ghahramani, 2001).
Since in the linear case everything is Gaussian with respect to w, we can also calculate
the predictive distribution for an input xtest in a closed form (Bishop, 2006)

p(ypred|xtest,y) = N
�
ypred|m

T
N�(xtest),�

2
N (xtest)

�
, (2.2.19)

where
�2
N (xtest) = �2 + �(xtest)

T
SN�(xtest) (2.2.20)

is the variance of the predictive distribution. Left hand side of Figure 2.2.5 shows the mean
and two standard deviations of the predictive distribution. Samples from the predictive
distribution are shown on the right hand side.
So in theory the Bayesian modeling approach is really easy. After defining the model (like-
lihood and the prior) we do inference using Bayes rule and get predictions by averaging
the likelihood for the test data point under the posterior. However the posterior and the
predictive distribution are rarely analytically tractable due to the intractable high dimen-
sional integrals for the marginal likelihood p(y)12. Since there is no analytical solution
in most of the cases, we have to use approximation methods for these integrals. Those
approximation methods are discussed in Chapter 3.

2.2.3 Summary

The goal of machine learning is to is to learn a function fw, parametrized by w, that takes
an input xn and outputs a prediction ŷn. Learning basically means to constantly adjust
the parameters w in a certain way until we are “satisfied” with the output of the predictor.

11 Note the following equality that comes from the product rule p(ypred,w|y) = p(ypred|w,y)p(w|y).
Thus p(ypred|y) =

R
p(ypred|w,y) p(w|y)dw. However, the assumption is made, that all the information

about ypred is contained in the parameters w and therefore we can write p(ypred|w,y) = p(ypred|w).
12 In models where the prior and the posterior are from the same family of distribution (conjugate

models) the posterior is tractable. We will have a closer look into one of these models called the Gaussian
process in Chapter 4.
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Figure 2.2.5: Left: Predictive distribution p(y⇤
|y). Right: 200 Samples from the predictive

distribution.

To measure the “satisfaction” we define a loss-function Ln = L(yn, ŷn). L is defined in
such a way, that the closer the predicted value ŷn is to the observed value yn the smaller
is the loss Ln. The total loss is then given by the mean of all losses and a regularization
term LD(w) = 1

N

P
n Ln + �kwk

2
2. The optimal parameters wopt of the predictor are the

ones for which the total loss LD(w) is minimized. Prediction for an unseen test point xtest

is then given by evaluating the function fwopt at the test point fwopt(xtest).
In the Bayesian case, the model is given in terms of probabilities, which defines, how
likely it is to observe the data given specific parameters p(y|w) and a belief about the
parameters before seeing the data p(w). Learning is simply given by the use of Bayes rule
and results into the updated belief about the parameters after seeing the data p(w|y).
Prediction for an unseen test point xtest is given by the expectation of the likelihood for
the test point under the updated beliefs (posterior distribution).
A direct comparison of the frequentist and the Bayesian approach is given in the table
below.
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CHAPTER 2. BAYESIAN MODELING

Comparison of frequentist and Bayesian framework

Frequentist Framework Bayesian Framework

• Data

D = {(xn, yn)}Nn=1

xn 2 RD, y 2 R

• Data

D = {(xn, yn)}Nn=1

xn 2 RD, y 2 R

• Model

yn = fw(xn) + ✏n = w
T
�(xn) + ✏n

LD(w) =
1

N

NX

n=1

(yn � fw(xn))2

+ �kwk
2
2

• Model

yn = fw(xn) + ✏n = w
T
�(xn) + ✏n

p(y|w,�2) =
NY

n=1

N (yn|fw(xn),�2)

p(w) = N (w|0, I)

• Fit

wopt = argmin
w

LD(w)

• Inference

p(w|y) =
p(y|w) p(w)

p(y)

• Prediction

ypred = fwopt(xtest)

• Prediction

p(ypred|y) =

Z
p(ypred|w) p(w|y)dw
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Chapter 3

Approximations to the posterior

The fully Bayesian treatment of the model, where we infer the posterior p(w|y) of the pa-
rameters w and integrate them out to get the predictive distribution p(ypred|y) is preferable
but not always possible. Therefore, we have to resort to approximation methods. This
chapter is a short review on Markov chain Monte Carlo (MCMC) methods and Variational
Bayes (VB). In particular we review the Hamiltonian Monte Carlo (HMC) algorithm for
sampling and Variational inference (VI) for approximating the posterior by a variational
distribution.
The posterior distribution is the object that captures all the information contained in our
data. The whole Bayesian procedure comes down to calculate expectations of functions
with respect to the posterior distribution

E[f ] =

Z
f(w)p(w|y)dw . (3.0.1)

The model specification is not hard, but its solution is, i.e. the integration/expectation
calculation with respect to the posterior. Because these expectations are not analytically
tractable, we resort to approximation methods.
The main idea behind those approximation methods is to only focus on the parts that
contribute largely to the integral. Most of the space does actually not contribute to
the integral. Either the posterior value or the volume of the space corresponding to the
posterior value will be too small. This is illustrated in Figure 3.0.1 with a 2d standard
Gaussian. Left side of Figure 3.0.1 shows the conture lines with constant probability
density. Not the area with the highest probability density is important but the area,
where the product of the probability density with the area of the corresponding density is
important and contribute most to the integral. The product of both is shown on the right
hand side. Here we see, that the maximum of the product is not where the maximum of
the probability density lies. In Higher dimensions even less volume is concentrated around
high values of the probability density1. So actually we can neglect the space where the
probability mass is low and only concentrate on the regime, that most contribute to the
integral (the typical set).

1 Note that we distinguish between the posterior density p(w|y) and the posterior mass p(w|y)dw.
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(a) Posterior density of a standard 2d Gaussian.
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Figure 3.0.1: Illustration of the maximum of the probability density vs. the level sets,
that contribute most to the integral. For the standard Gaussian case the di↵erent radii
correspond to di↵erent level sets.

The approximation algorithms for the posterior inference can be divided into two big
classes. The first one approximates the integral for the predictive distribution using sam-
ples from the posterior. Those methods are called sampling methods. The second big class
approximates the posterior with another distribution which is similar to the posterior but
easier to handle. This technique is known as variational approximation.
In this chapter we will look into sampling and variational Bayes. In particular, we will
look closer into how Hamiltonian Monte Carlo (a sampling technique) and how variational
inference work.

3.1 Sampling

3.1.1 Monte Carlo sampling

One way to find the typical set are Monte Carlo methods, where we draw samples according
to the mass of the typical set. In one dimensional case, the mode has the most probability
mass. However, this is not true anymore for higher dimensions2.
The popularity of Monte Carlo methods is due to the fact that the samples that we take
from the posterior density are already points that correspond to the typical set with high
probability mass. After having those samples, we can approximate the integral/expecta-

2 A Gaussian distribution for example has only for one dimension the most mass at the mode. For
higher dimensions, the typical set the away from the mode and the distance between the mode and the
typical set is proportional to

p
D � 1, where D is the dimension of the Gaussian. Figure 3.0.1 illustrates

this for a 2d Gaussian.
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3.1. SAMPLING

tion of a function f by the evaluation of the function at those samples

E[f ] =

Z

RD
f(w)p(w|y)dw '

Z

T
f(w)p(w|y)dw '

1

M

MX

i=1

f(wi) , (3.1.1)

where T is the typical set (with high probability mass) and M the number of samples
drawn from the posterior p(w|y). The estimate of the expectation becomes more accurate
the longer the chain gets. The quality of Monte Carlo method can be evaluated in term
of its bias and variance. The estimation by Monte Carlo methods is unbiased, meaning
E[µ̂] = E[f ], where µ̂ is the estimated value and E[f ] is the true value. Also the variance
can be quantified. The estimation of the expectation follows a Gaussian with a variance
that decreases with the total number of the samples M

1

M

MX

i=1

f(wi) ⇠ N

✓
E[f ],

var[f ]

M

◆
. (3.1.2)

This is a huge advantage and makes Monte Carlo integration e↵ective in high dimensions.

Inversion Sampling: The simplest sampling method is the inversion sampling. In in-
version sampling samples u from a uniform distribution are transformed to samples from
a desired distribution p by applying the inverse of the cumulative distribution function P
of p on the samples. P�1(u) will have the desired distribution.

Rejection Sampling: Another method to sample from a distribution without the need
for the cumulative distribution is rejection sampling. Here the target distribution p is
enclosed by another density cq, where q is a probability density and c a constant such
that cq(x) > p(x) 8 x. The samples are taken from the distribution q but for each x
only the proportion p(x)/(cq(x)) is kept, the rest is rejected. High values of c are needed
to fulfill the condition cq(x) > p(x) 8 x, but the proportion of rejected samples is also
increasing with c. A huge advantage of rejection sampling is that we do not even need p to
be normalized. It also works with unnormalized densities. However, it has the ine�ciency
coming from the rejected samples. This ine�ciency is fixed by importance sampling.

Importance Sampling: Importance sampling also samples from q to approximate the
integral with respect to p. But instead of rejecting some of the samples to get the desired
distribution, importance sampling assigns weights to each of the samples. The weight for
each sample x is given by p(x)/q(x). The disadvantage of this method is, that it fails if
p has fatter tails that q. In this case relatively few samples are taken from the tails and
those samples might have very high weights since p(x)/q(x) can become arbitrarily large.

To use the above listed methods one either needs the inverse of the cumulative distribution
or a guess for q that is close to the target distribution. If neither is given they cannot be
used or become very ine�cient. There is, however, another class of methods that allow
us to sample from a target distribution even if the two conditions are not satisfied. Those
are called Markov chain Monte Carlo (MCMC) methods.
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CHAPTER 3. APPROXIMATIONS TO THE POSTERIOR

3.1.2 Markov chain Monte Carlo (MCMC)

In contrast to the above mentioned methods, MCMC methods produce a chain of depen-
dent samples instead of independent samples. However, the stationary distribution of the
chain still follows the desired distribution. A sequence of random variables x1, x2, . . . is
called a Markov chain, if the successor xi+1 of xi is independent of {xj}

i�1
j=1 conditioned

on xi 8 i, i.e: p(xi+1|x1, . . . , xi) = p(xi+1|xi). A MCMC method yields a stationary
distribution, if the following conditions are fulfilled:
Detailed balance: The detailed balance property requires the transition probability pij
from state xi to xj and the transition probability pji from state xj to xi to fulfill the
following equation: p(xi) pij = p(xj) pji. A Markov process satisfying detailed balance is
also called a reversible Markov process.
Ergodicity: A Markov chain is ergodic if there is always a positive probability to pass
from any state to any other state.
Mixing: A slightly stronger condition than the Ergodicity is the mixing, which requires
the convergence to the same stationary distribution independent of the starting point. So,
whatever the starting point is, the chain always converges to the same distribution.
There are many MCMC approaches. E.g.: Gibbs sampling, that reduces sampling from
a multidimensional distribution to a sequence of 1d or Metropolis-Hasting, that draws a
new sample x (next element of the chain) by using a proposal distribution p(x|x0) that is
conditioned on the previous sample x0. Besag et al. (1995) discuss the basic methodology of
MCMC including algorithms like Gibbs sampling and Metropolis-Hasting. In our work we
approximate the posterior using the probabilistic programming language Stan (introduced
in Section 3.3), that uses a version of Hamiltonian Monte Carlo (HMC). Therefore, our
focus in this section will be on HMC.

3.1.3 Hamiltonian Monte Carlo

In this section we will briefly review Hamiltonian Monte Carlo (HMC). It has been de-
scribed in detail in Betancourt (2017). HMC is constructing chains that are moving toward
the typical set and exploring its mass. If we want to sample w 2 RD from the desired
distribution p(w|y) (i.e. the posterior distribution that we are interested in) using HMC,
we introduce other D auxiliary variables ⌫ = @w

@t to the set of our parameters w 2 RD.
Those auxiliary variables are called the moments of w and the w-⌫-space is called the
phase space. Also the target distribution p(w|y) is “lifted up” to a higher dimension

w ! (w,⌫)

p(w|y) ! p(w,⌫|y) . (3.1.3)

After using the product rule of probabilities on the joint distribution p(w,⌫|y) = p(w|⌫,y)p(⌫|y)
we can map it to a physical system by defining

H(w,⌫) = � log (p(⌫|w,y)p(w|y))

= � log p(⌫|w,y)| {z }
K

� log p(w|y)| {z }
V

, (3.1.4)
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where K is the kinetic energy and V is the potential energy. The potential energy V =
� log p(w|y) is given by our Bayesian model but the kinetic energy K is not. Di↵erent
choices for K yield di↵erent algorithms for HMC. We choose K to be a quadratic function
of ⌫, i.e. K = ⌫2

2m . This is analogous to the momentum of a particle with mass m and
yields a Gaussian density for p(⌫|w,y). By this choice the ⌫ is independent of w and y

and p(⌫|w,y) = p(⌫). Therefore, if we marginalize out the momentum ⌫ we immediately
recover our target distribution

R
p(w,⌫|y)d⌫ = p(w|y). Moreover, this ensures that

the projection onto w of the trajectories exploring the typical set of the phase space
distribution also explore the typical set of the target distribution p(w|y). The Hamiltonian
3.1.4 captures the geometry of the typical set and Hamilton’s equations of motion provide
a way to sample the typical set (Betancourt, 2017). After having specified the Hamiltonian
H = K + V = const, we can use Hamilton’s equations of motion to create a trajectory

dw

dt
=

@H

@⌫
d⌫

dt
= �

@H

@w
. (3.1.5)

First we choose some w at random and repeat the following as many times as the number
of samples we want from our posterior:

1. sample ⌫ ⇠ N (0, 1)

2. Solve for the trajectory with H(w,⌫) for some amount of time3

3. Save w as a sample, where w is the end point of the trajectory4

The chain of w’s will converge to the posterior p(w|y). This is how we sample p us-
ing HMC in theory. In practice, however, we integrate (step 2) the trajectory numer-
ically and numerical integrators tend to drift away from the exact solution because of
the finite step size. To preserve detailed balance, despite of the instability, we have to
correct this error. The error is corrected if we only accept the proposal with probability
min(1, exp (H(wend,�⌫end) � H(wstart,⌫start)) (Betancourt, 2017). If the new proposal is
rejected, the next sample is again the current sample and is counted again when estimating
the expectations of a function (Neal, 2010). The ergodicity condition is also fulfilled by
this algorithm. Since the momentum ⌫ is sampled from a Gaussian (see step 1) and can
take on any value, the position w can be a↵ected in arbitrary ways.

3 This amount of time is called the integration time. If it is to short, we might need a lot of time to
explore the full space. On the other hand if it is too large, the trajectory might end up in already previously
explored neighborhoods. Stan implements the No-U-Turn termination criterion. Using this criterion, the
integration continues as long as the trajectory is expanding towards phase space regions away from where
it comes from. As soon as the momentum at beginning and the end of trajectory are anti-aligned (the
trajectory moves backwards) the criterion is satisfied and the trajectory stops expanding (Ho↵man and
Gelman, 2014).

4 The points of the trajectory live in the phase space (w,⌫). The marginalization of ⌫ is equivalent to
ignoring the ⌫ part of the trajectory. Therefore, we only need to save w.
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HMC, in comparison to Metropolis-Hasting and Gibbs sampling, reduces significantly the
correlation between successive samples. Because of the reduction in correlation we need
fewer samples to approximate the integral with the same accuracy as, for example, in
Metropolis Hasting and Gibbs sampling. Other huge advantages of sampling methods in
general are, that they are unbiased and have a convergence guarantee. Moreover, they
are easy to implement with the toolboxes available today. HMC also does not require the
target density to be normalized. It is enough to know the density up to the normalization
constant. In our case we want to sample from the posterior, which is not tractable due
to the infeasible marginal likelihood that normalizes the product of the likelihood and the
prior. Fortunately, we do not need it when using HMC.

However, the drawbacks of HMC are that, even though we have a convergence guarantee,
the convergence to the target distribution can take a long time. Especially if the distri-
bution is multimodal, samplers can get stuck in only one of the modes. Solutions to the
problem of exploring multimodal distributions are suggested but they also further increase
the computational complexity of the problem. Betancourt (2014) suggests to transform
the complex posterior to a simpler distribution using a measure preserving deformation
utilizing the geometry of equilibrium thermodynamic processes and Ho↵man et al. (2019)
suggest also to transform the complex posterior to a simpler distribution using normaliz-
ing flows (Papamakarios et al., 2019). In both cases one can then build a Markov chain
of samples on the simpler distribution and then transform the samples according to the
inverse transformation. When using very flexible transformations, the multimodal pos-
terior can be transformed to an unimodal distribution, where sampling becomes really
easy. However, the complexity does not disappear with these methods but is just shifted
towards finding flexible, yet easy to invert transformations with simple Jacobians.

Another class of methods that are faster than MCMC, but do not have the convergence
guarantees anymore are the class of Variational methods that we will look into in the next
section.

3.2 Variational inference

The idea of Variational inference is also to approximate the posterior distribution. This
is not done with samples but with another distribution within a family of distributions,
called the variational distribution. There are many variational methods on the market
(Ambrogioni et al., 2018; Li and Turner, 2016; Minka, 2001). In this section, however, we
will focus on a particular method where the “distance” between the variational distribution
and the true posterior is minimized using the Kullback-Leibler divergence as the loss
(Bishop, 2006; MacKay, 2002). Zhang et al. (2019) review recent trends in the field of VI.

For that we define a variational distribution q⌫(w), where ⌫ are the parameters of the
variational distribution, called the variational parameters. The task is to find the set of
parameters such that the q⌫(w) is close to the true posterior p(w|y) as much as possible.
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The closeness of the distributions is measured in the Kullback-Leibler divergence5

KL(q||p) =

Z
q⌫(w) log

q⌫(w)

p(w|y)
dw . (3.2.1)

The benefits of using variational inference compared to MCMC methods are that varia-
tional inference is deterministic, converges faster and needs far less iterations than MCMC.
On the other hand there are no convergence guarantees like the reduction of the variance
of the expectation with more number of samples.

Derivation of variational inference

For the derivation of variational inference we need Jensen’s inequality for concave func-
tions. It states that the average of the function f applied at points x is smaller than the
function f applied to the average of x

f(E[x]) � E[f(x)] . (3.2.2)

The application of Jensen’s inequality to the data density p(y) (also called the marginal
likelihood or the evidence) leads to the KL objective function

log p(y) = log

Z
p(y,w)dw

= log

Z
p(y,w)

q⌫(w)

q⌫(w)
dw

= log Eq⌫(w)


p(y,w)

q⌫(w)

�

� Eq⌫(w)


log

p(y,w)

q⌫(w)

�

=

Z
q⌫(w) log

p(y,w)

q⌫(w)
dw

:= ELBO . (3.2.3)

The quantity at the end of the expression is a lower bound on the marginal likelihood,
called the ELBO (Evidence lower bound). It turns out that the di↵erence between the
marginal likelihood p(y) and the ELBO is exactly the Kullback-Leibler divergence from

5 Although the Kullback-Leiber divergence is seen as a way to measure distance between probability
distributions, it is not a true metric. It is not symmetric, i.e. KL(q||p) 6= KL(p||q).
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the variational family q⌫(w) to the true posterior p(w|y)

KL(q⌫(w)kp(w|y)) =

Z
q⌫(w) log

q⌫(w)

p(w|y)
dw

=

Z
q⌫(w) log

q⌫(w)p(y)

p(w,y)
dw

=

Z
q⌫(w) log

q⌫(w)

p(w,y)
dw �

Z
q⌫(w) log p(y)dw

= �ELBO + p(y) . (3.2.4)

Here we see again that the ELBO is a lower bound to the marginal likelihood. Since the
KL divergence on the left hand side is always non-negative, we get p(y) � ELBO.
Recall, that we want to approximate p(w|y) with q⌫(w) by minimizing the KL divergence.
And now we found another method to do that. Since the marginal likelihood p(y) is a
constant with respect to w, instead of minimizing the KL divergence we maximize the
ELBO. The procedure is to first define the likelihood p(w|y) and the prior p(w), then
choose a family of distributions q⌫(w) and at the end maximize the ELBO with respect to
the variational parameters ⌫. Note that the higher the ELBO the closer q⌫(w) is to the
true posterior. The ELBO takes its maximum value p(y) when q⌫(w) = p(w|y). In that
case we are performing exact inference. Thus, we can not overfit the data by choosing a
very flexible family as the variational distribution6. Thus we can choose any variational
family to increase the ELBO as much as possible. After maximizing the ELBO we use
the variational approximation q⌫(w) (instead of the posterior p(w|y)) for further analysis
of the model, e.g. for predictions. The KL(q⌫(w)kp(w|y) has three important cases, we
need to understand to get an intuition of what is happening when optimizing with respect
to ⌫. If q is high and p is high the cost will be low. If q is high but p is low, then the cost
is high (leads to an decrease of q in that area, when performing optimization). If q is low,
because of the expectation over q, the cost is low independent of the value of p. The last
point leads to an approximation that is called mode splitting. A variational distribution
with e.g. only one mode will try to capture just one mode of the posterior as good as
possible and set q ' 0 on the other modes without increasing the cost. So, by minimizing
KL(qkp) we will not match the whole probability density p but only the part with the
most mass.
One of the famous family of variational distributions is the Gaussian distribution, where
the multivariate posterior distribution p(w|y) is fitted by independent Gaussians

q⌫(w) =
DY

d=1

q⌫(wi) =
DY

d=1

N (wd|µd,�d) . (3.2.5)

It has a nice analogy to physics: the solution to the mean field approximation of the ising
model can exactly be reconstructed by the independent Gaussians as the variational family
(MacKay, 2002).

6 This is not the same as in the frequentists setting, where choosing a very flexible model and maximizing
the objective function (without proper regularization) can lead to overfitting. Here, we are variationally
protected against overfitting.
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Kucukelbir et al. (2017) introduces a framework called automatic di↵erentiation variational
inference (ADVI), that can be used as a black-box for variational inference with Gaussian
variational distribution (either mean-field approximation of a multivariate Gaussian with a
full covariance matrix). The idea is to first unconstrain all latent space variables (unbound
distributions with bounded support with a fixed transformation) and then fit a Gaussian
in the unconstrained space. ADVI is also used in the probabilistic programming language
Stan that we use for our experiments.

3.3 Probabilistic programming

Fortunately enough, we do not need to implement these approximations by ourself to get
started with Bayesian machine learning. Software tools such as probabilistic programming
languages (e.g. Stan (Carpenter et al., 2017)) or other libraries for automatic di↵eren-
tiation (e.g. Tensorflow (Abadi et al., 2015), Pytorch (Paszke et al., 2019)) significantly
simplify the implementation of the models discussed earlier and allow us to use approxi-
mation methods out of the box.
Particularly Stan makes the implementation of the Bayesian models very easy. Stan is
a framework for Bayesian inference, that tries to abstract away the heavy math behind
the approximation methods (HMC and VI) that we described earlier, such that we can
only focus on the modeling part. We only need to specify the posterior density and Stan
internally uses automatic di↵erentiation for the gradients needed for HMC and VI. It also
provides a strong diagnostic at the end of the inference procedure when using HMC.
Below are some examples (linear model and the Gaussian process model that we discuss in
the next chapter). We just need to define the right blocks. Data-block contains the input
from the outside (the knowns). Parameter-block contains the parameters that we want to
sample (the unknowns) and the model-block defines the relation between the knowns and
unknowns via the likelihood and the priors. If there is a need to define some intermediate
variables, which depend on the parameters and are needed for the model block, they can
be defined in the transformed-parameter-block.
In the examples below we see the statistical model defined on the left hand side and the
corresponding code on the right hand side. Note the similarity between the Bayesian model
on the left side with the model block in the stan code. Also the code for the Gaussian
process regression is included, which is introduced in Chapter 4. Here, we make use of the
transformed-parameter-block to calculate the kernel matrix K

7.

3.4 Summary

In this chapter we discussed two variants of approximating the posterior. The first methods
approximates the posterior by samples from the posterior. Here, we looked at Hamilto-
nian Monte Carlo (HMC), that uses Hamilton’s equation of motion to build a correlated

7 Instead of working directly with the covariance matrix K, one would actually work with the Cholesky
decomposition of K, which is numerically more stable. Here, we skip this step, because the code is for
illustration purposes only.
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Bayesian linear regression

wd ⇠ N (0, 1) 8 d

� ⇠ N (0, 1)

yn|w,�2
⇠ N (wT

�(xn),�2) 8 n

1 data{
2 int <lower=0> N;
3 int <lower=0> D;
4 matrix[N, D] X;
5 vector[N] y;
6 }
7 parameters{
8 vector[D] w;
9 real<lower=0> sigma;

10 }
11 model{
12 w ⇠ normal (0,1);
13 sigma ⇠ normal (0,1);
14 y ⇠ normal(X*w, sigma);
15 }
16

Gaussian process regression

� ⇠ N (0, 1)

l ⇠ N (0, 1)

�noise ⇠ N (0, 1)

y|�, l,�noise ⇠ N (0,K(X,X) + �noiseI)

1 data{
2 int <lower=0> N;
3 int <lower=0> D;
4 vector[N] y;
5 vector[D] X[N];
6 }
7 parameters{
8 real<lower=0> sigma;
9 real<lower=0> l;

10 real<lower=0> sigma_noise;
11 }
12 transformed parameters{
13 matrix[N, N] K = cov_exp_quad

(X, sigma , l);
14 for (i in 1:N)
15 K[i, i] += square(

sigma_noise);
16 }
17 model{
18 sigma ⇠ normal (0,1);
19 l ⇠ normal (0,1);
20 sigma_noise ⇠ normal (0,1);
21 y ⇠ multi_normal(rep_ vector

(0, N), K);
22 }
23
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sequence of samples that has the desired target distribution. Instead of the integration,
we average the function values evaluated at the sampled values that we obtain from HMC.
This leads to an unbiased estimate of our expectation. The more samples we take the
accurate our expectation will be. Moreover, the density, we are sampling from, does not
need to be normalized. This means that we can sample from the posterior, without calcu-
lating the marginal likelihood. On the other hand, HMC is very slow compared to other
methods, e.g. variational inference.
Variational inference (VI) was the second approximation method that we looked into. VI,
in contrast to HMC, approximate the actual distribution not by samples but by another
simpler distribution. We start by suggesting a family of distributions and from all the
distributions in the family we choose the one that minimizes its distance to the target dis-
tribution. The distance measure we looked into was the Kullback leibler divergence. The
simpler distribution can then be taken to calculate the expectations/integral. The biggest
advantages of using variational inference are that it is deterministic, it converges quite
fast and requires very few iterations compared to MCMC methods. However, variational
inference does not have any convergence guarantees as MCMC methods.
At the end, we saw, how easy it is to implement probabilistic models using the tools
available to us. We provided code for Bayesian linear regression and the Gaussian process
regression in the probabilistic programming language Stan. We only have to define the
likelihood and the prior and the approximations (both HMC and VI) can be used out
of the box, without much knowledge about the heavy math behind the approximation
methods.
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Chapter 4

Gaussian processes

Gaussian Processes are non-parametric kernel based approch to regression. We already
discussed approximate inference methods in Chapter 3. We use them because the integrals
we need to solve for Bayesian inference are most of the time not tractable. Gaussian
processes, however, have the huge advantage that the first level inference is analytically
tractable. This is due to the nice properties of the Gaussian distribution.
In this chapter we start with the Gaussian distribution and then go to the infinite di-
mensional Gaussian distribution, the Gaussian process. As for the Gaussian distribution,
also for Gaussian processes the covariance between di↵erent dimensions plays an impor-
tant role. We discuss the role and try to give intuition on how the covariance influences
the regression function. Thereafter, we analyse some particular forms of the covariance
structure (stationary covariance functions). Those can be decomposed into their Fourier
components, which lead to a better understanding of the model. We end with a brief
outlook into some advanced topics like the sparse Gaussian processes for computational
speedup.

4.1 Gaussian process as a limit to Gaussian distribution

Gaussian processes (GPs) are the limit of a multidimensional Gaussian distributions when
we increase the dimensionality of the multivariate Gaussian to infinity. Thus, to under-
stand GPs we need to understand Gaussian distributions first. The probability density of
a N dimensional multivariate Gaussian distribution is given by

p(y) = N (y|µ,⌃) =
1p

(2⇡)N |⌃|
exp

⇢
�

1

2
(y � µ)T⌃�1(y � µ)

�
, (4.1.1)

where µ is the mean of the Gaussian and ⌃ is the covariance matrix. If the diagonal (the
variance of each dimension) only consists of ones, the matrix is also called the correlation
matrix. The o↵-diagonal elements of the correlation matrix basically tell us, how much
the value of a point in two di↵erent dimensions correlate with each other. The close the
value is to one, the higher the correlation. Higher correlation means that once we know
one of the values, we also have information about the value of the other dimension.
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Figure 4.1.1: Two dimensional Gaussian distribution.

Figure 4.1.1 shows two 2-dimensional multivariate Gaussian distributions. The o↵-diagonal
elements of the Gaussian on the left hand side are zero. That means, for a sample from
this distribution, if we know one element, we have no information about the other element
at all. On the right hand side, we see a Gaussian with higher covariance. Here, if we
know one element of a sample, we have information about the other element as well. The
positive correlation means that, if one element is positive, then with high probability the
other element will be positive too.
The Gaussian distribution with dimensionality larger than two cannot be visualized in this
way anymore. Therefore, we need another representation. For our purposes, it is enough to
visualize samples from the distribution. The connected green points on the right hand side
of each subfigure of Figure 4.1.1 show samples drawn from the corresponding Gaussian.
Their corresponding draw is also shown in green in the 2-d density plot. The vertical black
lines in the background each represent a dimension of the Gaussian. For 2-dimensional
Gaussian, we have two lines and each sample has one position (the value of the sample
for that dimension) on each line. In the case, where the correlation is zero, the elements
of the same sample are arbitrarily distributed across the lines. But the interesting case is,
where the correlation is high (right hand side of Figure 4.1.1). In this case the elements of
each sample are near to each other. That is highlighted by the connection of the elements,
which on the right hand side are almost always horizontal compared to the left hand side.
Left hand side of Figure 4.1.2 shows three samples from an 11 dimensional Gaussian.
Di↵erent colors indicate di↵erent samples. The covariance in this case is chosen in a way,
that reflects the distance between the points. Points near to each other have a higher
correlation than points further away. In particular

y ⇠ N

0

B@

0

B@
0
...
0

1

CA ,

0

B@
k11 · · · k1N
...

. . .
...

kN1 · · · kNN

1

CA

1

CA , (4.1.2)

where we choose kij = k(xi, xj) = exp
�
�

1
2(xi � xj)2

 
. k(·, ·) is called the kernel function.

This particular form is called radial basis kernel function (RBF) or the squared exponential
kernel. If we further increase the dimension of the multivariate Gaussian, we end up with
an infinite dimensional Gaussian called a Gaussian process (GP). The samples from a GP
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Figure 4.1.2: Left: Three samples from an 11 dimensional multivariate Gaussian. Right:
Three sampled functions from a Gaussian process.

are functions. Three samples are shown on the right hand side of Figure 4.1.2. We denote
the distribution as

y ⇠ GP(m(x), k(x, x0)) , (4.1.3)

where m(x) is the mean function of the GP and k(x, x0) is the covariance/kernel function.

Definition 4.1.1 A Gaussian process is a collection of random variables y(x1), . . . , y(xN ),
if they have a joint Gaussian distribution for any finite selection x1, . . . ,xN 2 RD.

Like a Gaussian distribution, which is completely specified by its mean vector and the
covariance matrix, a Gaussian process is also completely specified by its mean function
and covariance function. In GP regression, the mean function is often set to zero1. The
kernel function contains information about how the GP evaluated at x and x0 covary. The
properties of the sampled function (i.e. smoothness, periodicity) are determined by the
choice of the kernel function. We will look into di↵erent kernel functions later in this
chapter.

4.2 Gaussian process regression

In last section we gave a visual introduction to Gaussian processes. In this section we
will look into a bit more mathy introduction. We start again with the Bayesian linear
regression model from Chapter 2.2.2. Its generalization will lead to Gaussian processes.
The view through the linear regression model, where the weights to the basis functions are
an important quantity, is called the weight space view. The Gaussian processes, however,
do not contain weighted basis functions, which compose the actual function, but directly
work in the function space. This view is called the function space view. We will briefly
review both views. Detailed description is provided by (Rasmussen and Williams, 2005).

1 The posterior Gaussian process mean, as we will see, can still have a non-zero mean.
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4.2.1 Weight space view

In Chapter 2.2.2 we started with the basis function approach to linear regression

yn = fw(xn) + ✏n = w
T
�(xn) + ✏n . (4.2.1)

The likelihood of the model is given by an independent Gaussian noise assumption p(y|w) =Q
n N (yn|fw(xn),�) around the function fw and the prior in w is also a Gaussian. The

posterior p(w|y) and the predictive distribution p(ypred|y) for a test point �⇤ = �(xtest)
are both analytically tractable in the Gaussian case and are given by

p(w|y) = N (w|mN ,SN )

p(ypred|y) = N
�
ypred|m

T
N�⇤,�

2
N (xtest)

�
, (4.2.2)

where

mN =
1

�2
SN�

T
y

SN =

✓
↵�1

I +
1

�2
�T�

◆�1

�2
N (xtest) = �2 + �

T
⇤ SN�⇤ . (4.2.3)

Note that �2 in �2
N (xtest) adds the independent noise on top of the predicted function f 0

(i.e. ypred = f 0 + ✏). The predictive function distribution without the noise is

p(f 0
|y) = N

�
m

T
N�⇤,�

T
⇤ SN�⇤

�
. (4.2.4)

If we look closer into the mean and covariance of p(f 0
|y) we get (Rasmussen and Williams,

2005)2

m
T
N�⇤ = ↵�T

⇤�(�2
I + ↵�T�)�1

y

�
T
⇤ SN�⇤ = ↵�T

⇤ �⇤ � ↵�T
⇤�(↵�T�+ �2

I)�1↵�T
�⇤ . (4.2.5)

Here we see, that the predictive distribution is only depending on the inner product of
the evaluated basis functions at xtest and x. Since only the inner product of the basis
functions � evaluated at di↵erent points x and x

0 is necessary, we can directly define
a function for the inner product k(x,x0). This is known as the kernel trick, which lifts
the input space x up to a feature space by replacing inner products of basis functions
�(x)T�(x0) with kernel functions k(x,x0).
By replacing ↵�T

⇤ �⇤ with K⇤⇤, ↵�
T
⇤� with K⇤, ↵�

T� with K and ↵�T
�⇤ with K

T
⇤ in

Equation (4.2.5), and allowing for multiple predictions f
0 = (f⇤1, . . . , f⇤N 0) 2 RN 0

, we get

p(f 0
|y) = N

�
K⇤(�

2
I + K)�1

y,K⇤⇤ � K⇤(K + �2
I)�1

K
T
⇤
�
. (4.2.6)

We started with the basis functions with weights and arrived at an expression where we
marginalized out the weights analytically and found another form of expressing the basis
functions through kernels. Next chapter briefly outlines another derivation, which does
not use basis functions at all.

2 For the covariance matrix we use the matrix inversion lemma
(Z +UWV T )�1 = Z�1 �Z�1U(W�1 + V TZ�1U)�1V TZ�1 .
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4.2.2 Function space view

The most important quantity for making predictions is the predictive distribution p(y0
|y)

or the noiseless predictive distribution p(f 0
|y), where we denote the noiseless predictions

by f
0, i.e. y0 = f

0 +✏. To learn that distribution, we have to make modeling assumptions.
In the Gaussian process case, the joint model of unseen data f

0 and seen data y is assumed
to be a multivariate Gaussian with mean µ and a covariance K

p(y,f 0) = N (µ,K) = N

✓✓
0
0

◆
,

✓
K(X,X) + �2

I K(X,X 0)
K(X 0,X) K(X 0,X 0)

◆◆
. (4.2.7)

K(X 0,X) is the matrix containing information about the pairwise covariance of the points
in X

0 and X, i.e. K(X 0,X)ij is the covariance of Xi and Xj .
A huge advantage of a Gaussian distribution is, that the conditional and the marginal
distributions of a partitioned Gaussian are analytically tractable and have a very simple
closed form (Bishop, 2006). Thus we get the noiseless predictive distribution

f
0
|y ⇠ N (µ0,K 0) , (4.2.8)

where

µ
0 = K(X 0,X)

�
K(X,X) + �2

I
��1

y

K
0 = K(X 0,X 0) � K(X 0,X)

�
K(X,X) + �2

I
��1

K(X,X 0) . (4.2.9)

So, the Gaussian process provides a method to predict f
0

2 RN 0
for input locations

X
0 = (x0

1, . . . ,x
0
N 0)T conditioned on the observed data D = {(xn, yn)}Nn=1, with inputs

X = (x1, . . . ,xN )T and outputs y = (y1, . . . , yN )T . Equation 4.2.8 is the closed form joint
predictive distribution for X

0 which is the posterior Gaussian process evaluated at X
0.

The left plot in Figure 4.2.1 shows the mean (in blue) and 2 standard deviations (in light
blue in the background) of the prior Gaussian process and some function drawn in di↵erent
colors. The mean is zero and the kernel function is the RBF k(x, x0) = exp

�
�

1
2(x � x0)2

 
.

After observing some data points we get the posterior distribution defined in Equation
(4.2.8), which is the prior distribution collapsed at the observed points. Right hand side
of Figure 4.2.1 shows the mean and 2 standard deviations of the posterior in light blue
and some function drawn in di↵erent colors. Note how the uncertainty is reduced in the
neighbourhood of the observed data.
Usually the kernel function is dependent on some hyperparamters. The RBF has a variance
�2 and a lengthscale l parameter that specify the vertical and horizontal scaling of the
GP. Hyperparameters are further discussed in Section 4.3. Those parameters are learned
from the data by maximizing the data likelihood (also called the marginal likelihood or the
evidence) p(y) =

R
p(y|f)p(f)df . The prior p(f) is a GP. Thus, p(f) = N (0,K), where

K = K(X,X) and the likelihood is a Gaussian noise model p(y|f) = N (y|f ,�2
noiseI)

with mean f . In this case, the marginal likelihood has a closed form expression

log p(y) = �
1

2
y
T (K + �2

noiseI)�1
y �

1

2
log |K + �2

noiseI| �
n

2
log 2⇡ . (4.2.10)
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Figure 4.2.1: Visualization of prior and posterior GP for the RBF kernel. Left: Gaussian
process prior. Right: Gaussian process posterior after observing 7 data points.

This equation pleasingly separates into an automatically calibrated model fit and com-
plexity term. The data fit term (yT (K + �2

noiseI)�1
y) penalizes data points lying outside

the ellipse given by the covariance matrix. The complexity term (|K + �2
noiseI|) is a kind

of volume of data sets which are compatible with the model and discourages overcomplex
(high volume) models, which are able to explain too many data sets (Rasmussen and
Ghahramani, 2001).
The marginal likelihood can be maximized and yields the optimal values for the kernel
variance �2, kernel length scale l and the noise �2

noise. A better approach would be to put
also a prior on those and infer their posterior. This, however, is not tractable anymore
and we have to resort to approximation methods.
So, a Gaussian process is a joint distribution of the whole output space conditioned on
the observations y at X. It is an infinite dimensional object that can be evaluated at a
finite number of points X

0 = (x0
1, . . . ,x

0
N 0) according to Equation (4.2.8). The neglection

of all the other points is the same as a marginalization of them. That is due to the
marginalization property of a Gaussian

Z
N

✓✓
X1

X2

◆����

✓
µ1

µ2

◆
,

✓
K11 K12

K21 K22

◆◆
dX2 = N (X1|µ1,K11) . (4.2.11)

Each sample from a Gaussian process is a function (an infinite dimensional vector) that
we evaluate on N 0 di↵erent points and thus get a N 0 dimensional vector f

0. Due to
the marginalization property of the Gaussian, it is the same as taking a sample from a
multivariate N 0 dimensional Gaussian distribution.
The function space view is connected to the weight space view. Depending on the kernel
we choose, we predefine the set of basis functions that the regression function can use.
This connection is given by Mercer’s theorem and is introduced in the next section.

4.2.3 Mercer’s Theorem

Theorem 4.2.1 (Mercer) If k is a symmetric and continuous function and the associated
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Figure 4.2.2: Basis functions of RBF-kernel (Equation 4.2.13) up to i = 20.

matrix K is positive semi definite, i.e. u
T
Ku � 0 8 u then we can write

k(s, t) =
1X

j=1

�j�j(s)�j(t) , (4.2.12)

where �j > 0 and �j are the eigenvalues and normalized eigenfunctions of k. The eigen-
values �i are absolutely summable, i.e.

P1
i=1 �i < 1 .

The theorem states, that there is a kernel function k corresponding to every set of basis
functions � = (�1,�2, . . . ) and also that every valid kernel function k can be decomposed
into a set of (possibly infinitely many) basis functions �. The basis function �(x) = x
correspond to a linear kernel k = ↵xx0. �(x) = (x, x2)T corresponds to the quadratic
kernel k(x, x0) = xx0+x2x02. For a given kernel k we can also get back the basis functions.
For example: the polynomial kernel k(x, x0) = (xx0 + c)d corresponds to all polynomial
basis functions up to order d. This concept is really powerful, since we are now also in
the position to define a kernel with an infinitely long basis expansion. The RBF kernel
k = �2 exp

�
�

1
2l2 (x � x0)2

 
, for example, has infinitely many basis functions. It can be

decomposed as k(x, x0) =
P1

i=0 �i(x)�i(x0) (�i is included in the definition of �i), where

�i(x) =
�xi

li
p
i!

exp

⇢
�

x2

2l2

�
. (4.2.13)

The basis functions up to i = 20 for � = 1 and l = 1 are shown in Figure 4.2.2.
Gaussian process regression can be viewed as Bayesian linear regression with possibly in-
finite number of basis functions, where the set of basis functions are the eigenfunctions
of the kernel function. Depending on the kernel, the corresponding basis functions and
therefore also the regression function will have di↵erent properties (i.e.: smoothness, dif-
ferentiability, periodicity, ...). As we decomposed the RBF kernel into Gaussian basis
functions (Equation 4.2.13), we can also decompose it into its Fourier components and get
the weights of the frequencies the regression function is composed of. In next section we
analyse the Fourier transforms of some of the frequently used kernel functions and show
how the kernel function a↵ects the properties of the resulting regression function.
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Table 4.1: Popular kernel functions and their Fourier transform. For stationary kernels
r = |x � x0|.

Name Functional form Fourier transform

Linear ↵xx0 -

RBF �2 exp
n

�
r2

2l2

o
�2l exp

�
�

1
2 l

2!2
 

EXP �2 exp
�
�

r
l

 
�2 2

l /(
1
l2 + !2)

Matern 3/2 �2
⇣
1 +

p
3r
l

⌘
exp

n
�

p
3r
l

o
�2 4

(
p
3l)3

/( 1
3l2 + !2)2

Matern 5/2 �2
⇣
1 +

p
5r
l + 5r2

3l2

⌘
exp

�
�

5r
l

 
�2 16

3(
p
5l)5

/( 1
5l2 + !2)3

White Noise �x,x0�2
noise 1

4.3 Kernel function and its Fourier transformation

In the equation of the mean and the covariance of the posterior GP (Equation 4.2.9) we
see that the kernel function is a very important part of the GP regression. The properties
of the sampled function f from a GP (i.e. smoothness, periodicity) are determined by the
choice of the kernel function. Table 4.1 lists some popular kernel functions. To be a valid
kernel function, k has to be a symmetric positive semi-definite function. Only then the
resulting matrix will be a valid covariance matrix.

If the kernel only depends on the distance between the two inputs, the kernel is called a
stationary kernel. It has a variance and a length scale parameter. The variance parameter
is responsible for the variance of the function value f(x) at some point x. It is a vertical
rescaling of the kernel as well as of the GP samples. The length scale is also a rescaling
parameter but this time for the input scale. Higher length scales will lead to function
samples that do not vary much as a function of the input.

Stationary kernels can also be easily proved to be positive semi definite using Bochners
theorem.

Theorem 4.3.1 (Bochner) A continuous stationary function k(x, x0) = k̃(|x � x0|) is
positive definite if and only if k̃ is the Fourier transform of a finite positive measure

k̃(t) =

Z
exp {�i!t} dµ(!) . (4.3.1)

The proof of the theorem is given by Gikhman and Skorokhod (1974). The density S(!)
corresponding to the measure µ, if exists, is called the spectral density or the power
spectrum corresponding to k and the following relationship holds
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k̃(t) =
1

2⇡

Z
exp {i!t}S(!)d!

S(!) =

Z
exp {�i!t} k̃(t)dt . (4.3.2)

S(!) has a nice interpretation. Fourier transformation is a decomposition of the function f
into its Fourier component with di↵erent frequencies !. S(!) is the weight of frequency !
in f . Table 4.1 shows the corresponding Fourier transformation of each stationary kernel.
The length scale l in the input space X is like a bandwidth in the Fourier space. For the
RBF kernel, for example, the smaller l is, the higher the variation of the samples. This is
equivalent to allowing higher frequencies (smaller l increases the width of the RBF Fourier
transform).
The Fourier transformation provides a great way to construct valid kernel functions. To
construct a valid stationary kernels, we just need to define a density S(!) on the Fourier
space and the corresponding Fourier transformation will be a kernel function. A very
flexible kernel is constructed e.g. by using a mixture of Gaussians in the Fourier space.
Wilson and Adams (2013) did exactly that. The resulting kernel is called the spectral
mixture kernel.
Figure 4.3.1 shows the form of the kernel function (left) and their corresponding Fourier
transformation (right) for kernels listed in Table 4.1 for �2 = 1 and l = 1. Fourier
space is normalized such that all functions begin at 1. The bottom row shows the same
as the top row, the only di↵erence being the log scale at the bottom. Samples from
the GP with these kernel functions are shown in Figure 4.3.2. Note the connection of the
Fourier transform and the smoothness/di↵erentiability of the sampled functions. The RBF
functions are infinity often di↵erentiable and have a double exponentially falling support
in the frequency domain (higher frequencies are strongly suppressed). The Ornstein-
Uhlenbeck process on the other hand is not di↵erentiable at all. This is due to the high
support of higher frequencies, which only fall of with 1

!2 . Plotting the Fourier transform
using the log scale (bottom right plot of Figure 4.3.1) makes the mentioned di↵erence in
the tails clearly visible. Here we see the strong suppression of high frequencies of the RBF
kernel (blue line), whereas the exponential kernel has a very fat tail (red line). The other
Matern kernels are somewhere in between those two extremes.
Also the learned function (the GP posterior) very much depend on the form of the kernel
function. This is illustrated in Figure 4.3.2, where the left column shows samples from
the prior GP and the right columns shows samples from the learned GP posterior after
observing some data points.

4.4 Computational complexity and approximations

Gaussian processes are really nice to work with and have the big advantage of being ana-
lytically tractable and providing the full uncertainty (i.e. analytically tractable predictive
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Figure 4.3.1: Popular stationary kernel functions (left) and the corresponding Fourier
transformation (right). Bottom row shows the same as the top row. Just the scale of the
ordinate is di↵erent. Using the log scale makes the di↵erences in the tails more obvious.

distribution). Learning is “just” the application of Equation (4.2.9). However, the eval-
uation of these equations is computationally quite expensive. The biggest problem is the
storage cost and the inversion of the covariance matrix K(X,X). The storage cost is of
order O(N2) and the inversion O(N3), which does not allow for more than a few thousand
data points.

Fortunately, there are many inducing point approximations out there, which reduce the
cost of the matrix inversion of O(N3) to O(M3). The total cost of inference is reduced
from O(N3) to O(NM2) and the cost of storage from O(N2) to O(NM). These methods
approximate the true Gaussian process by focusing on a smaller number (M ⌧ N) of
(pseudo) data points and thus only need to invert a M ⇥ M covariance matrix.

One of the first approximation people come up with was the Nyström approximation to
K (Rasmussen and Williams, 2005; Schölkopf and Smola, 2002). Instead of inverting
K 2 RN⇥N , a low rank approximation is made, by using the eigenvalue decomposition of
K and only keeping the greatest M instead of all N eigenvalues and eigenvectors.

Snelson and Ghahramani (2006) introduced another method called the fully independent
training conditional (FITC), that augments the data distribution p(y) with pseudo data
(also called inducing points) u and works on the joint distribution p(y,u). The joint
distribution is assumed to have a sparse structure of the form p(y,u) = p(u)

Q
i p(yi|u),

i.e. the data points become independent conditioned on the inducing points. The number
of the inducing points is smaller than the number of data points y, which reduces the cost
of computing the likelihood to only O(NM2), where M is the number of the inducing
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point.
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points. The introduction of the inducing points makes the model parametric again, where
the location of the inducing points become the parameters. They can be jointly learned
with the hyperparameters of the model by optimizing the marginal likelihood.
The most successful approximation so far was introduced by Titsias (2009). This approxi-
mation belongs to the variational free energy methods. The idea is to approximate the full
GP with another variational GP by minimizing their Kullback Leibler divergence. The
variational GP tries to approximate the true GP with fewer data points (inducing points).
The benefit of this variational ansatz, in contrast to FITC, is that the inducing points are
no longer parameters of the model, but variational parameters of the variational approx-
imation. The best fit (in terms of the KL-divergence) is the one where the variational
GP resembles the true GP. Therefore, the inducing points in this ansatz are variationally
protected against overfitting.
Burt et al. (2019) looked at the computational complexity of variational sparse Gaussian
processes introduced by Titsias (2009), to get an arbitrarily good approximation to the
exact GP regression. They put an upper bound on the KL divergence from the approx-
imate posterior to the exact posterior and looked at their dependency on the number of
inducing points used. Their findings are that the number of inducing points need to be of
order O((logN)D) to achieve an error KL(qkp)  ✏/� with a probability 1 � � for a fixed
✏. This is the result for an RBF kernel, if the input to the GP is of bounded support.
That means that the number of inducing points increase only as a logarithm of the total
number of data points, which is really powerful for very large data sets.
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Chapter 5

Bayesian latent variable models

5.1 Introduction

Latent (hidden) variables are variables that are never observed but they, in some sense,
generate the observed data. So, if x 2 RQ are Q latent variables, then the observed data
y 2 RD would be related to the latent variable by some transformation f

y = f(x) + ✏ , (5.1.1)

where y is the noisy observation with noise ✏ 2 RD. This modeling choice makes the
assumption, that the noiseless data, observed in the D dimensional space are actually
living on a Q dimensional manifold. The manifold is described by the function f . From
that manifold the data is then “lifted up” to D dimensions by the noise. Latent variable
models (LVMs) are used to find that Q dimensional linear or nonlinear manifold in the D
dimensional space without knowing the actual dimension and the functional representation
of it.

Example

An example would be a marionette, that is controlled by a persons hand and thus has
very limited degrees of freedom. Let’s call the degrees of freedom Q and collect their
value in a vector x 2 RQ. We as a observer of a marionette theatre only see the complex
movements of the marionette. We can now try to infer the hidden forces that are applied to
make the marionette move in a certain way. For that we have to describe the observation
somehow. We can choose to measure the position of the head, legs, hands, angle between
the lower and upper arm and much more. Each measurement consists of these D di↵erent
parts which we collect in a vector y 2 RD. We are measuring by some physical device
and since they are not perfect, our measurement will be slightly di↵erent from the actual
state of the marionette, which is a mapping of the hand of the person x to the true
position f(x) (hand, leg, angle, . . . ). So at a particular time, the state of the hand x is
mapped to the noisy measurement y. By observing D time frames, we get N times D
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measurements Y = (y1, . . . ,yN )T 2 RN⇥D, coming from N di↵erent positions of the hand
X = (x1, . . . ,xN )T 2 RN⇥Q, mapped via f : RQ

! RD and disturbed by some noise ✏
1.

In mathematical terms the generative model is the following: we have a distribution p(x)
on the latent space x. We sample an x and map it to the observed space y via y = f(x)+✏.
The interesting quantity for a Bayesian is the data distribution p(y), i.e. the distribution
of all my (seen and unseen) data, the density in the data space. So, given observed data
Y = (y1, . . .yN )T , we want to come up with a model that maximizes the data distribution
p(Y ) and hopefully is an accurate description also of the data that we have not seen yet.
Following the basic laws of probability (the sum and the product rule) we can derive the
full generative model. Particularly we are interested in what potentially is out there (what
we would observe next) based on the already seen data. The distribution for “what we
would observe next” (denoted by y

0) conditioned on the data we already observed (denoted
by Y ) is called the predictive distribution p(y0

|Y ). To describe this quantity p(y0
|Y ) we

introduce auxiliary variables and their causal relationship to the data (the model)2

p(y0
|Y ) =

Z
p(y0

|f ,X)p(f ,X|Y )dfdX , (5.1.2)

where the first term in the integrand is the likelihood of new points p(y0
|f ,X) and the

second term p(f ,X|Y ) is the posterior, that puts more weight on the space that is more
likely to cause Y and less weight on the space that would have cause very di↵erent data
than Y . The posterior is given by Bayes rule

p(f ,X|Y ) =
p(Y |f ,X)p(f ,X)

p(Y )
, (5.1.3)

where

p(Y ) =

Z
p(Y |f ,X)p(f ,X)dfdX (5.1.4)

is the data distribution. Di↵erent models make di↵erent assumptions for the likelihood
p(Y |f ,X) and the prior p(f |X). In this chapter we will look into 2 of these models. The
first one is a linear latent variable model, the principle component analysis. The second
one is its nonlinear generalization, the Gaussian process latent variable model.

1 Note that we are trying to infer the latent positions X, the function f and the noise ✏. Note, first of
all, the separation of our observations into those three terms and then the assumption of how they interplay
to cause Y . Each of them will pick up di↵erent structure of the observations Y . This separation is totally
arbitrary and is the choice of the modeler. Each of these separations will pick up some structure of Y ,
based on how we allow them to interplay. We can call the modeling assumption of the noise ✏ around the
function values f(X) the likelihood and call the assumption of the function f the prior. Every structure is
shared among them and di↵erent assumptions for f and ✏ will lead to di↵erent structure sharing. The full
specification of all the parts and their interplay is called the model. It is not just the likelihood or just the
prior. Both are very important and both are necessary to define. It becomes also obvious here, that what
we call “structure” (the thing we want to learn) and the noise (what we want to get rid of) only emerge by
defining a model. Without the model, nothing can be learned, because there is no discrimination between
structure and noise. Without the model, there is not even a definition of structure.

2 We assume p(y0|f ,X,y) = p(y0|f ,X), meaning that all information we get from the seen data Y
about the unseen data y0 is contained in f and X.
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5.2 Principle Component Analysis

5.2.1 Classical PCA

Principle component analysis (PCA) is a model3 that assumes the data Y 2 RN⇥D lie on
a Q dimensional linear subspace of RD with a Gaussian noise around the subspace. The
frequentists solution for solving the PCA model is the Eigen decomposition, that maps
the data Y = (y1, . . . ,yN )T 2 RN⇥D to a lower dimensional matrix X = (x1, . . . ,xN )T 2

RN⇥Q via a linear mapping W 2 RD⇥Q.

y = f(x) + ✏ = Wx + ✏ . (5.2.1)

The mapping is learned in a way that minimizes the loss of information. Other interpreta-
tions of the classical PCA are that the variance of the projected data in the latent space is
maximized (it finds orthogonal directions of maximum variance) or that the mean squared
loss on the reconstruction is minimized.

5.2.2 Probabilistic PCA

Probabilistic PCA (PPCA) can be viewed as a generative model, which assumes that the
generation of the observed D-dimensional data point yn has only Q degrees of freedom.
So, each of the N data points is generated first by selecting a point from the Q-dimensional
latent space and is then mapped to the observed space by a linear mapping

yn = Wxn + ✏n , (5.2.2)

where the noise ✏n is assumed to be from a zero mean Gaussian with variance �2, which
leads to the conditional distribution

p(yn|W ,xn) = N (yn|Wxn,�
2
I) . (5.2.3)

The likelihood of the full data set then becomes

p(Y |W ,X) =
NY

n=1

N (yn|Wxn,�
2
I) . (5.2.4)

In this equation either X or W can be marginalized out analytically by setting a Gaussian
prior on either one of them. In PPCA the prior is set on the latent space X, which is
assumed to be a standard Gaussian p(X) = N (X|0, I ⌦ I). The marginal likelihood is

3 Distinction of PCA as a model and algorithm: PCA as a model makes the assumption that the
Q dimensional manifold in the D dimensional data space is linear and the noise around the manifold is
Gaussian. The frequentists algorithm, Eigen decomposition (Golub and van Loan, 2013), to find that
subspace is also called PCA. It is an algorithm (step-by-step instruction) that minimizes the noise (i.e. the
mean squared error).
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analytically tractable and has the form

p(Y |W ) =

Z
p(Y |W ,X)p(X)dX

=
NY

n=1

N (yn|0,WW
T + �2

I) . (5.2.5)

For a specific data set Y , Equation (5.2.5) can either be optimized to get the mapping
W

⇤ = max
W

p(Y |W ) or it can be solved within the Bayesian framework, where one puts a

prior on W and infers the posterior.

It turns out that the optimization of Equation (5.2.5) in a particular way leads to the
solution of the classical PCA, where the Eigen decomposition is used. This is discussed in
the next section.

5.2.3 Connection of classical PCA and probabilistic PCA

Tipping and Bishop (1999) show how the PPCA solutions is related to the classical PCA
solution. Instead of maximizing Equation (5.2.5) with respect to W , we reparameterize
the equation by the Singular value decomposition (SVD) of W . SVD decomposes a matrix
W 2 RD⇥Q into U 2 RD⇥Q, ⌃ 2 RQ⇥Q and V 2 RQ⇥Q, such that W = U⌃V T . U and
V are both orthogonal matrices and ⌃ is a diagonal matrix. Equation (5.2.2) can now be
written as

yn = U⌃V T
xn + ✏n , (5.2.6)

where the new parameters can be easily interpreted. xn is first rotated via V , then scaled
via ⌃ and then rotated “into” the data space via U . At the end Gaussian noise is added,
which leads to the observation yn.

The fact, that the likelihood p(Y |W ) only depends on the outer product of W , is impor-
tant to understand the connection between classical PCA and PPCA. The outer product
WW

T is a symmetric matrix of rank Q, which has only DQ �
1
2Q(Q � 1) degrees of

freedom4. But when we optimize the likelihood with respect to all the elements of W , we
have DQ parameters. The model is clearly overparameterized. The SVD of W leads to
the three matrices U ,⌃ and V . The DQ parameters are now split over these matrices
and we see the redundancy of the latent space rotation matrix V

5, which has 1
2Q(Q+ 1)

free parameters. So, reparameterizing W by its SVD components and only optimizing
over U and ⌃ will break the rotational symmetry and uniquely identify W .

Exactly this is done in the classical PCA case, where the optimization over U and ⌃
can be done in closed form and the result is given by the Eigen decomposition of Y Y

T

(Tipping and Bishop, 1999).

4 Dim(WW T ) = Dim(U⌃2UT ) = Dim(U) + Dim(⌃) = DQ� 1
2Q(Q+ 1) +Q = DQ� 1

2Q(Q� 1)
5The outer product does not depent on V : WW T = U⌃V TV ⌃TUT = U⌃⌃TUT
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5.2.4 Bayesian PCA

In the Bayesian framework, instead of optimizing the parameters, we infer the posterior
over those by using Bayes rule

p(W |Y ) =
p(Y |W ) p(W )

p(Y )
. (5.2.7)

In this case, however, the marginal likelihood p(Y ) =
R
p(Y |W )p(W )dW is not tractable

anymore. We have to resort to approximation methods. As we will see in Chapter 8
the rotational symmetry of the posterior, that arises due to the rotational symmetry
of the likelihood and the prior6 will be a problem. The solution to that problem is to
reparameterize W again in its SVD components and approximate the posterior of the
components instead of W itself. We elaborate more on that in Chapter 8.

5.3 Gaussian process Latent Variable Models

Lawrence (2005) introduced the Gaussian process latent variable model (GPLVM) for
nonlinear dimensionality reduction. In his approach, instead of marginalising the latent
positions X, he marginalized the parameters W

7. The equation

Y = XW
T + ✏ , (5.3.1)

where ✏ 2 RN⇥D and ✏i,j ⇠ N (0,�) is an independent noise, can be written in 2 ways

Y n,: = WXn,: + ✏n,: (5.3.2)

Y :,d = XW d,: + ✏:,d . (5.3.3)

We saw that the marginalization of Equation (5.3.2) leads to Equation (5.2.5), where the
rows of Y are modeled as being conditionally independent. In the second case (Equa-
tion 5.3.3), however, the columns of Y are modeled as being conditionally independent8.
Equation (5.3.3) is the dual space analogon to Equation (5.3.2) and the likelihood of that
equation becomes

p(Y :,d|X,W d,:) = N (Y :,d|XW d,:,�
2
I) . (5.3.4)

The marginalization of the parameters W by assuming a standard Gaussian prior p(W ) =
N (0, I) leads to

p(Y |X) =
DY

d=1

N (Y :,d|0,K + �2
I) , (5.3.5)

6 Note that both, the likelihood and the prior, are not directly a function of W but its outter product
WW T . The outter product, however, does not change by a rotation of W , i.e. for a rotated W̃ = WR

we get W̃W̃
T
= WRRTW T = WW T .

7 Ideally, one would marginalize both, the parameters W and the latent positions. However, this is not
tractable anymore.

8 In the linear case both choices give the same maximum likelihood result (Lawrence, 2005). This is the
case, because X and W always appear in a product. Since in both cases we assume a Gaussian prior over
the variable we marginalize, it does not matter, which one we marginalize and which one we optimize.
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where K = XX
T and Kij = X

T
i,:Xj,:. Compared to Equation (4.1.3), this equation can

be seen as a Gaussian process with zero mean and a linear kernel function k(Xi,:,Xj,:) =
X

T
i,:Xj,:. It is a product of linear regressions across the outputs Y :,d. The model is

generalized by replacing the linear kernel Kij with a nonlinear one. The generalization to
the nonlinear model is called the GPLVM. Thus, by choosing a nonlinear kernel for the
mapping from the latent to the observed space, Equation (5.3.2), for each of the N data
points become

Y n,: = f(Xn,:) + ✏n,: (5.3.6)

and for each dimension d
Y :,d = fd(X :,d) + ✏:,d , (5.3.7)

where f = (f1, . . . , fD) is a group of D samples from a GP with kernel function k. By
doing this we assume the rows of Y to be jointly Gaussian distributed with covariance
given by k and the columns of Y to be independent. For a zero mean Gaussian random
noise ✏ with variance �2 and with a GP prior on f ⇠ GP(0,K⌦I), the marginal likelihood
of Y becomes

p(Y |X) =
DY

d=1

N (Y :,d|0,K) =
1

(2⇡)ND/2|K|D/2
exp

✓
�

1

2
tr(K�1

Y Y
T )

◆
, (5.3.8)

where the elements of the covariance matrix are given by Kij = k(Xi,:,Xj,:) + �2�ij and
�ij is the delta function. As suggested in Lawrence (2005), we can optimize the marginal
likelihood with respect to the latent positions X and the hyperparameters. Ideally, one
would also like to marginalize over X by placing a prior over those, instead of optimizing
them. This integral, however, is not tractable anymore and one resorts to approximation
methods, which are described in Chapter 3. A similar classical method that also nonlin-
earizes PCA is the kernel PCA (Schölkopf et al., 1998), which kernelizes the data space
instead of the latent space as in the case of GPLVM. It then performs PCA in the uplifted
data space by the corresponding kernel.
In Chapter 7 we use the GPLVM to estimate the covariance between di↵erent data points.
The data points will be di↵erent financial assets. After inferring the covariance structure
between the assets we can build more sophisticated financial models.
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Chapter 6

Finance

In this chapter we look into some financial models that potentially can be generalized
using Gaussian processes and Gaussian process latent variable models (GPLVMs). We
start by introducing linear latent space models that are used for financial modeling and
extend those to nonlinear models using the GPLVM in the next section. In this chapter
we also introduce the modern portfolio theory (MPT) (Markowitz, 1952) that can be used
to build portfolios that maximize returns and minimize risk based on estimates of mean
returns of the assets in the portfolio and their correlation. In the experiments section of
Chapter 7 we use MPT and GPLVMs to construct low volatility portfolios. The estimates
of the covariance are provided by the GPLVMs. There are also other methods to estimate
the covariances. Those are also briefly discussed at the end of this chapter.

6.1 Latent space models in finance

In this section we are going to discuss the two main latent space models for modeling
the return of financial assets. The first one is the capital asset pricing model (CAPM)
and the second model is the extension of the CAPM, called the arbitrage pricing theory
(APT). At the end of this section we also introduce Fama-French three-factor model and
Fama-French five-factor model.

6.1.1 Capital Asset Pricing Model (CAPM)

How risks and returns of an investment are related has long been a topic for business
and research. The CAPM, also called the single-index or the single-factor model (Sharpe,
1964) assumes that the return r̃n of a stock n has a linear dependency on its risk �n and
is a noisy observation of the linear function

r̃n = ↵n + rf + �n(r̃m � rf ) + ✏n , (6.1.1)

where r̃m is the return of the market, ↵ is the intercept, rf is the risk free rate of return,
�n is the volatility of the stock n relative to the market and ✏n is some random noise. The
single factor � captures the information about the movement of the stock compared to
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the market. Stocks that have a higher volatility than the market have a higher �. They
have higher risk and therefore also higher return.
In e�cient markets the expected value of ↵ is zero. Therefore, we set ↵ to zero and express
the return of the stock r̃n and the return of the market r̃m in terms of the excess-returns
rn = r̃n � rf and rm = r̃m � rf . Thus Equation (6.1.1) becomes

rn = rm�n + ✏n . (6.1.2)

This single-index (factor) model couples the returns rn of a stock n to the market return
rm. The variability in the return rn not explained by the market rm is assumed to be noise
✏n. There are many improvements to that model which capture more variability. One of
them is the multi-index model, which assumes many more factors, that are unobserved (a
linear latent space model). Another one, which has observed factors, is for example the
Fama-French three-factor model1. We look closer into these models in the next sections.

6.1.2 Arbitrage theory of capital asset pricing

Whereas in CAPM a single unobserved factor is interpreted as the market return rm,
Arbitrage theory of capital asset pricing (APT) assumes that there are Q latent factors
F 2 RD⇥Q on D days (Ross, 1976)2. If we denote r 2 RN⇥D as the matrix of returns of
N stocks on D days and B = (�1, . . . ,�N )T 2 RN⇥Q as the couplings of the N stocks to
the Q factors, we get

rn,: = F�n + ✏n

r = BF
T + ✏ . (6.1.3)

�n are the sensitivities. They specify to which extent the return of stock n is influenced
by a particular factor. In the CAPM the one factor rm is the return of the market. But in
the APT, the factors are some latent/unobserved quantities. Note, that Equation (6.1.3)
is a linear latent space model and the factors F can be inferred using e.g. PCA. The
drawback of PCA is, that it assumes an error with fixed variance for each element of the
data/return matrix r (see Equation (5.2.4)). A better approach to find the latent factors
is the factor analysis (Everett, 1984), that allows di↵erent noise variances for each row
(asset) of r. Compared to Equation (5.2.4), the likelihood now becomes

p(r|B,F ) =
DY

d=1

N (r:,d|BF d,:, ) , (6.1.4)

1 Fama and French (1993) introduced a three-factor model called the Fama-French model. It improved
the CAPM by including two additional factors to the market factor. These two factors are related to the
firms size and value. There is even a Fama-French five factor model (Fama and French, 2015) that, in
addition to the previous three factors, also includes profitability and investment of a firm.

2 The factors are sometimes also called indexes. Thus, APT is also refereed to as multi-index model.
CAPM on the other hand is called single-index model.
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where  = diag(�2
noise,1, . . . ,�

2
noise,N ) is the diagonal matrix with di↵erent noise variances

of each asset. Thus, the marginal distribution, where the couplings are marginalized out,
becomes

p(r|B) =
DY

d=1

N (r:,d|0,BB
T + ) . (6.1.5)

The optimization of this equation provides the couplings B and the variances of each asset
 . Unlike in the PPCA, there is no analytic result to the optimization of Equation (6.1.5).
Thus it has to be solved iteratively. Bishop (2006) provides the steps for the optimization
using the EM (expectation maximization) algorithm. The factors F can be calculated
using

E[F d,:] = GB
T �1

r:,d (6.1.6)

G = (I + B
T �1

B)�1 . (6.1.7)

The solution to Equation (6.1.5) provides the covariance matrix K = BB
T + 2 RN⇥N

between the N di↵erent assets. This matrix can now be used to calculate optimal portfolios
using modern portfolio theory (Section 6.2).

6.1.3 Fama-French three-factor model

Yet again another extension of the CAPM is the Fama-French three-factor model Fama
and French (1993). In addition to the market risk, the Fama-French three-factor model
also includes two other factors. The first one is the SMB (small minus big) which measures
the historic excess of small-cap companies over big-cap companies. The reasoning behind
this factor is that in the long-term, small companies will have higher returns than larger
companies. The other factor is the HML (high minus low) and represents the spread in
returns between companies with a high book-to-market value ratio and companies with a
low book-to-market value ratio. The reasoning behind this factor is that in the long term
companies with high book-to-market value will outperform companies with low book-to-
market value. With these factors the CAPM can be rewritten as

r̃n = ↵n + rf + �n(r̃m � rf ) + snSMB + hnHML + ✏n . (6.1.8)

The three-factor model is a significant improvement over the CAPM and adjusts for out-
performance tendencies. But also this model has its drawbacks and overlooks a lot of the
variability in average returns which are related to profitability and investment. There-
fore, the three-factor model was extended to the five-factor model by Fama and French
(2015). The first addition is the RMW (robust minus weak) that tries to distinguish
between the most profitable and the least profitable companies and the second addition
is the CMA (conservative minus aggressive) that tries to distinguish between companies
that invest conservatively and companies that invest more aggressively. Equation (6.1.8)
is then extended to

r̃n = ↵n + rf + �n(r̃m � rf ) + snSMB + hnHML + mnRMW + cnCMA + ✏n . (6.1.9)
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In the Fama-French model the factors are observed and it is strictly speaking not a latent
variable model.

6.2 Modern Portfolio Theory

Markowitz (1952) provided the foundation for the modern portfolio theory (MPT), for
which he received a Nobel Prize in economics. MPT provides a way to manage a portfolio
and is based on the so called risk-return relationship. In the CAPM, for example, we saw
that higher risks �n lead to higher returns (Equation 6.1.2). It turns out that we can
reduce the risk of our investments without reducing the returns. To understand that, let’s
assume we have two assets with the same risk profile � and, according to the CAPM, also
the same return. By holding only one of them, our risk is �. But if the stocks have a
correlation � < 1, by combining them, we can reduce our risk, without losing returns. The
holding of di↵erent stocks, which do not perfectly correlate, is called diversification.

MPT provides a basic and simple way for diversification based on the level of risk an
investor seeks. The aversion or the desire for risk of an investor is encoded in the risk
tolerance q. Given N di↵erent assets and the risk tolerance q of the investor, MPT provides
a formula to calculate the optimal weights

wopt = min
w

⇣
w

T
Kw � qr̂Tw

⌘
, (6.2.1)

where K 2 RN⇥N is the covariance and r̂ 2 RN is the mean return of the N di↵erent
assets. Since r̂ is very hard to estimate in general and we are primarily interested in the
estimation of the covariance matrix K, we set q to zero and get the minimal risk portfolio
(for an investor with very high aversion for risk q = 0)

wopt = min
w

�
w

T
Kw

�
. (6.2.2)

The portfolio for assets with the optimal weights wopt according to Equation (6.2.2) is
called the minimal risk portfolio. It minimizes the overall risk assuming the estimated K

is the true covariance.

In the section on portfolio allocation 7.3.1, we will use the GPLMV, as described in Section
7.1, to estimate the covariance matrix K. K can be used in Equation (6.2.2) to get the
optimal weights wopt for the assets in the portfolio.

6.3 Estimation of covariance matrices

In this section we want to answer the question of “how to estimate the covariance matrix
of N assets if their returns are given on D days”, i.e. how do we get K 2 RN⇥N given the
return matrix r 2 RN⇥D. Based on that estimation we can build a minimal risk portfolio
according to MPT (Equation 6.2.2).
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Sample covariance matrix

A simple and easy way to calculate an estimation of the true covariance matrix is the
sample covariance matrix. The sample covariance matrix (empirical covariance) of the N
stocks in r is given by

K =
1

D
(r � µ̂)(r � µ̂)T , (6.3.1)

where µ̂n = 1
D

PD
d=1 rnd is the mean of the samples. This estimation is also called the

classical maximum likelihood estimator provided the number of observations D is large
enough compared to the number of assets N . The maximum likelihood estimator provides
an unbiased estimation (i.e. the expected value is equal to the true covariance matrix).
However, if the number of observations D is not large enough compared to the number
of assets N , the sample covariance is known to be very unstable and can even become
singular. To cope with this problem, a wide range of estimators have been developed and
employed in portfolio optimization.

Ledoit-Wolf estimation

One of the methods to counteract the drawbacks of the sample covariance matrix is the
class of shrinkage estimators. The Ledoit-Wolf estimation is a shrinkage estimation of the
sample covariance matrix S to a more structured matrix F (called the shrinkage target)

K = �S + (1 � �)F , (6.3.2)

where � is called the shrinkage coe�cient. Ledoit and Wolf (2004) propose a formula to
compute the optimal shrinkage coe�cient that minimizes the mean squared error between
the shrinkage estimator and the true covariance matrix. In our experiments we use the
implementation in the Python toolbox scikit-learn (Pedregosa et al., 2011), where the
sample covariance is shrunk towards the identity matrix

K = �
TrS

D
S + (1 � �)I , (6.3.3)

where TrS is the trace of S and D is the number of observations.

In the next chapter we are using GPLVMs to estimate the covariance matrix of di↵erent
assets. We then compare the results we get using the GPLVMs estimates to the results
we get when we use the sample covariance matrix and the Ledoit-Wolf estimation.
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Chapter 7

Gaussian process latent variable
models in finance

In this chapter we build upon the financial models introduced in Chapter 6. We start with
a nonlinear extension of the arbitrage theory of capital asset pricing (APT) introduced in
Section 6.1.2. Here, we show that the Gaussian process latent variable model (GPLVM)
is reduced to APT when using a linear kernel. After that we conduct experiments and
report results on how to use GPLVMs when modeling financial data.
This chapter is an extension of the published work in the Advances in Intelligent Systems
and Computing (Nirwan and Bertschinger, 2019b).

7.1 Nonlinear extension of APT using GPLVMs

In Section 5.3 we introduced the GPLVM as a nonlinear extension of the dual PCA and
in Section 6.1.2 we introduced the APT. Equation (6.1.3) shows the general form of the
APT which is quite similar to what is done in PCA. Given the observed data matrix
r 2 RN⇥D, we try to infer the latent positions B 2 RN⇥Q (also called the couplings) and
the mapping F 2 RD⇥Q (also called latent factors)1. The assumption is that F maps the
latent positions B to the data space linearly. We generalize the model by allowing for
nonlinear mapping

r:,d = fd(B:,d) + ✏:,d , (7.1.1)

where fd ⇠ GP(0, k), with a nonlinear kernel function k and ✏:,d ⇠ N (0, ), with  =
diag(�2

noise,1, . . . ,�
2
noise,N ). Note that the inclusion of a nonisotropic noise variance  ,

allows each asset to have its own independent noise variance �2
n. Note also, that by

choosing one of the stationary kernel functions from Table 4.1, we do not allow di↵erent
assets to have their own variance, which is not a good idea for financial assets, since they
have di↵erent volatilities. Therefore, in the case of a stationary kernel we decompose
our covariance matrix Kcov into a vector of coe�cient scales � = (�1, . . . ,�N )T and a

1 The namings (coupling or latent positions for B and mapping or latent factors for F ) are totally
arbitrary. In the first place, they are just a decomposition of the data matrix Y .
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Table 7.1: Return of four di↵erent stocks on four di↵erent days.

24.10.19 25.10.19 28.10.19 29.10.19

AAPL 0.16 1.23 1.00 -2.31
GOOGL 0.11 0.41 1.95 -2.19
AMZN 1.05 -1.09 0.89 -0.80
MSFT 1.96 0.56 2.45 -0.94

correlation matrix Kcorr, such that Kcov = ⌃Kcorr⌃, where ⌃ is a diagonal matrix with
� on the diagonal. So, for any stationary kernel function kst, the kernel matrix Kst

becomes
Kst = ⌃ kst(B,B) ⌃+ knoise(B,B) , (7.1.2)

and each element of Kst has the form

(Kst)ij = �i�jkst(Bi,:,Bj,:) + �ij�
2
noise,i . (7.1.3)

Since the variance �2, which was in the definition of kst, is now outside the function, we
can set �2 = 1 in all stationary kernels in Table 4.1. In the case of the linear kernel we do
not have to model the variance separately and still have

K linear = klinear(B,B) + knoise(B,B) , (7.1.4)

because the scale of Bn,: can pick up the variance of the n-th asset.
As described in Section 5.3, the likelihood of the full model is given by

p(r|B,✓) =
DY

d=1

N (r:,d|0,K) =
1

(2⇡)ND/2|K|D/2
exp

✓
�

1

2
tr(K�1

rr
T )

◆
, (7.1.5)

where the couplings B and the kernel hyperparamters ✓ are included in K which for sta-
tionary kernels is given by Equation (7.1.2) and for the linear kernel by Equation (7.1.4).
The inference of the posterior of the couplings B and the kernel hyperparameters ✓ is
analytically not tractable anymore. In the experiments in Section 10.4 we use variational
inference and approximate the posterior p(B,✓|r) by independent Gaussians by maximiz-
ing the ELBO.

7.2 Modeling and data collection

We collect the stock prices of the stocks from the S&P500, whose daily close prices were
available for the whole training period. The data can be downloaded from Yahoo Finance.
The data of N stock on D + 1 days are collected in a matrix p 2 RN⇥(D+1). Left hand
side of Figure 7.2.1 shows the normalized price series (price divided by the starting price,
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Figure 7.2.1: Price series (left) and return series (right) of four stocks over two years.

such that every series starts a 1.0) for four di↵erent stock over two years. The returns are
the change of the price from one day to the next and are collected in the return matrix
r 2 RN⇥D, where each element of the matrix is given by

rnd =
pn,d � pn,d�1

pn,d�1
. (7.2.1)

The returns are also shown on the right hand side of Figure 7.2.1. The returns look a
lot like noise. This is indeed the case. It is not purely noise but the correlation between
di↵erent columns is almost zero2. This observation is included in our model by assuming
the likelihood of the GPLVM being a product of likelihoods for the returns for di↵erent
days d. Even though there is no structure in the column, there is a lot of structure in the
rows. Table 7.1 shows the return matrix and here we see that di↵erent rows are positively
correlated. If the return of one stock is positive at a particular day, most likely the returns
of other similar stocks will be positive too. This is the structure that we want to pick
up by the GPLVM, which assumes a multivariate Gaussian relationship within the rows
(stocks).
The question is: Can we come up with a generative model, that generates data with that
structure, where the rows are correlated but the columns are independent?3 Figure 7.2.2
(left hand side) shows the generative process. We assume, that the stocks are embedded in
a latent space, which is the x-axis. Similar stocks are closer to each other (this corresponds
to higher correlation for stationary kernel functions as we saw in Chapter 4). Y-axes
corresponds to the observed space, which are the returns in this case. Each day a random
function is drawn from an unknown distribution, that maps the latent space to the observed
space. On day one, for example, the blue function is drawn and on another day the red

2 Higher correlation would imply, that there is some structure in the change of the price from today to
tomorrow. This information would mean, that given the price/return of today, we have some information
for the price for tomorrow (we can forecast the price for tomorrow). We could trade on this information
and as soon as we start trading the pattern will disappear. See (Fama, 1970) on e�cient markets.

3 The following explanation can be seen as an alternative point of view that does not explain the use
of GPLVM by the generalization of APT (as in Section 7.1), but results into the same model.
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Figure 7.2.2: Generative process of generating a matrix with independent columns but
certain structure within each column (mimicking the return matrix r).

one. The observed noisy values are the returns on those days. The table on the right hand
side of Figure 7.2.2 shows the values corresponding to the blue and the red functions. This
generative process outputs the structure that we want to capture in our financial data.
We want to revert this process. We observe only the return matrix r. Our task now is
to infer the unknown latent space and the function distribution that resulted into that
particular observation r. In our case we use Gaussian processes to model the unknown
function distribution and combine that with latent variable models, which results in the
GPLVM. The likelihood for the observation r is given by Equation (7.1.5) and we assume
the following priors for the unknowns

B ⇠ N (0, 1)

l,�lin ⇠ InvGamma(3, 1)

�,�noise ⇠ N (0, 0.5) . (7.2.2)

The latent space B is assumed to be a standard normal. If we increase the latent space
dimensions, the standard normal will allocate more and more volume for the latent po-
sitions, which will lead to overfitting. To counter that, we set an inverse Gamma prior
on the length scale l and � (�2 is the variance of the linear kernel, which has a similar
functionality as l in the stationary kernels). It allows the length scale to take on high
values easily and therefore shrinks the e↵ective latent space volume. The inverse Gamma
prior also suppresses very small values for the length scale and by this also counteracts
overfitting. The kernel standard deviation �noise and � = diag(⌃) are assigned a half
Gaussian prior with variance 0.5, which is essentially a flat prior, since the returns are
rarely above 0.1 for a day.

7.2.1 Model comparison

There are a lot of ways to evaluate the fit of the data r with the GPLVM. Since the
GPLVM projects the data from a D-dimensional data space to the Q-dimensional latent
space, we can look at the reconstruction error. One measure for the reconstruction error is
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Figure 7.2.3: R2-score (left) and ELBO (right) as a function of the latent space dimension
Q.

the R-squared (R2) score, which explains the variance of the data picked up by the model.
For an observation y = (y1, . . . , yN )T and prediction f = (f1, . . . , fN )T , the R2 is defined
as

R2 = 1 �

PN
n=1(yn � fn)2

PN
n=1(yn � ŷ)2

, (7.2.3)

where ŷ =
P

n yn/N is the mean of y. R2 equal to one is a perfect fit, in the sense that
all the variance was picked up by the model. However, by assuming a lot of noise in the
financial data, an R2 of one is not desired. That would mean, that the noise was also
picked up as structure which is the definition of overfitting.

Figure 7.2.3 (left hand side) shows the R2 score as a function of the latent space dimension
Q. Di↵erent colors indicate di↵erent kernel functions. For every dimension, the nonlinear
kernels capture more of the variance than the linear kernel. Within the nonlinear kernels,
the exponential kernel (Ornstein-Uhlenbeck process) is the best in terms of the R2 score.
The more dimensions we allow the GPLVM to use, the better the R2 score gets. However,
as mentioned earlier, high R2 scores are not always desirable, since at some point the
model will start learning the noise.

Another measure for the goodness of the fits is the marginal likelihood. The marginal
likelihood is used a lot for model selection in Bayesian analysis. However, it is not always
computable. We are using variational Bayes to fit the data to the GPLVM. As explained
in Section 3.2 the objective function, that we maximize, is the ELBO (Evidence Lower
Bound), which is a lower bound to the marginal likelihood (also called the evidence).
ELBO can be taken as a proxy to the marginal likelihood. The ELBO also incorporates
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the complexity (flexibility) of a model by penalizing highly complex models

ELBO =

Z
q⌫(B,✓) log

q⌫(B,✓)

p(B,✓, r)
dBd✓

=

Z
q⌫(B,✓) log p(r|B,✓)dBd✓

�

Z
q⌫(B,✓) log

p(B,✓)

q⌫(B,✓)
dBd✓

= Eq⌫(B,✓)[log p(r|B,✓)] � KL[q⌫(B,✓)kp(B,✓)] . (7.2.4)

The first term in the sum is the data fit term (expectation of the data likelihood under q)
and the second term is a regularization, that forces the variational approximation q not
to deviate much from the prior. The preference of the variational approximation q⌫(B,✓)
towards more complex models, such that the data fit term is maximized, is counteracted
by the the KL-term.
Figure 7.2.3 (right hand side) shows the ELBO as a function of the latent dimension Q.
Here we see, that the model does not need too many dimensions to fit the data. Three or
four latent space dimensions are already good enough for the stationary kernel functions.
Note that the quantities shown in Figure 7.2.3 are averaged over all the stocks. However,
there are di↵erences in the variability picked up by the model from stock to stock. Some
stocks are explained better by the model, others not so good.

7.3 Experiments

In this section we are going to apply the GPLVM to real world problems. The GPLVM
provides the estimated covariance matrix K of the N stocks and their latent space positions
X. We use those to construct minimal risk portfolios using the modern portfolio theory
(Section 6.2), to predict returns for stocks, which are not traded at a particular day and
to match patterns by visualizing the latent space.

7.3.1 Portfolio allocation

The aim of portfolio allocation is to build a portfolio that obey certain criteria. E.g.:
Given a number of stocks and their performance in the past, which one of them should
we buy for the future to maximize our returns and minimize our risk? Modern portfolio
theory (Section 6.2) provides an answer to that question. To optimize a portfolio for risk
and return, we need the mean return r̂ and the covariance matrix K. Then we get the
optimal weights wopt for the portfolio by minimizing Equation (6.2.1). Since we only
estimate the covariance matrix K and not the mean returns r̂, we build the minimal risk
portfolio instead. This is done by minimizing Equation (6.2.2). The minimization is done
under the constraint

P
nwn = 1 and 0 < wn < 0.1. The first constraint ensures that we

are fully invested, wn > 0 ensures that we go long only (we only buy stocks and do not
short sell them) and the second constraint (wn < 0.1) ensures that we do not put too
much weight on a single asset.
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Figure 7.3.1: Learning period of one year is highlighted in light grey and prediction/holding
period of six months is highlighted in light green.

The procedure is the following: We select 60 stocks at random from the S&P500 from Jan
2008 to Jan 2018. Then we learn wopt from the past year and buy accordingly for the next
six months. We start from Jan 2008 (learning wopt from the data from Jan 2008 till Dec
2008 and by stocks according to wopt for Jan 2009 till June 2009) and repeat the procedure
every six months. The learning and holding period is highlighted in Figure 7.3.1. The
learning period is highlighted in light gray and the holding period is shown in light green.
Note that we are not learning from the price as shown in the Figure but from the returns
for the same period. By “learning” we mean the estimation of the covariance matrix K by
the GPLVM. Based on the kernel function we choose, we get di↵erent results. We repeat
the experiment for the same stocks for di↵erent kernels and also include the performance
for the sample covariance (i.e.: K = 1

D (r � µ̂)(r � µ̂)T , where µ̂n = 1
D

PD
d=1 rnd) and

the shrunk Ledoit-Wolf covariance matrix (Ledoit and Wolf, 2004)4. We also included the
equally weighted portfolio, where wopt = (1, . . . , 1)/N 5. Both estimators (Ledoit-Wolf
and sample covariance) are explained in Section 6.3. The performance of the portfolios of
di↵erent models is evaluated using the mean return, standard deviation and the Sharpe
ratio on a yearly basis. Sharpe ratio (Sharpe, 1966) is a measure for the performance of
a portfolio, that includes both, the risk and return of that portfolio. It is defined as the
average return earned per unit of volatility and can be calculated by dividing the mean of
a series of returns by its standard deviation.
Table 7.2 shows the performance for di↵erent models. Nonlinear kernels have the minimal
variance and at the same time the best Sharpe ratio values. Note, however, that we are
not maximizing the mean, since we do not have an estimator for that. For a finite q in

4 We have used the implementation in the Python toolbox scikit-learn (Pedregosa et al., 2011) in the
experiments.

5 Estimating historical returns and high-dimensional covariance matrices is very challenging. Jobson and
Korkie (1981) show that often times an equally weighted portfolio outperforms the portfolio constructed
from sample estimates.
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Table 7.2: Mean return, standard deviation and the Sharpe ratio of di↵erent models on a
yearly basis (Nirwan and Bertschinger, 2019b).

Model Linear SE EXP M32 Sample Cov Ledoit W Equaly W

Mean 0.142 0.151 0.155 0.158 0.149 0.148 0.182

Std 0.158 0.156 0.154 0.153 0.159 0.159 0.232

Sharpe ratio 0.901 0.969 1.008 1.029 0.934 0.931 0.786

Equation (6.2.1) one can also build portfolios, which not only minimize volatility but also
maximize the returns. This, however, is not the goal of our research.

7.3.2 Fill in missing values

Regulation requires fair value assessment of all assets (Financial Accounting Standards
Board, 2006), including illiquid and infrequently traded ones. Liquidity refers to the ease
with which an asset can be sold and the price of the asset at a particular moment is the
price of the last sale. The assessment of a portfolio (or just one asset) needs the price of
all the assets inside that portfolio. If, however, an asset is not traded on a particular day,
there will be no price for that asset at that day. An approximation to that missing value
is, for example, the price at which the asset was traded last time or the average over last
few trades. These, however, are not good estimators of the price.
We demonstrate how the GPLVM can be used to fill in missing prices/returns. The
procedure is the following: We take the data matrix without the missing values and
learn the latent space positions B for all the assets and the kernel hyperparameters ✓ =
(�, l,�noise). Given the positions and the hyperparameters, we can now train a standard
Gaussian process (GP) (Equation 4.2.8) and predict the return of the illiquid asset given
the return of all the other assets at a particular day. The procedure is illustrated in Figure
7.3.2 where in subfigure (a) the blue and the orange values are the days (there might be
many more), where the return of the asset that we want to predict, was observed. The
green column represents a day, where the return was not observed (Figure 7.3.2 (a)). We
can now learn the latent space with the blue and the orange column (Figure 7.3.2 (b))
and train a standard GP on the green column to get the predictive distribution for the
missing return (Figure 7.3.2 (c)). This toy example also shows, that the predictive density
conditioned on the values of other assets at the same day is a much better predictor than
the value of the asset a day ago or an average over the past few days6.
For illustration purposes, we continue working with the prices of stocks from the S&P500.
The return matrix r is first split into a training and a test set. In the test data set we
discard the return of an asset and the goal is to use the GP and GPLVM to predict the
return for that asset. Given N stocks on day d, we fit a GP to N � 1 stocks and predict

6 Remember, that the return values are more or less independent over days, thus do not contain any
(or not enough) information for the value on successor days.
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(a) return matrix r with miss-
ing value.

| | || | | | | | | | |

(b) learning latent space posi-
tions and hyperparameters.

| | || | | | | | | | |

(c) training a GP to predict
missing values.

Figure 7.3.2: Illustration of the procedure for predicting missing values.
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Figure 7.3.3: Left: R2 score of the predicted values. Right: Average absolute deviation of
the predicted return to the real return evaluated by Leaving-one-out cross-validation.

the return of the remaining stock. We iterate thorough all stock for Dtest days, such that
every stock return is predicted once for each of the Dtest days.
Figure 7.3.3 shows the R2-score (left) and the average absolute deviation 1

NDtest

P
nd |rnd�

r
pred
nd | as function of the latent space dimension Q for di↵erent models. We see that already

a linear model is better than the mean of the historic values. Note that the R2-score even
gets negative. The nonlinear kernels perform best. The same is true for the absolute
deviation from the true value (Figure 7.3.3 right hand side). Here, the nonlinear kernels
perform best for Q = 3.

7.3.3 Interpretation of the latent space

Even though the ELBO was the highest for Q between three and five, it still helps to
visualize the latent space for Q = 1 and Q = 2, to get a better understanding of the
model.
Equation (7.1.1) fits the daily returns given the latent space positions B. The distribution
over this function is dependent on the kernel function. For the linear kernel the samples
from the posterior distribution are linear functions, for the SE they are not linear anymore
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and are infinitely often di↵erentiable and for the exponential kernel they are nonlinear as
well but they are not di↵erentiable at all. To get an intuition for the fit, in Figure 7.3.4 we
show the mean of the posterior GP for two random days for the three kernel functions.7

Here, we see how the model tries to capture the structure. It places the stocks according
to their correlation somewhere on the abscissa and then tries to fit them with a function.
The form of this function is given by the choice of the kernel. The linear model tries to
fit the points by a linear function and has to explain the rest as noise. It is obvious, that
if we allow nonlinear functions, we can capture more structure and thereby reducing the
part stated as noise. Also note that there is still a lot of variability in the data, that is
not captured by the model. The model is able to capture more variability when we allow
for more than just one latent space dimension.
The same happens in two and more dimensions but we cannot visualize that anymore.
The 2-d latent space can be visualized using a scatter plot. Figure 7.3.5 shows that latent
space for the RBF kernel. Stationary kernels are distance dependent and the distance is
directly related to the correlation of the stocks. If the distance between two stocks is low,
the correlation will be high. That means, that stocks should cluster according to their
correlation. That is exactly what we see in Figure 7.3.5. Stocks from the same sector are
marked by di↵erent marker style and color. As we see, they tend to cluster together. We
consider our method as an alternative to other methods for detecting structure in financial
data.

7 This plot is made by standardizing the return matrix r and setting � = �(1, . . . , 1)T , such that the
scale of returns of all assets becomes the same.
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Figure 7.3.4: Mean function of the posterior GP for 50 stocks.
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Figure 7.3.5: Scatter plot of the 2-d latent space for the RBF-kernel.
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Chapter 8

Rotation invariant Householder
parameterization for Bayesian
PCA

We discussed the probabilistic PCA and the GPLVM in Chapter 5 and used the GPLVM
for modeling financial data in Chapter 7. While doing that we encountered rotational sym-
metry in the latent space in PPCA as well as in GPLVM. That symmetry only appears
in the posterior of the latent positions X or B and does not a↵ect the data distribu-
tion p(Y ) nor the predictive distribution p(y0

|Y ). Howerver, it causes problems, when
interpreting the latent space1. In this chapter we propose a new parametrization based
on Householder transformations, which removes the rotational symmetry of the posterior,
without changing p(Y ) and p(y0

|Y ), i.e. the model.
The work in this section is published at the International Conference on Machine Learning
2019 (Nirwan and Bertschinger, 2019a).

8.1 Problem definition

The marginal likelihood of PPCA has the form

p(Y |W ) =
NY

n=1

N (yn|0,WW
T + �2

I) , (8.1.1)

as we derived in Chapter 5. Since it only depends on the outer product of W , a rota-
tion of the matrix will result in the same likelihood, i.e.: p(Y |W ) = p(Y |WR) 8 R 2

{R | RR
T = I}, since WRR

T
W

T = WW
T . This rotational symmetry is illustrated

1 We do not see that rotation invariance in Figure 7.3.5 (latent space visualization of the stocks)
since the figure only shows the mean of the variational distribution. Also our variational approximation
approximates the posterior by independent Gaussians, which are not able to capture the rotation. However,
if we were to fit the model using variational inference more than ones, the solutions would di↵er only by
a rotation (excluding di↵erences due to di↵erent local minima).
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Figure 8.1.1: Illustration of the rotational symmetric maximum likelihood solution.

for a 2-dimensional latent space in Figure 8.1.1, where the first two subplots show the
maximum likelihood solution for two di↵erent initial conditions. Each row of W is shown
di↵erent colors. The resulting matrices for both runs are similar in a sense that the like-
lihood is the same for both of them. This is the case because both results only di↵er by
a rotation, which does not a↵ect the likelihood. The right subfigure shows the maximum
likelihood solution for 1000 di↵erent initial conditions. Here, we clearly see the rotational
symmetry.

For a Bayesian analysis of the model, we assume a prior on W and infere the posterior
p(W |Y ) using Bayes rule

p(W |Y ) =
p(Y |W )p(W )

p(Y )
. (8.1.2)

Most of the time, a Gaussian prior is chosen for W . A Gaussian prior is rotationally
symmetric and does not choose an a-priori direction in the latent space and the data
space. That is desired if we do not know the directions of both spaces and also do not
want to prefer any rotation a-priori. However, since the likelihood p(Y |W ) is rotational
symmetric as well, the posterior will also have the same symmetry. Draws from the
posterior are shown in Figure 8.1.2, where we used HMC to draws 4000 samples. Again,
it exhibits the rotational symmetry.

8.2 Background

To break the rotational symmetry without changing the model, we will follow a similar
ansatz to Tipping and Bishop (1999). We decompose W into U⌃V T using singular value
decomposition. A latent space point x 2 RQ is now mapped to the data space by first a
rotation V 2 RQ⇥Q, followed by a scaling via the diagonal matrix ⌃ = diag(�1, . . . ,�Q) 2

RQ⇥Q and then by a rotation via U 2 RD⇥Q. Since the directions in the latent space are
arbitrary, due to the symmetry, V is not uniquely identified. Luckily, the outer product
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Figure 8.1.2: Illustration of the rotational symmetric posterior p(W |Y ).

does not depend on V , since

WW
T = U⌃V T

V ⌃T
U

T = U⌃⌃T
U

T . (8.2.1)

Therefore, the choice of V does not change the model. We set V = I, by which we fix
the unidentifiability of the latent space.

However, since we reparameterized the model, we need to find the proper priors for the
new parameterization, such that the model stays unchanged. For that, we need concepts
from random matrix theory. This section introduces those concepts.

8.2.1 Singular Value Decomposition

Singular value decomposition decomposes any matrix W 2 RD⇥Q as

W = U⌃V T , (8.2.2)

where U = (u1, . . . ,uD)T 2 RD⇥Q and V = (v1, . . . ,vD)T 2 RQ⇥Q are orthogonal
matrices and ⌃ = diag(�, . . . ,�Q) 2 RD⇥Q is a diagonal matrix containing the singular
values. The rank P of W (P  Q) is the number of non-zero singular values, which are
the eigenvalues of WW

T and W
T
W . ui and vi obey the relation

Wvi = �iui, W
T
ui = �ivi, 8 i = 1, . . . , P ,

Wvi = 0, W
T
ui = 0, 8 i > P . (8.2.3)

The columns of U and V are called the left-singular eigenvectors and right-singular eigen-
vectors of W , respectively.
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8.2.2 Random Matrix Theory

As mentioned in previous chapters, the prior on W is chosen to be a standard Gaussian
most of the time in PPCA. A Gaussian prior preserves the rotation invariance in the data
space. That is preferable when we do not know the principle directions in the data space
a-priori. However, this choice of the prior also preserves the latent space rotation, which
leads to unidentified latent space directions. We fix this by using the SVD on the mapping
W = U⌃V T and set V = I. In this subsection, we investigate how to choose the prior on
U and ⌃ such that we do not change the marginal likelihood (i.e. the model). Specifically,
we look for p(U ,⌃) such that

Z
p(Y |W )p(W )dW =

Z
p(Y |U ,⌃)p(U ,⌃)dUd⌃ . (8.2.4)

Therefore, we use results from the random matrix theory. It turns out that the data space
rotation U and the singular values ⌃ are independent for a product of a Gaussian matrix
(which is a Wishart matrix) p(U ,⌃) = p(U)p(⌃). The independence of U and ⌃ and
their exact distribution follow from the theorems described below.

Prior on the singular values ⌃

For a standard Gaussian prior on W , WW
T has a Wishart distribution and the following

theorem holds (James and Lee, 2014)

Theorem 8.2.1 Let the entries of W 2 RD⇥Q be i.i.d. Gaussian with zero mean and
unit variance. The joint probability density of the ordered strictly positive eigenvalues of
the Wishart matrix W

T
W , �1 � ... � �Q, equals

p(�) = ce�
1
2

PQ
q=1 �q

QY

q=1

0

@�
D�Q�1

2
q

QY

q0=q+1

|�q � �q0 |

1

A , (8.2.5)

where � = (�1, ...,�Q) and c is a constant that depends on D and Q.

The non-zero eigenvalues of W T
W are the same as that of WW

T . Therefore they have
the same probability density function. The singular values are given by the square roots
of the variance �, i.e. �i =

p
�i. Thus, we get

p(�1, ...,�Q) = ce�
1
2

PQ
q=1 �

2
q

QY

q=1

0

@�D�Q�1
q

QY

q0=q+1

|�2
q � �2

q0 |

1

A
QY

q=1

2�q , (8.2.6)

where the last product in the term above is the Jacobian correction

p�(�) = p�(g
�1(�))

����det

✓
dg�1(�)

d�

◆���� = p�(g
�1(�))

QY

q=1

2�q , (8.2.7)

with � = g�1(�) = (�2
1, . . . ,�

2
Q). Equation (8.2.7) is the right prior distribution for the

singular values ⌃. Note that the singular values are ordered and the prior for ⌃ does not
depend on U .
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Prior on the principle components U

As mentioned earlier, a standard Gaussian prior on W results into a Wishart distribution
on WW

T . A Wishart matrix can be decomposed into a product of an orthogonal matrix
U and a scaling matrix ⌃ as show in Equation (8.2.1). U is orthogonal by construction
(see singular value decomposition). The set of D times Q orthogonal matrices is called
the Stiefel manifold VQ,D

VQ,D =
�
U 2 RD⇥Q

|U
T
U = I

 
. (8.2.8)

So, U is from the Stiefel manifold. Now we just need the right measure on the Stiefel
manifold. It is known that the eigenvectors of a Wishart matrix are distributed uniformly
in the space of orthogonal matrices2. The eigenvector matrix of a Wishart distributed
matrix, as well as of a singular Wishart distributed matrix, is Haar-distributed (Bai et al.,
2007; Uhlig, 1994)3. The dimension of the Stiefel manifold (D times Q orthogonal matri-
ces) is DQ�

1
2Q(Q+ 1), accounting for the fact that the orthogonality constraint reduces

the number of independent degrees of freedom.
Now we know that for a Wishart matrix the singular values are distributed according to
Equation (8.2.6) and the principle components are uniformly distributed on the Stiefel
manifold. We can directly sample from the probability density function of ⌃, which is
already known. Though we know that the density of U on the Stiefel manifold (space
of orthogonal matrices) is uniform (Haar-distributed), we still need to parameterize that
manifold and sample the parameters. We need to find an unconstrained parameterization
for orthogonal matrices along with a density on the parameters, such that the resulting
matrix is Haar distributed. For that, we will use the Householder parameterization as
explained in the next section.

8.2.3 Householder transformations

Pourzanjani et al. (2017); Shepard et al. (2014) and Mezzadri (2007) proposed di↵erent
approaches to sample uniformly from the Stiefel manifold. Pourzanjani et al. (2017) pa-
rameterize the space using givens rotations, which requires the calculation of the Jacobian
correction for the parameters since the exact distribution of the parameters is unknown.
The Jacobian correction, however, is computationally very demanding. We follow the ap-
proach of Shepard et al. (2014) and Mezzadri (2007) and parameterize the Stiefel manifold
using Householder reflections. In addition, Mezzadri (2007) provides the right density on
the parameters such that the resulting orthogonal matrix has a uniform distribution on the
Stiefel manifold. As a consequence, we do not need to calculate the Jacobian correction
for the change of measure. As we will see, this does not produce a computational overhead
and the complexity of our algorithm is the same as that of PPCA. This section discusses
the theory behind the procedure, with some visual aids.

2 Note that W is only of rank Q. Thus WW T 2 RD⇥D is a singular matrix.
3 The uniform measure on the Stiefel manifold is the Haar-measure. The cited papers claim that the

distribution of singular Wishart matrices are also uniform. We could not find any proof for that claim.
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QR-decomposition

Given a matrix Z 2 RD⇥Q, the thin QR-decomposition decomposes Z into a product of
an orthogonal matrix Q 2 VQ,D from the Stiefel manifold and an upper triangular matrix
R 2 RQ⇥Q, Z = QR. If the elements of Z are i.i.d. standard Gaussian, Q will be Haar
distributed (Mezzadri, 2007). However, this only holds when a unique QR-decomposition
is applied. A unique decomposition is achieved by enforcing the convention that the
diagonal elements of R are positive.
One way to compute the QR-decomposition of Z is by using the Householder transfor-
mations Hd. These are reflections on the plane spanned by a vector ud 2 Rd. The first
reflection HD is chosen in a way that the application of HD on Z turns its first column
to a vector aligned with the first coordinate axis

HDZ =

0

BBB@

↵1 ⇤ . . . ⇤

0
... Z

0

0

1

CCCA
. (8.2.9)

We need to reflect the first column z1 of Z = (z1, . . . , zD)T in such a way that all
coordinates but one disappear. The choice of the plane with the normal ûD corresponding
to the transformation HD, that achieves exactly that, is illustrated in Figure 8.2.1 and is
given by

HD = I � 2ûDû
T
D

ûD =
z1 ± kz1ke1��z1 ± kz1ke1

�� , (8.2.10)

where z1 is the first column of Z and e1 = (1, 0, 0, . . . )T . Successive applications of
Householder transformations H

0
d 2 Rd⇥d on the submatrices Z

0
2 Rd⇥d will lead to an

upper triangular matrix R =
Q

dHdZ, where

Hd =

✓
Id�1 0
0 H

0
d

◆
. (8.2.11)

The product of the Householder transformations
Q

dHd is the orthogonal matrix Q.
Thus, to sample uniformly from the Stiefel manifold, we could simply QR-decompose
a matrix Z with each element being drawn from a standard Gaussian, Zij = N (0, 1).
However, this would totally overparameterize the model, since Z has D ⇤ Q degrees of
freedom.
Note that for the procedure above, the relevant parts for Q 2 VQ,D are the Householder
transformations H 0

d 2 Rd⇥d, which only require the normal vector ûd 2 Rd
8 d 2 1, . . . , D.

This vector, for every d, is created by z
0
d 2 Rd, where each z

0
d is the first column of the

submatrix Z
0 and has far less parameters than Z. Thus, we can find a more compact

parameterization by using these insights.
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Figure 8.2.1: Householder transformation, which maps the vector x to ±kxke1.

Algorithm to sample uniformly from Stiefel manifold

Mezzadri (2007) provides an e�cient way to sample an orthogonal matrix U 2 RD⇥Q

according to the Haar measure. We sample v = (vD,vD�1, . . . ,vD�Q+1) from p(v) (see
Theorem 8.2.2), where vd 2 Rd

8 d 2 {D � Q + 1, . . . , D} and transform them via a
particular form of the Householder transformations to Q. This particular form ensures
the requirement of a unique QR-decomposition (positive diagonal of R). U is the product
of Q Householder transformations

U = HD(vD)HD � 1(vD�1) . . .HD�Q+1(vD�Q+1) . (8.2.12)

To construct Hd, we define H̃d(vd) 2 Rd⇥d as

H̃d(vd) = �sgn(vd1)(I � 2udu
T
d ) , (8.2.13)

where

ud =
vd + sgn(vd1)kvdke1��vd + sgn(vd1)kvdke1

�� , (8.2.14)

and construct Hd by

Hd =

✓
Id�1 0
0 H̃d

◆
. (8.2.15)

The choice of the sign in Equation (8.2.13) and Equation (8.2.14) fulfills the requirement
of the uniqueness. The following theorem shows which distribution p(v) the v need to
follow in order to get an orthogonal matrix distributed according to the Haar-measure
(Mezzadri, 2007)

Theorem 8.2.2 Let vD,vD�1, ...,v1 be uniformly distributed on the unit spheres SD�1, ...,S0

respectively, where Sn�1 is the unit sphere in Rn. Furthermore, let Hd(vd) be the d-th
Householder transformation as defined in Equation (8.2.13). The product

Q = HD(vD)HD�1(vD�1)...H1(v1) (8.2.16)

is a random orthogonal matrix with distribution given by the Haar measure on O(D).
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A corresponding draw form the Stiefel manifold VQ,D can be obtained by only taking
the first Q columns of Q. Alternatively, as defined in Equation (8.2.12), we only draw
vD, . . . ,vD�Q+1 vectors from the respective sphere and construct the orthogonal matrix
from the corresponding Householder transformations. This works, since the Householder
transformations HD�Q, . . . ,H1 only e↵ect the columns D � Q to 1 (Equation 8.2.15).

2-d example for a sample from V2,2

Here, we consider an example for a construction of a 2-d orthogonal matrix U . We need
two vectors v1 = (0, v11)T and v2 = (v21, v22)T , where v11, v21, v22 ⇠ N (0, 1). Using
Equation (8.2.15), we get

H1 =

✓
1 0
0 v11

◆
. (8.2.17)

The construction of H2 is given by v2 that obey H2(v21,v22)T = |v2|e1 = e1. Note, since
H2 = H

�1
2 , we get H2e1 = v2. The orthogonality in the columns of U is build by H2,

since U = H2H1. Thus, we get

U = H2H1 =


H2

✓
1
0

◆
H2

✓
0
v11

◆�
= [v2 H2v1] . (8.2.18)

Therefore, H2 is the matrix, that maps e1 to v2 and “lifts up” v11 to 2 dimensions, such
that H2(0, v11)T ? v2.
This procedure is shown in Figure 8.2.2. Figure 8.2.2(a) shows the samples of v1 and
v2. Without loss of generality, we set v1 = (0, 1)T , since v11 2 S0 = {�1, 1}. Now
we have to map this starting point, such that we get two vectors v

0
1 and v

0
2 satisfying

v
0
1 ? v

0
2
4. The Householder reflection that transforms e1 to v2 also “lifts up” v1 such

that v2 ? H2v1. Subfigure 8.2.2(b) shows the plane doing that. Subfigure 8.2.2(c) shows
the projected vector v0

1 = H2v1 and the final Figure 8.2.2(d) emphasise the orthogonality
between v

0
2 = v2 and v

0
1 = H2v1 in blue.

8.3 Unique PPCA

Now we have all the ingredients for building the model for PPCA that breaks the rotational
symmetry, which plaques the original formulation.

8.3.1 Implementation

We start by sampling from the vs from the uniform sphere. The samples from the unit
sphere Sd�1 are most easily obtained by drawing an i.i.d. standard Gaussian vector of
dimension d and normalizing its length. This, however, increases the number of parameters
by D�Q+1, because we need one additional parameter for each {vd}

D
d=D�Q+1 compared

4 They do not only have to be perpendicular, but also need the property that the resulting matrix
U = (u1,u2)

T is Haar distributed. As already discussed, this is fulfilled by the construction of the
Householder mapping, which makes them perpendicular.
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Figure 8.2.2: Illustration of the construction of U 2 R2⇥2.

to the d � 1 dimensionality of Sd�1 5. At the same time, the overparameterization helps
the sampler to move around the sphere e↵ectively. Note that the Gaussian vector v is
not normalized. Normalization is not required by the Householder transformations, since
Equation (8.2.14) normalizes the vector u, that is used to construct the Householder
transformation, anyway.
Then, the Gaussian vectors {vd 2 Rd

}
D
d=D�Q+1 are transformed to Householder trans-

formations {Hd}
D
d=D�Q+1 via Equation (8.2.13) and Equation (8.2.15). Their product

(Equation 8.2.12) results in a sample U 2 RD⇥Q from the Haar distribution. Next, we
sample the ordered singular values according to the joint distribution (Equation 8.2.6) and
construct ⌃ = diag(�1, . . . ,�Q).
Finally, we construct W = U⌃ and evaluate the likelihood Equation (8.1.1). We obtain
the following generative model

vD, . . . ,vD�Q+1 ⇠ N (0, I)

� ⇠ p(�) / eq. (8.2.6)

µ ⇠ p(µ), e.g. a broad Gaussian

U =
QY

q=1

HD�q+1(vD�q+1)

⌃ = diag(�)

W = U⌃

�noise ⇠ p(�noise)

Y ⇠

NY

n=1

N
�
Y n,:|µ,WW

T + �2
noiseI

�
.

Note that this reparameterized (by U and ⌃) model defines the same data distribution

5 An overparameterization is not always undesirable. As in our case, it helps the sampler by allowing
for better and smoother sampling.
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as the original model with the parameter W , i.e.

p(Y ) =

Z
p(Y |W )p(W )dW =

Z
p(Y |U ,⌃)p(U)p(⌃)dUd⌃ . (8.3.1)

Since the data distribution is only dependent on the outer product WW
T , it is not

necessary that the induced distribution on W = U⌃ is a Gaussian. This is also not
achieved by the priors that we use for U and ⌃. However, it is necessary that the induced
distribution on WW

T is a Wishart distribution, since the data distribution is dependent
only on WW

T . And this is achieved by our prior choices (Haar distribution for U and
p(�) (Equation 8.2.6) for ⌃).
As many other model, our model also has a combinatorial symmetry introduced by the
ambiguity of the eigenvector matrix U . An eigenvector multiplied by -1 is still an eigen-
vector to the same eigenvalue. All these di↵erent modes are equivalent. So, in order to
compare results across di↵erent modes, we postprocess each sample such that the first
entry of each column of U is positive. In the next section, we illustrate our model on
synthetic data set as well as on real world data sets.

8.3.2 Model comparison

Synthetic data set

First, we build our own synthetic data set with known parameter values. The goal is to
reconstruct the values of these parameters. We set (N,D,Q) = (150, 5, 2) and sample X

from a standard Gaussian. Then, we draw a sample U from the Stiefel manifold with
Haar measure and set the singular values (�1,�2) = (3.0, 1.0) and ⌃ = diag(�1,�2). The
mapping W is given by W = U⌃. To get the noisy observations, we sample ✏ from a
zero mean Gaussian with variance 0.01 and get the data by evaluating Y = XW

T + ✏.
Figure 8.3.1 shows samples from the posterior distribution p(W |Y ). Figure 8.3.1(a) com-
pares the samples for the mapping W that we get by sampling p(W |Y ) directly (standard
approach) with our suggested approach, where we sample p(U ,⌃|Y ) instead and calculate
the mapping via W = U⌃. Here, we clearly see the rotational symmetry in the samples
of the standard approach (rings in lighter color). As expected, our suggested approach can
break the symmetry. The samples are shown in a darker color. Note that the samples of
the suggested approach lie on top of the samples of the standard approach. Figure 8.3.1(b)
compares the samples of the suggested approach (colored clouds) with the classical PCA
solution (white dots) and the true parameters (orange dots). As expected, with the low
observation noise, both, our suggested approach and the classical PCA, can reconstruct
the true parameter values. However, in contrast to the classical PCA, our Bayesian ap-
proach provides a distribution for the parameters, accessing estimation uncertainty of the
solution as well.
Figure 8.3.2 shows the posterior distribution of the singular values (�1,�2) along with
the solution of the classical PCA (vertical solid black lines) and the true values (dashed
lines). Again, our suggested approach can reconstruct the true values and the classical
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(a) Sampling with the standard parameteriza-
tion (rings in lighter colors) vs Householder pa-
rameterization (dense clouds in darker colors).
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(b) Comparison of suggested Householder model
(clouds) and the classical PCA solution (white
dots) and true values (orange dots).

Figure 8.3.1: Posterior distribution p(W |Y ) of the mapping W for the synthetic data set.
4000 samples for each row of W are shown in di↵erent colors (Nirwan and Bertschinger,
2019a).
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Figure 8.3.2: Posterior distribution p(⌃|Y ) of the singular values in blue. The vertical
solid black lines are the classic PCA solutions (3.17, 0.92) and dashed lines are the true
values (3.0, 1.0).
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Figure 8.3.3: Sampling with standard (rings in lighter colors) and Householder parame-
terization (dense clouds in darker colors) for several data sets. The name of the data set
is contained in the title of the subfigure.

PCA solution and in contrast to the classical PCA, it also provides the uncertainty of the
parameter estimation.

Other data sets

We tested the model also on various di↵erent data sets. The name and the size of the data
sets are shown in Table 8.1. All the data sets are downloaded from the Python toolbox
scikit-learn (Pedregosa et al., 2011). We neglected the labels and took the feature matrix
of size N ⇥ D as the input to our model. We fixed Q = 2 for visualisation purposes.
The results are shown in Figure 8.3.3. Each subfigure shows the results for a di↵erent data
set. We plotted the posterior samples of the mapping W for the standard parameterization
(directly sampling W ) in the background and the suggested parameterization (sampling
U and⌃ and then converting them to W = U⌃) in the foreground. The result is the same

76



8.3. UNIQUE PPCA

�0.5 0.0 0.5
W1

0.0

0.2

0.4

0.6

0.8

1.0

W
2

Breast Cancer

0.0 0.5 1.0
W1

�0.5

0.0

0.5

1.0

W
2

Iris

Figure 8.3.4: Comparison of Householder parameterization with classical PCA.

for all data sets: with the suggested parameterization we are able to break the rotational
symmetry and uniquely identify the mapping. Figure 8.3.4 compares the solution of the
suggested parameterization with the solution of the standard PCA (shown in white dots)
for the breast cancer and the iris data set. As for the synthetic data set, we are also
here able to reconstruct the PCA solution and provide uncertainties to the parameter
estimates.

8.3.3 Computational complexity and runtime analysis

Comparing to probabilistic PCA, we compute the D ⇥Q loading matrix W from param-
eters v for the principle rotation U and from � for the singular value matrix ⌃. For
that we use the Householder transformation. The total computational cost for that is
in O(DQ2) (Shepard et al., 2014). The same complexity applies to the computation of
the gradients with respect to the model parameters. After obtaining W , in both models
(PPCA and our parameterization), the evaluation of the likelihood (Equation 8.1.1) is of
order O(D3). The most expensive part of the evaluation is the inversion of the covariance
WW

T + �2
noiseI. In total, the Householder parameterization does not increase the total

complexity of the model.

However, since the rotational symmetry is removed, the adaptive NUTS sampler (a version
of Hamiltonian Monte Carlo, which is implemented in stan) needs fewer leap-frog steps
per sample. Numerically, this leads to slightly lower wall clock times overall. Therefore,
our implementation is as e�cient as other sampling methods proposed for probabilistic
PCA.

Table 8.1 compares the runtime for sampling 1000 samples from the posterior with House-
holder parameterization with the runtime of the standard parameterization on the four
di↵erent data sets. Most of the time, the Householder parameterization is faster than the
standard parameterization.
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Table 8.1: Runtime for sampling 1000 samples from the posterior with the Householder
parameterization (U ,⌃) and the standard parameterization W for di↵erent data sets.

Model Breast Cancer Diabetes Wine Iris

Data set size (N,D) (569, 30) (442, 10) (178, 13) (150, 4)

Runtime Householder [min] 9.5 8.9 0.4 0.2

Runtime Standard [min] 25.6 2.4 1.2 0.8

8.3.4 Problems

One of the problems that shows up during sampling is caused by the closeness of the
eigenvalues. If two eigenvalues �i,�i+1 are too close to each other, such that their densities
overlap, the sampler is not able to switch. This is due to the ordering constraint on the
eigenvalues (see theorem 8.2.1), which also implies an ordering of the eigenvectors. If two
eigenvalues �i and �i+1 switch, their corresponding eigenvectors of dimension D have to
switch simultaneously as well. This huge jump in the parameter space will mostly likely
not happen, and thus ignores some of the posterior mass.
Another problem that can occurs during sampling is caused by the signs of the Householder
transformations (Equation (8.2.13) and Equation (8.2.14)). The orthogonal matrix U is
created by sampling vs first and then transform them to the Householder transformations
{Hd}. The product of the Hd’s results in a sample of U . This transformation involves
the sign of the first element vd1 of the {vd 2 Sd�1

}
D�Q+1
d=1 . Therefore, a smooth change

in those first elements can cause a jump in the resulting likelihood value when those
elements change sign (pass 0). This is not happening for (D,Q) = (2, 2), however the
jump is present in the likelihood for the iris data set for Q = 4. In Figure 8.3.5, the
samples of the mapping W are shown. Here, we see an abrupt cut in the distribution (at
W 1 = 0). The cut occurs because the sampler rejects all the samples on the other side
because the change in the likelihood is too big compared to the change in the parameters
values. As we discussed in Section 3.1.3, the acceptance probability for the next sample
depends on the energy gap between the previous and the suggested sample. Thus, if the
likelihood value has a huge jump when evaluated at the suggested sample, the sample is
very likely to get rejected.

8.3.5 Interpretation of the parameters and other than Gaussian priors

So far, in this work, the prior has been chosen to aid comparison with the classical PCA.
The SVD of W into U and ⌃ allows for a better interpretation of the parameters. W is
not so easy to interpret, but U and⌃ are. U is the rotation in the data space and⌃ are the
singular values. For the Gaussian prior on W , they are also independent. Furthermore,
U is uniformly distributed in the space of orthogonal matrices (Haar distribution on the
Stiefel manifold).
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Figure 8.3.5: Illustration of the jump in the likelihood and their e↵ect on the samples of
the parameters W . The sampler cannot pass W 1 = 0 because of that jump.

Other priors of this structure can be constructed very easily. If one knows a-priori the
structure of the data, the information can be embedded into the priors. E.g., information
about principle variances can be encoded into the prior of ⌃ = diag(�1, . . . ,�Q). Also,
information about preferred directions/rotations of the data can be encoded into the prior
of the rotation matrix U . E.g. automatic relevance determination is easily accomplished
by putting a shrinkage/sparsity prior on the principle components.

8.4 Extension to nonlinear models

We discussed the nonlinear extension to dual probabilistic PCA (PPCA), the Gaussian
process latent variable model (GPLVM), in Section 5.3. In dual PPCA, instead of the
marginalization of the latent space X, we marginalize the mapping W and end up with
the following marginal likelihood

p(Y |X) =
DY

d=1

N (Y :,d|0,K + �2
I) , (8.4.1)

where K = XX
T and Kij = X

T
i,:Xj,:. GPLVM generalizes that model (Equation 8.4.1)

by replacing the linear kernel k(x,x0) = x
T
x
0 with a nonlinear one, e.g. the RBF

k(x,x0) = �2
RBF exp

⇢
�

1

2l2
kx � x

0
k
2
2

�
, (8.4.2)

where �2
RBF is the kernel variance and l is the kernel length scale. The likelihood with the

new kernel has still the rotational symmetry. This is the case with all stationary kernels.
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They are only distance-dependent and since rotations preserve the distance between points,
they all have the rotational symmetry. The question is now: can we, by reparameterizing
the model again with the Householder parameterization, break the symmetry in nonlinear
models as well?
To test our model in the nonlinear case, we reparameterize the latent space X by U

and ⌃ as we did in the PPCA case with the mapping W . Then we sample v and �,
transform them to U and ⌃ and reconstruct X = U⌃ as described earlier. Figure 8.4.1
shows the posterior samples for the GPLVM with RBF kernel (Equation 8.4.2) applied to
the Breast Cancer Wisonsin data set. The top row shows the samples for three di↵erent
chains from the standard parameterization, where we sample X directly. Here, we see the
rotational symmetry in the posterior implied by the likelihood and the Gaussian prior on
X. The bottom row shows the samples for three di↵erent chains from the Householder
parameterization, where we sample v and �, transform them to U and ⌃ and reconstruct
X = U⌃. In the bottom row we see no rotational symmetry in the latent space X

anymore. However, due to the increased complexity and flexibility induced by the non-
linear kernel, many local minima arise and the chains with both (the standard and the
Householder) parameterizations converge to di↵erent minima.

80



8.4. EXTENSION TO NONLINEAR MODELS

�5 0 5
X1

�5.0

�2.5

0.0

2.5

5.0

X
2

chain: 1

�5 0 5
X1

chain: 2

�5 0 5
X1

chain: 3

�2 0 2 4
X1

�4

�2

0

2

4

X
2

chain: 1

�2 0 2 4
X1

chain: 2

�2 0 2 4
X1

chain: 3

Figure 8.4.1: Posterior samples of the latent space X for the GPLVM with standard (top
row) and Householder parameterization (bottom row) from di↵erent chains.
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Chapter 9

Order Statistics

The focus of this and the next chapter is to train a model using aggregated data. Many
times there is no information about individual samples form a data set, but just some
quantiles, like the median, 25% or 75% quantiles are available. Especially, with more and
more regulations with the data protection laws, getting sensitive individual data is hard,
e.g.: in the medical domain or in the economy. Many agencies collect data which is only
accessible in aggregated form. E.g.: Instead of providing individual salary data, providers
only provide some statistics of the data.
In Nirwan and Bertschinger (2020), we propose a Bayesian method to learn from those
statistics. Our method has a very intuitive noise model based on the order statistics of
the samples, which is able to capture uncertainties better than current methods do.
In this chapter, we provide the mathematical background needed to understand our
method that is based on the order statistics. We start with the order statistics of a
uniform distribution and then generalize to non-uniform distributions. Next chapter pro-
vides experiments, where we use order statistics to fit synthetic data first and then apply
the method on real world data sets.

9.1 Order Statistics of a Uniform distribution

In our discussion about order statistics we are going to restrict ourself to the continuous
case. To fix the notation, assume that we are given n real-valued i.i.d. observations
(X1, . . . , Xn) from a continuous distribution with PDF f and CDF F . We denote by
(X(1), . . . , X(n)) the ordered series of the observations, where X(1)  · · ·  X(n). The
k-th order statistic of that sample is equal to its k-th smallest value X(k)

1. X(k) itself is
a random variable. The smallest value X(1), for example, will be di↵erent for another n
samples from the same distribution with PDF f . The same is true for all the other order
statistics. The k-th smallest value (k-th order statistic), therefore, has its own distribution
p(X(k)) that we are interested to model.

1 Some examples are: X(1) = min(X1, . . . , Xn) is the minimum, X(n) = max(X1, . . . , Xn) is the maxi-
mum and for odd n X((n+1)/2) = median(X1, . . . , Xn) is the median of the sample. For even n, the median,
for example, can be the average of the n/2 and the n/2 + 1 order statistics.
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There are many other statistics that are easily defined in terms of the order statistics.
For example, the sample range R = X(n) � X(1) is the distance between the smallest
and the largest observation and is a measure of the dispersion in the sample. Another
measure of the dispersion is the interquartile range, which is the distance between the lower
quartile (25% quantile) and the upper quartile (75% quantile). Quantiles themselves can
be expressed as order statistics. For a sample size n, the 25% quantile will be the 0.25n-th
order statistic2.
To get an intuition of the order statistics, let’s start with the uniform distribution on
the interval [0, 1]. If (X(1), . . . , X(n)) are samples from the Uniform(0, 1), the CDF of the
k-th order statistic has the following interpretation: For an event X(k) < x, there will be
at least k many X(i)’s that are smaller or equal to x. Therefore, the drawing of all the
n samples (X1, . . . , Xn) can be seen as Bernoulli trials, where the success is defined as
Xi < x 8 i 2 1, . . . , n. The CDF for the k-th order statistic P (X(k) < x) is then defined
as at least k successes and has the following form

P (X(k) < x) =
nX

i=k

✓
n

i

◆
xi(1 � x)n�i . (9.1.1)

The PDF is given by the derivative of the CDF and takes the form

p(X(k) = x) = n

✓
n � 1

k � 1

◆
xk�1(1 � x)n�k , (9.1.2)

which is the Beta distribution Beta(k, n � k + 1) and can be interpreted in the following
way: Out of n possible values, one of them becomes the k-th order statistic X(k) = x. For
the n � 1 values left, there must be exactly k � 1 values smaller than x. The probability
for one of the observations to be smaller than x for the standard Uniform distribution is
just x.
So, for samples drawn from a standard Uniform distribution, the k-th order statistic X(k)

has a Beta-distribution

p(X(k) = x) = Beta(x|k, n � k + 1) . (9.1.3)

9.2 Generalization to non-Uniform distributions

In a more general case the samples are draw from a non-uniform distribution with PDF
fx and CDF Fx, instead of a Uniform distribution. To get the density of the k-th order
statistic in this case, we just transform the samples such that they become uniformly
distributed. This is done by applying the CDF Fx on the samples. Thus, {Ui = Fx(Xi)}ni=1
will correspond to samples from the standard Uniform distribution again.
For uniformly distributed observations, we already know that the k-th order statistic has
the density function given by Equation (9.1.2). However, since we are transforming a

2 The order statistics are refereed to with integer values. Therefore, if 0.25n is not an integer, one can
take b0.25nc or d0.25ne as an approximation to the 25% quantile.
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random variable, we have to correct for the resulting change of measure by multiplying
with the absolute Jacobian3. So, the PDF for the k-th order statistic of observations from
a PDF fx and CDF Fx becomes

px(X(k)) = pu
�
Fx(X(k))

� ����
dFx(x)

dx

����
x=X(k)

, (9.2.1)

where pu is the PDF of the k-th order statistic according to the uniform distribution
(Beta-distribution)

U(k) = Fx(X(k)) ⇠ Beta
�
Fx(X(k))|k, n � k + 1

�
:= pu(U(k)) (9.2.2)

and the last term is the Jacobian correction. Using Equation (9.2.2) and |dFx(x)/dx| =
fx(x), we obtain

px(X(k)) = Beta
�
Fx(X(k))|k, n � k + 1

�
fx(X(k)) , (9.2.3)

which is the k-th order statistic of any random variable X with PDF fx and CDF Fx.

9.3 Joint distribution of Order Statistics

For a sample size of n values, we denote as x 2 RM the observed/sample quantile values
for M quantiles. Even if the observed n samples are i.i.d., their order statistics is not
independent

px(X(1), . . . , X(n)|✓) 6=
nY

k=1

px(X(k)|✓) . (9.3.1)

The same is true for their M sample quantiles

px(X(1), . . . , X(M)|✓) 6=
MY

k=1

px(X(k)|✓) . (9.3.2)

This is due to their ordering constraint X(1)  · · ·  X(n). Knowing the value of X(k),

for example, forces a constraint on all the other ones. The values of {X(i)}
k�1
i=1 have to be

smaller and {X(i)}
n
i=k+1 have to be greater than the observed value of X(k).

To derive the joint distribution of the full order statistics, we start with the joint distribu-
tion of two such quantile observations. The application of the CDF F to all of the observed
quantile values x, leads to a uniformly distributed random vector U = (U1, . . . , UM ). The
joint PDF of two order statistics U(i) and U(j), where U(i) < U(j) then takes the following
form

pU(i),U(j)
(u, v) = n!

ui�1

(i � 1)!

(v � u)j�i�1

(j � i � 1)!

(1 � v)n�j

(n � j)!
, (9.3.3)

3 Given a probability pu(u) on u and an invertible map g, such that u = g(x), the density px(x) on x

is given by px(x) = pu (g(x))
��� dg(x)dx

���.
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U(1) U(i-1) U(i) U(i+1) U(j-1) U(j) U(j+1) U(n)

i-1 j-i-1 n-j

Figure 9.3.1: Illustration of the PDF of the joint order statistics (Equation 9.3.3).

where u and v correspond to the observed values of U(i) and U(j). Figure 9.3.1 illustrates
Equation (9.3.3). The first fraction ui�1/(i � 1)! is proportional to the binomial distribu-
tion of i�1 of the samples being smaller than u. The second term (v � u)j�i�1/(j � i � 1)!
corresponds to j � i � 1 of the samples being in the interval (u, v) and the last term
(1 � v)n�j/(n � j)! corresponds to (n � j) samples being greater than v.
For M > 2, we have to split the interval [0, 1] into M+1 pieces and apply the same logic as
depicted in Figure 9.3.1. Therefore, for M observed quantile values u = (u1, . . . , uM ) (with
total sample size n) from a uniform distribution with their order k = (k1, . . . , kM ) 2 NM ,
their joint PDF becomes

pU (u|k) = cuk1�1
1 (1 � uM )n�kM

MY

m=2

(um � um�1)
km�km�1�1 , (9.3.4)

where the normalization constant c is given by (See Appendix A.1)

c =
n!

(k1 � 1)!(n � km)!
QM

m=2(km � km�1 � 1)!
. (9.3.5)

The extension to the joint PDF of the order statistics for samples from a non-uniform
distribution with PDF f and CDF F is again straight forward. As already mentioned in
the last section, we apply F to the samples, which will convert them to the desired samples
from a uniform distribution. For the samples from the uniform distribution, we can use
the PDF for the order statistics for a uniform distribution (Equation 9.3.4) adjusted with
the Jacobian correction.
So, for observations x 2 RM from a PDF f , their corresponding order k 2 NM and the
total number of observations n, we get the following joint order statistics

pX(x|k) = cF (x1)
k1�1(1 � F (xM ))n�kM

MY

m=2

(F (xm) � F (xm�1))
km�km�1�1

MY

m=1

f(xm) . (9.3.6)
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Chapter 10

Bayesian quantile matching
estimation

As stated in the last chapter, we want to use order statistics of a sample to match observed
quantiles to a distribution.
There are other methods for matching the quantiles to a distribution. But all of them
have some disadvantages. The Federal Institute for Risk Assessment in Germany has
open sourced an R-package (Belgorodski et al., 2017) that fits the quantiles by minimizing
the mean squared error (MSE) between the cumulative density function (CDF) and the
empirical quantile values. As we discuss in this chapter, this has many downsides and is
not recommended to do. Similarly, Sgouropoulos et al. (2015) and Dominicy and Veredas
(2013) propose to minimize the quadratic distance between some quantile statistics of
modeled and actual data.
In this chapter we start by illustrating the problem and how to solve it using order statistics
that we introduced in Chapter 9. We define the problem in Section 10.1. In Section
10.2, we present the solution to the problem using order statistics. Section 10.3 briefly
introduces another model (CDF regression with Gaussian noise) that is frequently used
in these problem settings. In the experiments in Section 10.4, we conduct experiments
on synthetic data and compare the CDF regression with Gaussian noise (equivalent to
MSE minimization) with our suggested method based on order statistics. At the end of
this chapter we fit our model to real world salary data of several countries and suggest a
procedure for model selection. The work in this chapter can be found on arxiv (Nirwan
and Bertschinger, 2020).

10.1 Problem definition

Suppose there are N samples drawn from a distribution p but we have no access to those
samples. We are only provided some aggregated information about the samples. The
information we have might be M quantiles q = (q1, . . . , qM ) and their corresponding
empirical values x = (x1, . . . , xM ). The task is to infer the underlying distribution from
this information. Note that the quantile values x are random variables for fixed quantiles
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Figure 10.1.1: Illustration of the e↵ect of the underlying sample size N and the quantile
q on the uncertainty of the quantile value x.

q. Another N samples from the same distribution p will result in di↵erent quantile values
x. That means, the quantile values x themselves are noisy and need to be treated as such.

Intuitively, for a large sample size N , the variance in the quantile values x will not be
as big as for a small sample size. Also, the variance in the values of the tail quantiles is,
intuitively, larger than the variance in the values of quantiles in the center, because fewer
samples are available at the tails than at the center of the distribution for a fixed N . This
intuition is shown empirically in Figure 10.1.1, where the top row shows plots for N = 100
and the bottom row for N = 500. The left column shows 100 CDFs based on 20 empirical
quantile values for equidistant quantiles in interval [0, 1] calculated from N draws from a
standard Gaussian distribution and the right column shows the distribution p(x|q) of the
quantile value x for q = 0.25, 0.50, 0.95 and 0.99. The distributions on the right correspond
to the cut of the CDFs on the left for the corresponding quantile q. Here, the uncertainty
of the quantile value x due to the underlying sample size N and the specific quantile q
becomes obvious and is reflected in the width of the distribution p(x|q). This di↵erence
in the uncertainty of di↵erent quantiles q and sample size N is exactly what we want our
model to capture. The marginal p(x|q) and the joint distribution p(x|q) for observations
x have been derived in Chapter 9 and are given by Equation (9.2.3) and Equation (9.3.6)
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respectively. In the next section, we use these equations to fit a non-uniform distribution
given only the quantile information.

10.2 Fit a non-Uniform distribution given quantile informa-
tion

In Section 9.3, we derived the joint distribution of the order statistics of observations
x 2 RM using their corresponding order k 2 NM . In most settings not the order k of M
observations based on an actual sample size of N data points is given, but information
about the corresponding quantiles q. Given M observed quantiles q = (q1, . . . , qM ) 2

[0, 1]M and the number of the samples size N the observation is based on, we can calculate
the order k. k is simply the product of a quantile qi and the number of total sample size
N , i.e.: ki = qiN 1.

10.2.1 Joint distribution of observed quantile values

Thus, we can rewrite the joint distribution (Equation 9.3.6) in terms of the observed
quantiles q instead of the ordering k. For an underlying sample size N , M observed
quantiles q = (q1, . . . , qM ) 2 [0, 1]M and their corresponding values x = (x1, . . . , xM ) 2

RM , the model likelihood becomes

pX(x|q,✓, N) = cF✓(x1)
q1N�1(1 � F✓(xM ))N�qMN

MY

m=2

(F✓(xm) � F✓(xm�1))
qmN�qm�1N�1

MY

m=1

f✓(xm) , (10.2.1)

where F✓ is the CDF and f✓ the PDF of the distribution we want to fit to (N, q,x)
parameterized by ✓.
The next step is to learn a distribution that best fits the data, given the likelihood (Equa-
tion 10.2.1). This can be done by maximizing the likelihood with respect to the parameter
✓ for an observation (N, q,x) or assume a prior p(✓) for the parameters and infer the
posterior p(✓|N,x, q) given by Bayes rule

p(✓|N,x, q) =
p(x|q,✓, N)p(✓)

p(x)
, (10.2.2)

where p(x) =
R
p(x|q,✓, N)p(✓)d✓ is the marginal likelihood. Since the posterior is

analytically intractable, we need to resort to approximation methods e.g. MCMC or
variational Bayes. For the experiments in this chapter, we used MCMC (NUTS version
of HMC, as explained in Section 3.1.3) implemented in the probabilistic programming
language Stan (Carpenter et al., 2017).

1 Note that ki is a positive integer but qi can be any number between 0 and 1. Thus, by not setting ki
as bqiNc or dqiNe but as ki = qiN we are interpolating.
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10.2.2 Generative model

Given (N, q,x) and the PDF f✓, parameterized by ✓, we obtain the following generative
model

✓ ⇠ p(✓)

x ⇠ pX(x|q,✓, N) , (10.2.3)

where p(✓) is the prior distribution of the parameters of the PDF f✓ and the likelihood
pX(x|q,✓, N) is given by Equation (10.2.1). For the most practical purposes and for
all examples presented in this chapter, i.e. where M is small, the code runs almost in-
stantaneously. In particular, by Equation (10.2.1), computing the likelihood has linear
complexity requiring O(M) CDF and PDF evaluations.

10.2.3 Model selection

One part of the model is the choice of the PDF f that we want to use to describe the
data. There are many choices for f and each leads to a di↵erent model and di↵erent
fit. Therefore, it would also be useful to know, how to select f . One measure for the
goodness of how well the data is described by the model is the likelihood score. We take
the distribution f that maximizes the likelihood (Equation 10.2.1).
We fit the data by using Hamiltonian Monte Carlo in Stan, which builds a chain of
parameter values that results to samples from the posterior. While building this chain,
we also calculate the likelihood for each of the parameter set. Thus, we get the likelihood
values of the typical set. These values can be compared for di↵erent fs and we can take the
f that has the best likelihood values. An easy method would be to compare the mean of
the distributions and take the model that maximizes the mean. For the model selection in
Section 10.5, we will compare the mean of the likelihood values for di↵erent distributions
and take the one that maximizes the mean.

10.3 CDF regression model

The joint distribution p(x|q) (Equation 10.2.1) is an assumption for the noise model that
arises naturally from the ordering of the observed values. But, there are also other models
for the noise that are frequently used. One of them is the Gaussian noise model. As
stated in the introduction, this model corresponds to the MSE minimization. Given the
quantiles q and the value at the quantiles x, the idea is to choose a parametric form of
the distribution f✓, parameterized by ✓, and find the parameters such the the MSE is
minimized

min
✓

MX

m=1

(qm � F✓(xm))2 . (10.3.1)

The probabilistic analogue to the MSE is the Gaussian noise model, where the likelihood
is a Gaussian and factorizes conditioned on the parameters ✓. Thus, we can equivalently

90



10.4. EXPERIMENTS

consider the maximum likelihood estimate for the parameters ✓ for a model with the
following likelihood

p(q|✓,x,�2
noise) =

MY

m=1

N
�
qm|F✓(xm),�2

noise

�
. (10.3.2)

By comparing Equation (10.3.2) and Equation (10.2.1), we see that the modeling of the
uncertainty is quite di↵erent. The Gaussian noise model corresponds to a distribution
p(q|x) (in contrast to the order statistics p(x|q)), i.e. considering the quantile itself as
a variable. However, in most applications, the quantiles q are chosen a-priori and their
corresponding values x are estimated or reported. The Gaussian noise model also leads
to a di↵erent penalty for the deviation of the regression function from the observed data
points. In particular, minimizing the MSE or maximizing the Gaussian likelihood penalizes
the deviation just based on the distance of the observed point to the CDF at that point,
without any dependency on q. This, however is obviously not true, as we saw in Figure
10.1.1 and leads to a model that underemphasizes the uncertainty of the tails massively
and implicitly downweights the information coming from the samples from the tails.

10.4 Experiments

In this section we conduct experiments on quantile matching estimations on synthetic data
sets and discuss the results. We also compare the fit by the order statistics (Equation
10.2.1) to the fit by the Gaussian noise model (Equation 10.3.2). We start by looking
at the posterior distribution of the parameters ✓ for both noise models (order statistics
and the Gaussian noise model). Then we analyse the dependency of the posterior on the
number of total samples N . After that we make a stability analysis of both models and at
the end we look at the ability of both models to deal with unspecified models. For all the
experiments in this section, we took a very broad Gaussian prior p(✓) for all parameters
✓.

10.4.1 Bayesian quantile matching estimation

In our first experiment, we fit a Gaussian distribution to some synthetic data. The data
are generated by taking N samples from a Gaussian with known parameters µ and �. We
draw N samples from N (µ,�) and take M quantile values x 2 RM for given quantiles
q 2 RM . The tuple D = (x, q, N) is the synthetic data that we learn from. The goal is
to infer the right parameters µ and � from (x, q, N). We model that data by the order
statistics and the Gaussian noise model.
Figure 10.4.1 shows the sampled posterior p(µ|D) and p(�|D) for both models (order
statistics in blue and Gaussian noise mode in orange). The Kernel Density Estimate
(KDE) of the samples is plotted and the true values of the data generating distribution
are shown in with the vertical black line. We set µ = 2.0 and � = 1.0. The top row shows
the results for N = 100 and M = 10 and the bottom row shows the results for N = 500
and M = 100. The q is chosen equidistantly between 5% and 95% for both plots. The
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Figure 10.4.1: Posterior distribution of µ (left column) and � (right column) for di↵erent
values of M (rows) learned by the order statistics in blue and the Gaussian noise model
in orange. True parameters are shown with vertical black line.

Gaussian noise model (orange) totally underestimates the uncertainty for µ compared to
the order statistics. As one can see, it puts zero probability mass on the true parameters.
Even if we had an outlier in the observations D, the model should not totally exclude the
true values. The fit by the order statistics, however, has a higher uncertainty and puts
more mass at the true parameters. Also for higher M , the uncertainty in the posterior for
both models decreases as one would expect. Note that higher uncertainty of the parameter
estimates is not a bad thing. If the data cannot pinpoint the value of a parameter, we
ideally want that to be reflected in its posterior distribution.

10.4.2 Dependency on N

The intuition that with a larger sample size N , the estimation of the quantile values x at q
should be more accurate, is build in the model likelihood of the order statistics (Equation
10.2.1). In this subsection we will have a look into the posterior as a function of the
total sample size N . Larger values of N result in more accurate estimates for x. This
should also be reflected in the posterior uncertainty, which should decrease (become more
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Figure 10.4.2: Posterior distribution of µ and � for di↵erent N .

accurate) for higher values of N .
Figure 10.4.2 shows the posterior for µ and � for several di↵erent values of N . The data
D = (x, q, N) is coming again from a Gaussian N (µ,�) for (µ,�) = (2.0, 1.0), M is set to
15 and the quantiles q are chosen equidistantly between 5% and 95%. As we expected, the
higher the N the more compact the posterior becomes and puts more and more probability
mass around the true values (µ = 2.0 and � = 1.0).

10.4.3 Robustness to change of a single point in the sample

In this subsection we analyse the robustness of both models to the change of a single
point. We change the value of a single sample of the underlying samples and analyse the
change in the fitted posterior distribution. The criteria for a robust fit is that it should
not change much if we vary only one of N samples (here, we visually compare the change
of both models - order statistics and Gaussian noise model), especially if the number of
the total sample size N is high.
Top row of Figure 10.4.3 shows the mean of the posterior distribution for both models
(dark lines) and the 5% and 95% quantiles in (light colors). The x-axis represents the value
of the first sample from the total 200 samples, which were taken from a Gaussian N (µ,�)
with (µ,�) = (2.0, 1.0). M was set to 15 and q was taken equidistantly from 1% to 99%.
We changed the value of the first element of the sample from µ � 7� to µ + 7� for both
models. So, we see the change in the full posterior mass when moving a single sample from
-5 to 9. The estimates by the order statistics have higher estimation uncertainty (broader
posterior) than the estimates by the Gaussian noise model. The relative change in the
posterior distribution of the mean p(µ|D) is significantly smaller for the order statistics
compared to the Gaussian noise model. The absolute change, however, is slightly larger
for the order statistics. The full distribution on either side is shown again in Figure 10.4.4.
The solid line represents the posterior for the fit, where the first element of the sample is
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Figure 10.4.3: Change in the posterior (top row) and posterior mean (bottom row) by
varying one of N samples.
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Figure 10.4.4: Change of the posterior distribution by changing one sample out of N .

set to -5 and the dashed line shows the posterior for the fit, where the first element of the
sample is set to 9. The left plot shows the change in the posterior p(µ|D) for the order
statistics and the right plot for the Gaussian noise model. This large relative change in
the Gaussian noise model case is an indication that the model either is not robust enough
or severely underestimates the parameter uncertainty. Note, that we are only changing
one out of 200 samples, so we would expect the fit not to change much.

The bottom row of Figure 10.4.3 shows the change of the mean of the posterior. Before
calculating the change, we apply a kernel smoother with a Gaussian kernel to get rid of
the sampling noise. Here, we see that the posterior of the order statistics model changes
earlier (further in the tails) than the posterior of the Gaussian noise model. This again
emphasizes the focus on the tails by the order statistics.
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Figure 10.4.5: Fit of a specified (left) and misspecified model (right).

10.4.4 Penalty for OS and CDF-fit

In this section we look into misspecified models. These are models that cannot reproduce
the true data generating process for any parameter setting. For example, when the data
are coming from a Cauchy distribution and we try to fit them by a Gaussian. The Cauchy
distribution has a totally di↵erent tail behaviour, namely heavy tails, and a Gaussian has
light tail, which fall o↵ double exponentially. Thus a Gaussian can never (for no parameter
combination) fit a Cauchy perfectly.
By fitting a misspecified model and comparing the quantile values of the fitted distribution
to the true quantile values, we can get more information about the nature of the order
statistics and can better compare it with the Gaussian noise model. We already mentioned
in Section 10.3 that the penalty of the observed data (q,x, N) is quite di↵erent from the
order statistics model compared to the Gaussian noise model. This will get quite obvious
in this section.
To illustrate that, we take N samples from the data generating distribution, in this case
a Cauchy distribution, then calculate M quantile values x for given quantiles q. Sub-
sequently, we fit another distribution, in this case a Gaussian distribution to the data
(q,x, N) via order statistics and Gaussian noise model.
Figure 10.4.5 shows the fits for a specified model (left) and a misspecified model (right).
In each case we took N = 200 and 15 equidistant quantile values in the range from 5%
to 95%. For the left plot, we took data from a Gaussian distribution with mean 2.0 and
variance 1.0 and also fit a Gaussian. The predicted quantile values are totally in line with
the true quantile values from a Gaussian. On the right plot, we took data from a Cauchy
with location and scale parameters set to 2.0 and 1.0 and fitted a Gaussian distribution.
This time the predicted quantile values are not in line with the true quantile values from
a Cauchy distribution. Note that each of the model focuses on di↵erent parts of the data.
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While the Gaussian noise model predicted better (with smaller error) the center of the
distribution, the order statistics model predicted better the tails of the distribution. The
Gaussian noise model, which correspond to the MSE, does not put much emphasis on
the tails. This is due to the fact, that in the tails the di↵erence between the CDF of
a heavy tailed distribution (as the Cauchy) and a very light tailed distribution (as the
Gaussian) becomes negligible compared to their di↵erences around the mode. Therefore,
the contribution of the tails to the overall MSE is very small and leads to the neglect of
the tails. The order statistics on the other hand, can get more information from the tails.
This is shown in Figure 10.4.6. We plotted the likelihood of the order statistics (blue) and
the Gaussian noise model (orange) for a Gaussian with PDF f(x) = N (x|2.0, 1.0) (green)
and CDF F . In particular, we plotted the unnormalized likelihoods for a single points

pos(x|q) / F (x)qN�1(1 � F (x))N�qNf(x) (10.4.1)

pgn(q|x) / exp

⇢
�

1

2�2
noise

(F (x) � q)2
�

(10.4.2)

as a function of x for a fixed quantile q = 0.01. pos is the likelihood for the order statistics
and pgn is the likelihood for the Gaussian noise model. The black vertical line shows
the quantile value xtrue for the fixed quantile qtrue 2 and the blue and orange lines show
the score that an estimated value x corresponding to a q would get. The order statistics
shows a peak at the true value xtrue and decreases on both sides even if xtrue is set
further in the tails (q = 0.1, 0.01). The Gaussian noise model on the other hand does
not decrease to zero even far away from the true quantile value. The reason for that is,
that the likelihood (Equation 10.4.2, specifically (F (x) � q)2) does not change much for
a large change in x. This is the case in particular in the tails. Therefore, e.g.: a bad
estimate of q = F (x) = 0.0001 for qtrue = 0.01 leads to almost the same likelihood score
as q = F (x) = 0.01 = qtrue (Equation 10.4.2). Because of that, the CDF regression with
Gaussian noise is totally not suitable for applications where tails of the distribution are
important. Order statistics is a better choice here.

10.5 Matching salary data of di↵erent countries

In this section we are applying our model to a real world data set. Table 10.1 shows
the quantile values for q = (0.25, 0.50, 0.75) of the salary distribution of some European
countries. The corresponding sample size is also provided in Table 10.13.
The goal is not just to fit the data by some distribution but also select the best model
as explained in Section 10.2.3. Therefore, we evaluate the likelihood at the posterior
parameter samples and take the model that maximizes the mean of the log-likelihood
values.

2 ppf in the legend of Figure 10.4.6 denotes the percent point function, which is the inverse of the
cumulative density function.

3 The data are downloaded from the Eurostat homepage (Distribution of income by quantiles - EU-SILC
and ECHP surveys) at https://ec.europa.eu/eurostat/. Information about the sample size is also available
on the website (EU and national quality reports).
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Figure 10.4.6: Emphasis on the tails from Gaussian noise model and order statistics.

Table 10.1: Aggregated salary data of some European countries from 2016.

Country Sample Size 25 50 75

EL 12918 4930 7500 11000
ES 19177 8803 13681 20413
FR 21325 16185 21713 29008
IT 24969 10699 16247 22944
LU 10292 23964 33818 48692
NL 12748 16879 22733 30327
SE 11635 17794 25164 33365
UK 17645 14897 21136 30151

Before fitting the data, we normalize it by dividing the values of each country by its
median (50% quantile). After normalization, we fit the data with various distributions f .
For each country, the mean of the log-likelihood samples for 6 di↵erent distributions is
shown in Table 10.2. The highest log-likelihood values are emphasised in bold writing. The
best fits to the quantile salary data are given by the Weibull, Log-normal and Gamma
distribution. Bandourian et al. (2002) suggests to use a Weibull distribution as a two
parameter distribution for salary data. However, the data they used were not as aggregated
as ours. In our case we only have three quantiles available and Table 10.2 shows that the
Weibull as well as the Log-normal and the Gamma distributions are reasonable to fit the
data.

Figure 10.5.1 shows the posterior predictive cumulative distribution for 10 countries for
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Table 10.2: The mean of the log likelihood samples for di↵erent models and countries.
The + and - values show the distance to the 95 and 5 % quantile of the log-likelihood
distribution.

country weibull lognormal gamma inv gamma frechet chi square

EL �6.9 +0.9
�2.1 4.3 +0.9

�2.0 10.2 +1.0
�2.0 �31.5 +0.9

�2.0 �81.1 +1.0
�2.2 �2063.9 +0.5

�1.3

ES �13.4 +1.0
�1.9 �0.2 +1.0

�2.1 10.1 +0.9
�1.8 �58.9 +1.0

�2.0 �130.4 +1.0
�2.1 �2776.2 +0.5

�1.4

FR �57.7 +1.0
�2.0 13.0 +0.9

�2.0 3.5 +1.0
�2.2 �4.4 +1.0

�2.1 �76.8 +0.9
�2.0 �5847.6 +0.5

�1.4

IT 9.1 +0.9
�2.0 �48.9 +0.9

�2.0 5.3 +0.9
�2.0 �155.2 +0.9

�2.0 �290.0 +1.0
�2.1 �4500.3 +0.5

�1.4

LU �47.7 +1.0
�2.0 9.3 +1.0

�2.1 �9.3 +0.9
�2.1 9.1 +0.9

�2.0 �10.9 +0.9
�1.9 �2062.3 +0.5

�1.4

NL �23.3 +0.9
�1.9 11.6 +1.0

�2.0 9.0 +0.9
�1.9 �1.9 +1.0

�2.0 �49.4 +1.0
�2.1 �3473.8 +0.5

�1.4

SE 11.4 +1.0
�2.0 �21.2 +0.9

�2.0 3.9 +1.0
�2.0 �63.0 +1.0

�2.0 �138.7 +0.9
�2.0 �2910.8 +0.5

�1.3

UK �62.8 +0.9
�2.0 12.1 +1.0

�2.0 �8.1 +1.0
�2.0 0.5 +0.9

�1.9 �45.6 +0.9
�1.9 �3582.7 +0.5

�1.3

the best fit. The posterior predictive cumulative distribution is given by

P (X < x0) =

Z
F✓(x

0)p(✓|x, q, N)d✓ . (10.5.1)

This distribution also allows us to do more than the original three quantile values. Ques-
tions like the following might be asked: What is the threshold for the 99% quantile (earn-
ings of the top 1%)? Table 10.3 shows estimates of the 99% quantiles for the best fits for
each country. To detect misspecification, we can compare the true and the predicted quan-
tile values. Figure 10.5.2 compares the predictive distribution of di↵erent models to the
observed quantiles for UK. According to Table 10.2, Log-normal is the best distribution
and this is also visually clear in Figure 10.5.2, where being only based on three quantile,
the Log-normal shows no sign of misspecification in contrast to the other distributions.
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Figure 10.5.1: Posterior predictive cumulative distribution for observed data marked by
the cross.

Table 10.3: The earnings of the top 1% according to the best model based on the log-
likelihood score. The + and - values show the distance to the 95 and 5 % quantile of the
distribution.

Country best model 99% quantile

EL gamma 23268.6 +406.8
�400.4

ES gamma 44343.5 +701.7
�633.7

FR lognormal 59331.9 +834.6
�838.8

IT weibull 41096.2 +483.8
�467.6

LU lognormal 115693.5 +3038.5
�2796.1

NL lognormal 62265.1 +1185.3
�1142.6

SE weibull 53926.5 +754.0
�744.5

UK lognormal 71466.4 +1294.2
�1280.7
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Figure 10.5.2: The top row and the left side of the bottom row shows the predictions
made for the quantile that we also observed. The bottom right plot shows an out of
sample prediction for the 99% quantile. Di↵erent colors indicate di↵erent models. The
best model according to the log-likelihood value is the Log-normal distribution. This figure
visually validates that result.
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Chapter 11

Summary and conclusion

In this thesis, we provide a more extended version of the published work on the Gaussian
process latent variable models in finance (Nirwan and Bertschinger, 2019b), rotation in-
variant Householder parameterization of Bayesian PCA (Nirwan and Bertschinger, 2019a)
and Bayesian quantile matching estimation (Nirwan and Bertschinger, 2020). The exten-
sion includes a more detailed introduction to the topics, description of the models and
experiments.

The focus of the thesis is on the use of probabilistic models (specially Gaussian processes
and Gaussian process latent variable models) in finance. Chapter 7 provides a detailed
description on how that was done. This work is also published in Nirwan and Bertschinger
(2019b). While using GPLVMs, we encountered a problem of rotation invariance latent
space and solved it by reparameterizing the model. The procedure is described in Chap-
ter 8 and is published in Nirwan and Bertschinger (2019a). Chapter 10 includes work
on Bayesian quantile matching estimation, where we suggest a new method for matching
quantiles to a distribution by using order statistics. Our method can use aggregated data
to learn a distribution. We used that method to fit salary data of some European coun-
tries which are only available in an aggregated form. This work is not published yet but
a preprint is available on arxiv (Nirwan and Bertschinger, 2020).

After the Introduction in Chapter 1, we start with the basics on Bayesian modeling and
explain the Bayesian framework with an example of the linear regression in Chapter 2.
More complex models are analytically not tractable anymore and we need to resort to
approximation methods. The approximation methods that are used in this thesis (HMC
and VI) are described in Chapter 3. Financial modeling is done using Gaussian processes
(GPs) and Gaussian process latent variable models (GPLVMs). Thus Chapter 4 and Chap-
ter 5 introduce GPs and GPLVMs, respectively. In Chapter 6, we start by introducing
some basic financial models and extend them to GPLVMs in Chapter 7. Here, we conduct
experiments, where we fit financial data with GPLVMs. At the end, we introduce some
financial applications, where the GPLVM and the GPs can be applied. The GPLVM has
a rotation invariancy in the latent space, which makes the model harder to fit. Chapter 8
deals with the problem of rotation invariant latent spaces and suggests a new parameter-
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ization based on Householder transformations that breaks the rotational symmetry. The
final two chapters are about matching empirical quantiles to a distribution. Chapter 9
introduces the theory behind the proposed method, which is the order statistics of sample
values. Chapter 10 explains the proposed method. We also compare the performance of
the suggested method to existing methods and conduct experiments on real world data.

11.1 Gaussian process latent variable models in finance

The first topic was about the application of Gaussian process latent variable model
(GPLVM) in Finance. We extended the multi-index model (APT - Arbitrage theory of
capital asset pricing) and showed that its nonlinear form can be expressed by a GPLVM.
GPLVM reduces to APT when using the linear kernel. Additionally, we used the GPLVM
to analyse financial data in many other ways. The structure of the data that was captured
by the model, measured in the R2-score, increased with switching from linear to nonlinear
kernels for fixed latent space dimension Q. However, due to the nonlinearity we lose the
interpretability of the columns of the latent space matrix X as latent factors. We applied
the GPLVM to the return matrix of stocks and estimated the covariance matrix K and
an e�cient latent space representation X of them. K and X can then be used for many
other applications, among which we illustrated three cases.
Portfolio allocation: First of all, we used the covariance of di↵erent stocks K to allocate
a minimal risk portfolio according to the modern portfolio theory. Here, we backtested
the resulting portfolio on the S&P500 from 2002 to 2018 and compared the risk of the
resulting portfolio to the risk of other portfolios (Sample covariance, Ledoit Wolf estimate
of the covariance and the equally weighted portfolio). The estimates by the GPLVM for
nonlinear kernels had the minimal risk.
Prediction of missing values: Using the GPLVM, we constructed the latent space rep-
resentation of the stocks X. The latent space representation allowed us to fill in missing
values of the return of a stock given the observation of other stocks at that day. This was
done using a standard GP regression, which provided us the conditional probability of the
missing return given the observed returns of other assets on a particular day.
Latent space representation: For stationary kernels, the distances between the stocks
in the latent space are directly related to their correlation. We showed how this can lead
to a clustering of stocks into their subsectors. The results can be applied for structure
detection in financial data. It can also be used to construct portfolios with decorrelated
assets. For example, one can build a portfolio of M assets, which are chosen such that
their sum of distances is maximized. Another option is to simply buy the convex hull.

11.2 Rotation invariant Householder parameterization for
Bayesian PCA

The problem with the GPLVM is that if one is interested in the latent space, the posterior
draws are not helpful because of the rotational symmetry. To deal with that problem,
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we proposed another parameterization for the model. The new parameterization does not
change the model (i.e. the data distribution is still the same) but breaks the rotational
symmetry of the latent space. Therefore, we first started with the probabilistic PCA
(GPLVM with a linear kernel) and solved the rotation invariancy problem there. The idea
was to parameterize the model by the singular value decompositions U⌃V T of W instead
of W directly. By setting the redundant rotation of the latent space V to identity, we
were able to break the rotational symmetry of the posterior. We identified the right prior
on U and ⌃ such that the probability in the data space (i.e. the model) is not changed.
The benefits of using the new parameterization are discussed as follows.
Less parameters: The new parametrization uses Householder reflections to parameter-
ize the orthogonal matrix U and has the same degrees of freedom as orthogonal matrices,
namely DQ�

1
2Q(Q+ 1). Other Q dimensions are coming from the Q principle variances

in ⌃. In contrast, the parameterization by W has DQ parameters. In the proposed algo-
rithm, however, we increased the number of parameters by Q. This was done to simplify
the sampling from a sphere. The extra dimensions allow the sampler to smoothly move
in the parameter space.
Computational e�ciency: The known distribution on the vs, which we used to param-
eterize U , to make sure the resulting matrix is Haar distributed, saved a lot of computation
time. The e�ciency gain is the result of not needing a Jacobian correction for the trans-
formation. Other parameterizations, e.g. givens rotations (Shepard et al., 2014), need a
Jacobian correction for O(DQ) parameters that has O(D3Q3) complexity.
Interpretability: Another huge benefit of the new parameterization is the interpretabil-
ity of U as data space rotation and ⌃ as principle variance. This allows us to decode our
a-priori knowledge into the prior for both, the rotation and the principle variances.
Easy extension to nonlinear models: At the end, we also successfully applied the
results to nonlinear model. In particular, we tested the new parameterization for the
GPLVM with nonlinear stationary kernels and broke the latent space symmetry there as
well.

11.3 Bayesian quantile matching estimation

The last project was about the Bayesian matching of empirical quantiles to a distribu-
tion by using order statistics. Here, we suggested an alternative approach for quantile
matching estimation to the widely used MSE (mean squared error) minimization. The
MSE minimization is equivalent to the likelihood maximization with the likelihood being
a Gaussian. After the review of the theory of order statistics, we proposed a method that
allows the use of order statistics to match empirical quantiles to a distribution. There are
a number of advantages of this method compared to the Gaussian noise model, which are
discussed below.
Capturing the tails of a distribution: Our model correctly accounts for the higher
uncertainty of the tail quantiles, whereas the Gaussian noise model overemphasises the
central part of the distribution and neglects the tails.
Estimation of parameter uncertainty: The Bayesian approach allows for better as-
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sessment of model uncertainty. Our experiments on synthetic data sets with known pa-
rameters validate, that the Gaussian noise model (also the Bayesian variant) substantially
underestimates the true uncertainty in the parameter estimates, whereas our model accu-
rately reflects that uncertainty.
Model selection: We also showed, how model selection can be performed with our pro-
posed method. Specifically, we showed how to select the right modeling distribution when
several candidates are given.
We empirically showed all the benefits listed above and at the end, we applied our approach
to fit salary data of several European countries. Among several distributions the Weibull,
Log-normal and the Gamma distribution fitted the data the best.
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Appendix A

Appendix

A.1 Normalization Constant

To verify that Equation (9.3.5) is indeed the normalization constant, we have to integrate
Equation (9.3.4) with respect to all u’s

1

c
=

Z u2

0

Z u3

u1

· · ·

Z 1

uM�1

uk1�1
1 (1 � uM )n�kM

MY

m=2

(um � um�1)
km�km�1�1du1du2 . . . duM .

(A.1.1)
For the integration of a particular ui, however, only the following term is relevant

Z ui+1

ui�1

(ui � ui�1)
ki�ki�1�1(ui+1 � ui)

ki+1�ki�1dui. (A.1.2)

The rest is constant with respect to ui. To solve this integral we substitute u = ui�ui�1

ui+1�ui�1

for ui and get
Z ui+1

ui�1

(ui � ui�1)
ki�ki�1�1(ui+1 � ui)

ki+1�ki�1dui

= (ui+1 � ui�1)
ki+1�ki�1�1

Z 1

0
uki�ki�1�1(1 � u)ki+1�ki�1du

= (ui+1 � ui�1)
ki+1�ki�1�1�(ki � ki�1)�(ki+1 � ki)

�(ki+1 � ki�1)
. (A.1.3)

Note that the integrand in the second step is a unnormalized beta distribution, where
we already know the normalization constant (Bishop, 2006). �(·) is the Gamma-function,
which, for integer input has the form �(n + 1) = n!.
By integrating out ui, the resulting expression has still a similar form. Thus, by successive
applications of the above result, we obtain the normalization constant as in Equation
(9.3.5).
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