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Abstract
This study concludes a tripartite investigation into the indirect
visibility of the moving tongue in human speech as reflected in
co-occurring changes of the facial surface. We were in particu-
lar interested in how the shared information is distributed over
the range of contributing frequencies. In the current study we
examine the degree to which tongue movements during speech
can be reliably estimated from face motion using artificial neu-
ral networks. We simultaneously acquired data for both move-
ment types; tongue movements were measured with Electro-
magnetic Articulography (EMA), face motion with a passive
marker-based motion capture system. A multiresolution analy-
sis using wavelets provided the desired decomposition into fre-
quency subbands. In the two earlier studies of the project we
established linear and non-linear relations between lingual and
facial speech motions, as predicted and compatible with previ-
ous research in auditory-visual speech. The results of the cur-
rent study using a Deep Neural Network (DNN) for prediction
show that a substantive amount of variance can be recovered
(between 13.9 and 33.2% dependent on the speaker and tongue
sensor location). Importantly, however, the recovered variance
values and the root mean squared error values of the Euclidean
distances between the measured and the predicted tongue tra-
jectories are in the range of the linear estimations of our earlier
study.
Index Terms: Face motion, tongue movements, deep neu-
ral networks, speech articulation, multiresolution analysis,
wavelets, electromagnetic articulography

1. Introduction
This study is the third and concluding part of an investiga-
tion into how much unobservable articulatory information can
be recovered from observable face motion during speech and
how much the different frequency bands contribute. Our start-
ing point was the proposition that Articulatory Phonology [1]
does not need to be modified or extended to be applied to vis-
ible speech processing in humans [2]. If the hypothesis holds,
comparing visual speech with both auditory-only and auditory-
visual speech should allow gaining insights into the mecha-
nisms underpinning how articulatory gestures are perceived and
processed by the perceivers and might reveal how the inverse
problem of acoustic-to-articulatory conversion is solved in hu-
man speech perception. If the same articulatory gestures are
perceived – whether auditorily or visually – and if this occurs
in the same manner, examining the perception differences re-
sulting from the modality-specific differences in the amount of
available information should shed some light on the minimal re-

quirements for identifying articulatory gestures. Since the pri-
mary modality of speech is acoustic, it is reasonable to assume
that human speech is most strongly adapted to this modality
and information transfer is close to optimal here. All acoustics-
based accounts of speech perception have this as their central
tenet.

On the other hand, the increase in intelligibility by watching
the speaker’s face during acoustic speech production in noisy
conditions is well documented (starting on the experimental
side with Sumby & Pollack (1954) [3]) as is visual speech read-
ing of silent speech (e.g, [4]) and interference when incongruent
auditory and visual speech is presented (e.g., in the McGurk-
Effect [5]), sometimes interpreted as indicating auditory-visual
integration. There is, however, a marked difference in the de-
gree and detail of gestural information that can be recovered by
human perceivers via the visual versus the auditory modality
[6]. Some speech articulators are only partially or not at all di-
rectly observable. This applies for instance to the velum, the in-
ner workings of the larynx and most crucially the tongue. Some
or all of the motion of these articulators, however, might be still
reflected in changes of the facial surface, either as direct me-
chanical consequences of muscles activity and the connectivity
of the entire speech apparatus via ligaments and tissue connec-
tions, or through an indirect functional link, that is, a gesture
being made more visible in the production process to aid vi-
sual speech perception. A prerequisite for experimentation into
the effects of the factors discussed above upon perception is to
determine how much information about the unobservable artic-
ulators is available on the facial surface.

A couple of studies examined the association between
movements of the speech articulators and face motion (e.g.,
[7, 8]), though their number is far less than the number of stud-
ies investigating associations between tongue movements and
acoustics (central to articulatory phonetics) and associations be-
tween face motion and acoustics (e.g., for multi-modal speech
recognition). The relatively small number of studies into co-
motion of the face and vocal tract articulators in speech might
at least partially be caused by the difficulty of capturing face
motion simultaneously with the measurements of the ’hidden’
articulators. Yehia et al. (1998) [9] found high correlations be-
tween their articulatory data acquired with EMA and their face
motion data acquired with Optotrak (Northern Digital Inc.). Be-
tween 72% to 91% of the variance was accounted for via cross-
modality linear prediction. However, those findings were lim-
ited by several factors. The researchers were not able to record
articulatory data and face motion data simultaneously and used
dynamic time warping to align the data from separate experi-
ment runs. Their articulatory data were two-dimensional and



limited to the mid-sagittal plane and only a small data set was
available for each of the two speakers (American English and
Japanese).

High face-articulator correlations were also found in a study
investigating American English with a slightly larger stimulus
set, as reported in [10]. For the two male and two female speak-
ers of American English average correlation values in the range
of 0.74 to 0.83 were registered. All data were recorded simulta-
neously; however, the articulatory data were still constrained to
the mid-sagittal plane. Two-dimensional articulatory data can-
not capture any lateral variations of tongue shape, e.g., the dif-
ference in tongue shape between /t/ and /l/. As a consequence
the relationship between face motion and the movement of the
articulators might be overestimated dependent on the phoneme
under investigation. In addition the cross-modality estimation
was based on CV syllables only.

Substantially lower association strengths were detected by
Bailly & Badin (2002) [11]. In the study several linear mod-
elling steps were used to combine tongue traces from cinera-
diographic data with face motion data. The data sets were not
recorded simultaneously but linked via estimated vocal tract tar-
get configurations. Moreover, they did not consist of natural
speech, but were mostly ’hyperarticulated sustained articula-
tions’ [11]. The recovered variance of four parameters captur-
ing tongue motion ranged from 37% to 71%.

The experiments reported in [12] and [13] also resulted in
relatively low correlation values and high root mean square er-
rors (RMSE). For methodological reasons, however, they are
not comparable with the current study and the other studies cited
above. On the one hand, the face motion data were limited to
a single 2D-sensor each at the upper and lower lip (mid-sagittal
location). As the lips are active articulators and involved in co-
articulation, it is highly unlikely that much information about
tongue location can be recovered from only lip hight and pro-
trusion information. More fine-grained differences in lip shape
might indirectly reveal tongue position differences, but they
were not available in these studies. On the other hand, a jaw sen-
sor was added to the face motion data. The mandible itself is not
directly visible and its position can only be inferred – be it by
human observers or camera-based machine vision system. The
sensor, however, was attached to the gums of the lower teeth
and registered the movements of the mandible directly. It there-
fore adds ground truth data to the predicand variable set, which
facilitates estimating tongue tip and dorsum position consider-
ably whenever the tongue moves in unison with the mandible or
is passively moved by it.

As we pointed out previously in [14] the prior high correla-
tion results seem to be at odds with human performance in silent
speech reading. For instance, Auer (2009) [4] tested 20 partic-
ipants with severe-to-profound hearing loss who relied primar-
ily on vision for speech communication in a word recognition
task. Recognition rates for low lexical frequency words dropped
below 40% even for words that were assumed to have no vi-
sually similar competitor, and below 20% and 10% for words
from visually medium dense and very dense neighbourhoods,
respectively. This was the case despite that these tasks included
phonemes that constitute highly visible visemes such as the bi-
labial stop consonants /b/ and /p/ or the labiodental fricative /f/.

Our own findings using Partial Least Squares (PLS) as the
linear estimation method of choice [14] resulted in relatively
low correlation values, comparable to the performance of hu-
man speech readers. Extending the research to non-linear rela-
tionships in [15], using Mutual Information, a wealth of shared
information was asserted. Mutual Information (MI) does not
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Figure 1: OPT marker target locations with the marker code
displayed next to the indicator dots.

allow the prediction of one modality from the other and returns
only relative values if the overall information contents of the
signals cannot be determined. Comparing computed MI val-
ues to to the ones obtained from a single jaw EMA sensor and
5 lower chin Vicon markers made a rough assessment possi-
ble, characterising most of the tongue-face association as very
weakly linked. However, as suggested in [15] non-linear esti-
mations method might still profit from the shared information
that goes beyond what is captured by linear methods (the linear
relationships are of course also registered by MI).

In the current study we therefore employed artificial neu-
ral networks on the non-linear regression problem. Because
of their superior performance in many tasks, we choose Deep
Neural Networks (DNNs [16, 17], see [18] for a comprehensive
overview). The history of Deep Neural Networks extends back
in time for at least two decades, but only in recent years has
their success in a variety of classification, detection and syn-
thesis tasks made them the most popular techniques in machine
learning. Shallow artificial neural networks with only one hid-
den layer have been shown to be able to theoretically approx-
imate any continuous function [19]. However, given complex
functions, the number of nodes in the hidden layer might be-
come exceedingly large. It has also been shown that Deep Neu-
ral Networks, that is, networks with many hidden layers, reduce
the number of required nodes substantially [20]. Initial proce-
dural problems of how to train DNNs have now been overcome,
the necessary computational resources are available and very
large data sets are also by now widespread.

Given the considerations outlined above, we hypothesised
that a DNN approach would yield a modest, but noticeable im-
provement over the previously-applied techniques in terms of
the root mean squared Euclidean distance error between mea-
sured and predicted tongue trajectories and in terms of the re-
covered variance. The overall values for the latter, however,
were expected to remain in the typical range for human speech
reading performance. As in our previous studies, we were
particularly interested in how articulatory information is dis-
tributed over the contributing frequency subbands. Frequency-
dependent findings have the potential to aid computer vision
systems for visual speech reading by providing clues at where
to focus. This can be used, for instance, in improving acoustic
automatic speech recognition in very noisy environments such
as many industrial manufacturing sites. Frequency-dependent



findings also offer opportunities to better understand human
speech reading as they might enable to determine on which level
(e.g., syllable or phoneme) human speech reading can poten-
tially work most effectively.

2. Method
2.1. Motion data acquisition

Three female speakers of American English (aged 22-28 years)
were recorded reading a slightly modified version of the tradi-
tional children’s story ‘Chicken Little’. The story was divided
into seven passages comprising about 6-9 sentences each and
was read in a very lively manner by the participants.

Flesh point measurements of the tongue (3 sensors) and jaw
(1 sensor) were obtained using three-dimensional Electromag-
netic Articulography (Carstens AG500) – abbreviated as EMA
hereafter. Head motions were tracked with three sensors: one
each at the left and right mastoid process of the ears and one
at the maxilla. The tongue sensors were attached mid-sagitally
with the orientation of the sensor axis aligned with the sagittal
axis. This sensor arrangement makes the current study compa-
rable to previous studies reviewed in the Introduction, but with
the benefit/difficulty of adding the third spatial dimension (lat-
eral movements) to the estimation targets.

Face motion was captured using the optical Vicon (Vicon
Motion Systems Ltd) motion capture system (abbreviated as
OPT hereafter). Eight MX40 cameras were placed at two differ-
ent height levels in front of the EMA cube (in the direction the
speakers faced) and two each at each side (right and left sides
of the speaker’s face). We used 21 half-spherical 3-mm markers
attached at key locations on the facial surface of the participant,
primarily on the right side, since the wires of the EMA sensors
were brought out of the left corner of the mouth and were at-
tached with micropore tape to the participant’s left cheek (all
speakers included in this study were right-handed).

Three face markers were attached on the chin, 7 around
the vermilion border of the lips, 4 on the nose (wings, tip and
bridge), 5 on the cheek, and 2 at the right eye brow. In order to
track head motion also with the OPT system, three 9-mm spher-
ical markers were sewn to a head band the speaker wore. Figure
1 shows a schematic with the target locations of the markers.

Since the EMA cube is not fixed relative to the OPT sys-
tem and can be moved e.g., by the speaker involuntarily touch-
ing the cube, we tracked potential EMA cube movements with
three 14-mm markers fixed to the front of the cube with plastic
screws. However, only very little movement was detected and
computationally compensated. Both systems operated with a
sample rate of 200 Hz. To enable temporal synchronisation in
the post-processing the trigger signal from the EMA’s AG500
Sybox was recorded with the Vicon analogue signal recording
unit MX Control.

2.2. Data post-processing

Face motion and tongue movement data were temporally
aligned using the synchronisation signal mentioned in the pre-
vious section. The two data types were then spatially aligned
by determining the global offsets between the two coordinate
systems: Immediately after the recording of the speaker four
EMA sensors were wrapped with reflective tape, turning them
into simultaneous OPT markers, and positioned at random lo-
cations in the measurement field of both systems used in the
speech recording. Several trials provided the coordinates of
these four points in both the EMA and the OPT coordinate ref-
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Figure 2: Recovered variances for each speaker in percent av-
eraged over all three sensors except for speaker 2, for whom
only tongue tip and tongue back sensor data were available.
The multiresolution subbands (from higher to lower frequen-
cies: D1, D2, D3, D4, A) and the full signal (F) are shown
along the x-axis.

erence frame (method details in [21]). The offsets were then
computed using conventional pose estimation via the General
Procrustes Method [22].

The speakers head was computationally stabilised using the
methods proposed in [13], removing the impact of head move-
ments from the motion measurements. Residual and smooth-
ness analyses indicated that the OPT tracking using the head
band markers yielded the most reliable results and it was em-
ployed. The face motion tracking data were cleaned manually
frame by frame: spurious ‘ghost’ markers due to mistracking
were removed and short-lived passages of tracking loss were
interpolated using Vicon’s Woltring quintic spline filter [23].
Finally, the motion signals were downsampled to 50 Hz after
a appropriate low-pass filtering. The tongue dorsum sensor of
speaker 2 exhibited repeated and prolonged periods of tracking
failure and had to be discarded in its entirety.

2.3. Frequency decomposition

We applied a multiresolution analysis [24] using the discrete
wavelet transformation (DWT) [25]. Wavelet transformations
represent functions in terms of base functions at different scales
and positions [26]:

f(t) =

∞∑
s=−∞

∞∑
l=−∞

cs,l 2
− s

2 ψs,l (2
−st− l) (1)

where cs,l are the wavelet coefficients and ψs,l(t) the wavelet
function.

Wavelet transformations use ‘small waves’, wavelets, that
have their energy concentrated around a point in time, i.e. the
energy of the wavelet function is finite. This is in contrast with
the Fourier transformation which expands signals (or functions)
in terms of sines and cosines (or equivalently in terms of com-
plex exponentials) that are infinite. As a consequence Wavelet
transforms are localised in time and frequency, the degree of
localisation being dependent on the frequency range: at lower
frequencies they trade off a relatively poor localisation in time
for a relatively good frequency resolution, but the trend is grad-
ually reversed when moving towards higher frequencies. The



D1 D2 D3 D4 A F

Frequency subband

0

5

10

15

20

25

30

35

R
ec

ov
er

ed
 v

ar
ia

nc
e 

in
 %

Tongue tip
Tongue dorsum
Tongue back

Figure 3: Recovered variances for each sensor in percent av-
eraged over all speakers. Note that due to problems with the
tongue dorsum sensor of speaker 2 only the two other speakers
contribute to the average for this sensor. The multiresolution
subbands (from higher to lower frequencies: D1, D2, D3, D4,
A) and the full signal (F) are shown along the x-axis.

discrete wavelet transformation can be implemented with a set
of cascading digital halfband filters [27]. Starting with the raw
signal, the input signal is decomposed at each level of the mul-
tiresolution analysis into a high frequency and a low frequency
part, using a pair of highpass and lowpass filters, which are or-
thogonal to each other. The lowpass data are then used as the
input signal for the subsequent level.

We used filters corresponding to a biorthogonal scheme
with cubic spline wavelets (see [28] for algorithm details) as
implemented in the Uvi Wave wavelet toolbox for Matlab (The
Mathworks, Inc.). A multiresolution analysis entails as its last
step the application of a corresponding set of synthesis filters to
transform the wavelet coefficients back into the original signal
domain. The result is a set of signals at different scales band-
limited to one octave (given the usual dyadic DWT). The first
one contains frequencies between the Nyquist frequency fn and
its half fn/2, the second one between fn/2 and fn/4, and so
on. In this study, we considered four wavelet levels sufficient,
thus we obtained four ’details’ and an ’approximation’ as fol-
lows: D1: 12.5− 25 Hz; D2: 6.25− 12.5 Hz; D3: 3.13− 6.25
Hz; D4: 1.56− 3.13 Hz; A: 0− 1.56 Hz.

2.4. DNN-based estimation

In the current study, the Cartesian coordinates of the face mark-
ers constitute the predictor variable and the Cartesian coordi-
nates of the tongue sensors the predicand variable.

There were 59 sentences for speaker 1, 64 for speaker 2
and 65 for speaker 3. The differences are due to the exclusion
of single sentences because of mistracking by one or both of
the capture systems. This resulted in 9660, 11196 and 10690
samples, respectively, adding up to 31546 available samples in
total.

The data were split sentence-wise into a training set (80%
of the data) and a final evaluation set (20% of the data). The
training set was in turn arranged for a four-fold validation: Each
fold consisted of a new random (without replacement) split of
the files into training data (75%) and test data (25%). The final
evaluation set was only used to test the trained network on pre-

viously unseen data after all hyper-parameters were determined
and all network parameters learned on the full training set.

We used the Matlab Neural Networks toolbox (The Math-
works, Inc.) for training and evaluating the deep neural net-
works. The toolbox offers a class of networks intended for
non-linear regression, a fully-connected feed-forward architec-
ture with hyperbolic tangent sigmoid activation functions on the
hidden layers and a linear activation on the output layer.

As the loss function, the mean squared error between the
target data and the output estimation of the network was cho-
sen. Using the four-fold cross-validation we evaluated several
different network topologies, ranging from a single hidden layer
with 513 nodes to deep narrow architectures (e.g., number of
nodes in of the hidden layers: 60-60-60-60-60-60-60) to rela-
tively broad deep topologies (e.g., 513-228-171-171). Based on
the four-fold evaluation results we fixed the layout eventually as
a 117-117-117-117-117 network.

The Matlab toolbox appears to have implemented neither
dropout nor mini-batches for the ’fitnet’ class of networks and
relies mostly on early stopping to prevent overfitting. In this
study, we considered stronger regularisation highly necessary
given the high number of parameters in the network and the
fact that we noticed substantially lower training errors than test
errors initially. As dropout could have only be added in the form
of a work-around, we implemented mini-batch training. Three
mini-batches containing a randomly selected 33.3% of the train-
ing data were employed. To learn the weights, the scaled con-
jugate gradient algorithm was used in backpropagation.

The following additional parameters were used: Maximum
number of training epochs: 8000; error goal: 0; maximum num-
ber of validation tests without improvement before stopping:
400; minimum gradient for proceeding: 10−7; learning rate
at start: 0.001; learning rate decrease (automatic adaptation):
0.1; learning rate increase (automatic adaptation): 10; maxi-
mum learning rate: 109.

To be able to compare results across frequency subbands
and with the linear prediction from [14], the mean was sub-
tracted and the data normalised to a standard deviation of 1.

3. Results
The recovered variance (R-squared) of the tongue motion data
by predicting them from face motion data is shown in Figures
2 and 3. The approximation and all details from the wavelet
transformation are compared with each other and the full signal.
Figure 2 depicts the averages across sensors for each individual
speaker, while Figure displays 3 the averages across speakers
for each sensor.

As can be seen in Figure 2, tongue movements are best pre-
dicted when the full frequency range is available in both the
predictor and the predicand, with the exception of speaker 1,
where a plateau was formed starting with D3 (3.13− 6.25 Hz).
There are pronounced speaker differences affecting primarily
D1 (12.5− 25 Hz) and A (0− 1.56 Hz).

In line with expectations, the coordinates of the tongue tip
sensor are estimated more accurately than the coordinates of
the tongue dorsum and tongue back sensors. The difference is
larger in the lower frequencies and the full signal. The top val-
ues of recovered variance remain just below the one third mark.
Note that the tongue tip moves frequently in conjunction with
the jaw, which is tracked relatively well with chin markers on
the face surface, the only disruption coming from independent
movements of the skin at the chin, e.g., for lip rounding.

The overall root mean squared error of the Euclidean dis-
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Figure 4: 200-sample point comparison of the PLS-based estimation from [14] and the DNN-based estimation of the current study
regarding tongue tip location along the longitudinal axis for speaker 2.

tances between the measured and the estimated tongue trajec-
tories over the three spatial dimensions and three speakers is
displayed in Table 1. The values are given separately for each
tongue sensor.

4. Discussion
The results concerning the amount of recovered variance using
a DNN-based estimation differ in some details from those of the
best linear models reported in [14], but are overall in the same
range. This was confirmed by the RMSE of the Euclidean dis-
tances between the measured and estimated signals. For speaker
1 the linear estimations result in an even lower error, but because
of the small magnitude of the differences, chance variation can-
not be ruled out. Figure 4 gives an example: The PLS-based
estimation of the longitudinal location (i.e. vertical location if
the head is upright) of the tongue tip of speaker 2 is compared
with the DNN-based estimation and the original signal. Note
that all of them are normalised to have unit standard deviation
for the reasons described above. The start and end points were
randomly selected.

Two possible explanations for the surprisingly low perfor-
mance of the DNN-based estimation can be put forward:

1. The relationship between face motion and tongue move-
ments is essentially linear. This would be likely if there is
a mostly mechanical connection between the two move-
ment types. If, for instance, muscles that move the
tongue also deform the facial surface, their impact on
the face is likely to move partial areas of the face sur-
face in the same manner as the tongue albeit not neces-
sarily in the same direction. The magnitude of this sec-
ondary movement, however, can be assumed to be lin-
early related to the magnitude of the tongue movement.
It appears, though, that the amount of shared informa-
tion found in our previous study [15] contradicts this ex-
planation, since the shared information was much more
spread over the facial surface and covered relations that
contributed little or nothing in the linear estimation.

2. The DNN was not able to learn any associations beyond
linear relationships. The shared information exceeding
linear relations detected in [15] might have been too
small and largely insignificant and thus not been able to
help with the prediction given the relatively low number
of samples (for a DNN-based estimation) in the current
study. Learning might have been additionally hampered

by the fact that the available corpus – consisting only of
a number of natural speech sentences – is not very well
balanced, requiring an even higher number of samples
for the DNN to be able to generalise.

Currently both explanations appear equally likely, and more
research is needed to favour one of them over the other. In fact,
we cannot even rule out that both are partially appropriate in
that the linear portion is rather robust (since based on mechan-
ical coupling), but the non-linear portion is heavily affected by
the interference of other face motions (since being the result of
a malleable functional coupling, that is, speech gestures made
visible for the purpose of improving verbal communication in
noisy environments). Our participants read the story in a very
lively way, almost as if reading them to a small child, a posi-
tive side effect of having a continuous story among the stimu-
lus material. It provided naturalness for the speech production
in an otherwise highly constrained lab situation and helped the
participants to ignore, for instance, the EMA sensor wires lead-
ing out of their mouth and being taped to the left cheek. The
affective component might have interfered with the more sub-
tle non-linear relational components of the facial and articulator
motions and made them less accessible and more complex for
humans and machines alike.

According to both, PLS-based and DNN-based estimation,
most of the face motion that conveys information about tongue
motion can be found in the wavelet subbands D3 and D4, span-
ning together the range from 1.56 to 6.25 Hz. This covers
events that show a single oscillatory change within a time win-
dow in the range from 160 to 641 ms. This corresponds approxi-
mately to durations of phonemes on the faster side and syllables
in the mid-range.

Overall the results are in line with human speech reading
capabilities. In terms of their direct or indirect visibility, speech
gestures realised by the tongue take up a position in the middle.
They are not as directly visible as lip gestures are, but they are
also not as difficult to detect as velum activations due to the
tongue being situated on the floor of the mouth and passively
moved by the visible motions of the jaw as well as being moved
by muscles some of which connect to the facial muscle system
and tissue. Given the results from this study, it can be expected
that slightly less than a third of tongue gestures are recognised
correctly from facial motion data. To reach these levels, it might
or might not be a condition that the speech reader acquires some
familiarity with the speech production of the specific speaker:
The PLS and DDN models were trained speaker-dependently.



Table 1: Normalised RMS prediction error (Euclidean dis-
tance) for tongue tip (TT), tongue dorsum (TD), and tongue
back (TB) shown for the five multiresolution subbands (from
higher to lower frequencies: D1, D2, D3, D4, A) and the en-
tire signal (F).

Subband TT TD TB

Speaker 1

D1 1.722 1.713 1.770
D2 1.590 1.650 1.692
D3 1.390 1.569 1.677
D4 1.369 1.592 1.618
A 1.441 1.577 1.676
F 1.452 1.576 1.647

Speaker 2

D1 1.695 - 1.550
D2 1.658 - 1.650
D3 1.502 - 1.614
D4 1.524 - 1.540
A 1.644 - 1.654
F 1.451 - 1.527

Speaker 3

D1 1.778 2.087 2.242
D2 1.598 1.628 1.690
D3 1.479 1.576 1.589
D4 1.469 1.591 1.613
A 1.562 1.665 1.627
F 1.446 1.580 1.547

We have not yet conducted cross-speaker evaluations but intend
to do so in future research.

5. Conclusion
We estimated tongue trajectories of natural speech from simul-
taneously recorded face motion measurements using a Deep
Neural Network. The results were comparable to the best lin-
ear model employed in an earlier study using the same data set
[14]. We did not detect a substantial improvement suggested by
the presence of additional non-linear relationships, determined
using Mutual Information in another previous study employ-
ing the same data set [15]. Signal components in the frequency
range between 1.56 to 6.25 Hz emerged as the most salient con-
tributors to the observed face-tongue movement relationship.
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