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Abstract
In this manuscript, we summarize the findings presented in

Alicia Lozano Diez’s Ph.D. Thesis, defended on the 22nd of
June, 2018 in Universidad Autonoma de Madrid (Spain). In
particular, this Ph.D. Thesis explores different approaches to
the tasks of language and speaker recognition, focusing on sys-
tems where deep neural networks (DNNs) become part of tra-
ditional pipelines, replacing some stages or the whole system
itself. First, we present a DNN as classifier for the task of lan-
guage recognition. Second, we analyze the use of DNNs for fea-
ture extraction at frame-level, the so-called bottleneck features,
for both language and speaker recognition. Finally, utterance-
level representation of the speech segments learned by the DNN
(known as embedding) is described and presented for the task
of language recognition. All these approaches provide alter-
natives to classical language and speaker recognition systems
based on i-vectors (Total Variability modeling) over acoustic
features (MFCCs, for instance). Moreover, they usually yield
better results in terms of performance.

1. Introduction
Lately, automatic speech recognition (ASR) has experienced a
breathtaking progress, partially thanks to the introduction of
deep neural networks (DNNs) into their approaches. This has
spread across related areas such as language identification (LID)
and speaker recognition (SID), where DNNs have noticeably
improved their performance.

In this manuscript we present a summary of the main find-
ings of the Ph.D. Thesis defended by Alicia Lozano Dı́ez, where
we focused on different approaches for LID and SID based on
DNNs, replacing some stages or the whole system. The com-
plete dissertation can be found in [1].

First, end-to-end language recognition systems based on
DNNs are analyzed, where the network is used as classifier
directly. We focus on two architectures: convolutional DNNs
(CDNNs) and long short-term memory (LSTM) recurrent neu-
ral networks (RNNs), which are less demanding in terms of
computational resources due to the reduced amount of free pa-
rameters in comparison with other DNNs. Thus, they provide an
alternative to classical i-vectors, achieving comparable results,
especially when dealing with short utterances.

Second, we explore one of the most prominent applications
of DNNs in speech processing: as feature extractors. Here,
DNNs are used to obtain a frame-by-frame representation of
the speech signal, the so-called bottleneck feature (BNF) vec-
tor, which is learned directly by the network and is then used
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instead of traditional acoustic features as input in LID and SID
systems based on i-vectors. This approach revolutionized these
two fields, since they highly outperformed state-of-the-art sys-
tems (i-vector based on acoustic features). Our analysis focuses
on how different configurations of the DNN used as BNF ex-
tractor, which is trained for ASR, influences performance of re-
sulting features for LID and SID.

Finally, we propose a novel approach for LID, in which the
DNN is used to extract a fixed-length utterance-level represen-
tation of speech segments known as embedding, comparable to
i-vector, and overcoming the disadvantage of variable length se-
quence of BNFs. This embedding-based approach has recently
shown promising results for SID, and our proposed system was
able to outperform a strong state-of-the-art reference i-vector
system on the last challenging 2015 and 2017 NIST LREs.
We explore different architectures and data augmentation tech-
niques to improve results of our system, obtaining comparable
or better results than the well-established i-vectors.

2. DNN as a Classifier for LID
We call end-to-end DNN-based systems to those that perform
the target task from the input, without any other backend. For
LID, they usually take some input features and are trained to
classify each input frame into one of the target languages, out-
putting the probability vector of a frame belonging to each lan-
guage. Here, we use CDNNs and LSTMs, which have less pa-
rameters than other DNNs. Besides, LSTMs have shown to be
a good model for time-depending sequences [2]. We present
experiments with both architectures on a balanced subset of 8
languages from LRE 2009, on the 3 s task. We compare our
systems to an i-vector baseline, with 1024-dimensional UBM,
400-dimensional i-vectors and cosine scoring.

2.1. Convolutional DNN for Language Recognition

CDNNs usually consist of convolution and subsampling lay-
ers [3]. The former aims to perform feature extraction and each
of its units is connected to a local subset of units in the previous
layer. Groups of these units share their parameters and form a
feature map that extracts the same features from different loca-
tions in the input. The subsampling layer selects the maximum
activation of each region on the input (max-pooling). The gen-
eral scheme of our CDNN-LID system is depicted in Figure 1.

We use as input 56-dimensional MFCC-SDC [4] feature
vectors and segments of 3 s. All the architectures have 3 hid-
den layers and we vary the number of filters (feature maps) in
each one, keeping fixed their shape and max-pooling regions.
The output layer is a fully-connected layer with softmax activa-
tion, which outputs the probability that a test segment belongs
to a certain language. The network is trained with stochas-
tic gradient descent to minimize the negative log-likelihood.
We conducted experiments to evaluate the influence of differ-
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Figure 1: Representation of a CDNN architecture for LID.

Table 1: Configuration of the CDNN models for LID.

Configuration Development Data

ID # Filters/Layer Train Validation
ConvNet 1 [20, 30, 50] ∼178h ∼31h
ConvNet 2 [5, 15, 20] ∼178h ∼31h
ConvNet 3 [5, 15, 20] ∼356h ∼63h
ConvNet 4 [5, 15, 20] ∼534h ∼63h
ConvNet 5 [10, 20, 30] ∼356h ∼63h
ConvNet 6 [10, 20, 30] ∼534h ∼63h

Table 2: CDNN systems performance for LID on the 8 lan-
guages subset of NIST LRE 2009.

Performance

ID Size EERavg (%) Cavg

i-vector ∼23M 16.94 0.1535
ConvNet 1 ∼198k 22.14 0.2406
ConvNet 2 ∼39k 25.90 0.2700
ConvNet 3 ∼39k 24.69 0.2616
ConvNet 4 ∼39k 23.48 0.2461
ConvNet 5 ∼78k 21.60 0.2282
ConvNet 6 ∼78k 21.11 0.2293

ConvNet 6+i-vector - 15.96 0.1433

ent amounts of data used to train, balanced per language. The
configurations used are summarized in Table 1.

2.1.1. Experiments and Results

Results of this section are summarized in Table 2. Although
our standalone CDNN-based systems are outperformed by the
i-vector, their size is smaller and are trained with less data. We
see that systems benefit from larger training datasets (compare
systems 2, 3 and 4) and bigger models (compare ConvNet 3 and
5, or 4 and 6). Moreover, improvements are obtained when fus-
ing the best CDNN system with the i-vector baseline, meaning
complementary information extracted from the same features.

2.2. LSTM RNN for Language Identification

LSTMs are able to store information from previous inputs dur-
ing long time periods [5, 6, 7], which makes them more suitable
to model sequential data. They replace hidden units in a classi-
cal DNN with memory blocks [8], which have input, output and
forget gates: the input and output gates control respectively the
flow of input activations into the memory cell and the output
flow of cell activations into the rest of the network; the forget
gate allows the flow of information from the memory block to
the cell, adaptively resetting the cell’s memory.

Table 3: LSTM systems performance for LID on the 8 languages
subset of NIST LRE 2009.

Architecture Performance (%)
ID Size Acc. EERavg Impr.
#1 i-vector 23M 65.02 16.94 -
#2 lstm 1×512 1.2M 57.51 17.82 -
#3 lstm 1×750 2.5M 63.39 15.61 ∼7.85
#4 lstm 1×1024 4.4M 65.63 15.10 ∼10.86
#5 lstm 2×256 850k 63.73 14.96 ∼11.69
#6 lstm 2×512 3.3M 70.90 12.51 ∼26.15
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Figure 2: Scheme of cepstral vs. BN based LID/SID systems.

We train our systems with sequences of 2 s of MFCC-SDCs
with no stacking of acoustic frames. They consist of 1 or 2
LSTM hidden layers followed by a softmax output layer, which
returns a probability for each input frame and language. For
scoring, we average the output per frame, using just the last
10% of each utterance.

2.2.1. Experiments and Results

Table 3 summarizes the performance of 5 LSTM systems in
terms of EERavg and accuracy. We see that 4 out of the 5 pro-
posed architectures for the LSTM system outperform the refer-
ence i-vector based system in EERavg , with 5 to 21 times fewer
parameters. In the models with one layer, increasing the number
of units improves the performance. However, deeper models (2
layers) yield better results.

3. Frame-by-frame DNN-based
Representation: Bottleneck Features

Generally, LID and SID systems based on BNF use a DNN
with a bottleneck (BN) layer that is trained for ASR. Then, for
each input frame, the time-dependent output of the BN layer is
used as a new frame-by-frame representation to feed the i-vector
model, instead of the classical cepstral features (see Figure 2).

Thus, BNFs provide a new frame-wise representation of an
audio signal, learned directly by a DNN, containing information
about the phonetic content since the DNN is trained for ASR.
The BN layer of this DNN is relatively small with respect to
the rest and aims to compress the information learned by the
previous layers [9].
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Table 4: Results of BNFs for LID (development set of NIST LRE
2015), varying the number of layers of the DNN.

Number of DNN EERavg (in %)
Hidden Layers Frame Acc. 30s 10s 3s

3 47.82 5.52 9.04 14.34
4 49.55 4.33 7.81 13.76
5 50.46 5.22 8.57 14.15

Table 5: Results of BNFs for LID (development set of NIST LRE
2015) with different position for the BN layer.

Position of DNN EERavg (in %)
BN Layer Frame Accuracy 30s 10s 3s

First 49.17 9.37 12.24 16.59
Second 49.46 6.27 9.55 14.58
Third 49.55 4.33 7.81 13.76
Fourth 48.05 4.64 8.00 14.17

3.1. Analysis of Bottleneck Features for LID

Here, we analyze how the topology of the DNN trained for ASR
influences the performance of the resulting BNFs for LID on
the NIST LRE 2015 development dataset. We use a feedfor-
ward DNN with an input layer, three to five hidden layers, and
the output layer. To feed the network, we use 20 MFCCs pre-
processed with a context of 31 frames. The hidden layers are
composed of 1500 units and the BN layer, of 80. The softmax
output layer provides the probability of each input to correspond
to a given phoneme state (3083 triphone states are used). We use
stochastic gradient descent to optimize the cross-entropy.

3.1.1. Experiments and Results

First we vary the number of layers in the DNN from 3 to 5
(Table 4). Despite the 5 layers configuration gives better perfor-
mance in terms of frame accuracy, it is the architecture with 4
hidden layers the one that reaches the lowest EERavg for LID.
Therefore, the discriminative task (ASR) is easier for the DNN
when the classifier is more complex (5 layers DNN) and, thus,
improves the frame accuracy. However, that network is not be-
ing forced to focus on obtaining a compact representation of the
signal, which is then used for LID.

Then, keeping fixed the number of layers to 4, we explore
how the LID system performs depending on the position that the
BN layer occupies in the DNN, which correspond to different
levels of extracted information closer or further from the pho-
netic information (output layer). Results can be seen in Table 5.
The closer the BN layer to the input layer, the noisier the re-
sulting representation would be, which might explain the drop
in performance for the first and second layers with respect to
the results of the last two layers. The best performance in terms
of EERavg for LID is obtained when the bottleneck layer is lo-
cated in the third layer, but that result is very close to the one
obtained with the BN at the fourth layer. Performance of the
DNN also drops when the BN layer moves from layer third to
fourth. In this topology, the BN layer in position fourth is con-
nected directly to the output layer, resulting in a weight matrix
that connects a small layer with just 80 hidden units with the
output layer, of size 3083. These weights might be difficult to
learn, which may explain this drop in performance of the DNN.

Table 6: Results of BNFs for SID on the NIST SRE 2010.

Features Norm. Phone Acc(%) EER(%)
ASR feat. Utt. CMN 49.8 2.51
MFCC∆+∆∆ ST-CMVN 49.6 1.99
MFCC20dim ST-CMVN 45.57 1.67

3.2. Analysis of Bottleneck Features for SID

We explore whether DNNs suboptimal for ASR can provide
better BNFs for SID. We present here experiments with dif-
ferent features to feed the DNN, either optimized for ASR
(“ASR feat.”) or for SID (“MFCC”). The ASR optimized fea-
tures [10] are composed of 24 Mel-filter bank log outputs con-
catenated with 13 fundamental frequency (F0) features, with
utterance mean normalization, which is what we used as de-
fault for ASR [11]. SID optimized features are the classical 20
MFCCs used for SID, either adding the derivatives or not, and
normalized with short-term cepstral mean and variance normal-
ization (ST-MVN). We evaluate the systems on the NIST SRE
2010, condition 5, female task [12].

3.2.1. Experiments and Results

The aspect analyzed in this section is the DNN input features,
which are either optimized for ASR or SID (“ASR feat.” vs.
“MFCC”). Results of these experiments are summarized in Ta-
ble 6.

We see that the ASR features (with per utterance mean nor-
malization) yield better performance in terms of phone accu-
racy than the MFCCs since they are expected to be optimized
for ASR. However, BNFs obtained from these DNNs do not
seem to be as discriminative as the ones obtained with DNNs
trained using MFCCs optimized for SID. Moreover, adding first
and second derivatives to MFCCs provide better phone accuracy
but resulted in a worse SID performance. We see as for LID that
better ASR performance (in terms of phone accuracy) does not
necessarily correspond to better SID performance.

4. Utterance Level Representation:
DNN-based Embeddings

Despite the success of BNFs for SID [13, 14, 15] and LID [16,
17, 18, 19, 20, 21], the variable length of this frame-wise repre-
sentation poses a challenge in consequent modeling. The clas-
sical i-vector compacts the utterance representation in a fixed-
length vector. However, the aim of i-vectors is to capture infor-
mation about sources of variability in the training data, but this
information is not necessarily relevant to the target task.

In this section we use embeddings for LID (after their suc-
cess for SID [22]), which are a fixed-length representation of an
utterance extracted from a sequence summarizing DNN trained
discriminatively for the target task (LID).

The DNN consists of a first part that works on a frame-by-
frame basis from a given sequence of feature vectors, followed
by a pooling layer, which in our case computes the mean and
standard deviation over time of the activations of the previous
layer. Finally, a number of hidden layers follow to capture the
information contained in the input, providing a single vector of
values per sequence (embeddings), which can be modeled by
some other backend.

In particular, our DNN-embedding system takes stacked
BNFs as input and use bidirectional LSTM (BLSTM) layers for
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Figure 3: Architecture of the proposed embedding DNN for LID.

Table 7: Comparison i-vectors vs. embeddings of different size
for LID on the NIST LRE 2015 evaluation dataset.

System Cavg × 100

Reference i-vector 16.93

DNN 1 (812) 20.04
DNN 2 (406) 19.19
DNN 3 (203) 19.30

the frame-level part. After pooling, two more fully connected
layers are added, whose output values will serve as embeddings.
Finally, the output layer consists of a softmax layer that pro-
vides a vector of language posterior probabilities for each utter-
ance. An example of this architecture is depicted in Figure 3.

4.1. Analysis on NIST LRE 2015

For these experiments, we use the architecture described above.
We feed the DNN with 30-dimensional stacked BNFs and the
output softmax layer provides a 20-dimensional vector of lan-
guage posterior probabilities for each utterance. As reference,
we use an i-vector system that consists of a 2048-dimensional
UBM trained on the same BNFs and 600 dimensional i-vectors.

First, we experiment varying the size of the embedding
layers (keeping fixed the rest to 256 for each layer up to the
pooling). We start with 512 and 300-dimensional embeddings
(DNN 1) and half each twice (DNN 2 and 3, respectively). Re-
sults stacking both embeddings are shown in Table 7. We see a
better performance of DNN 2 embeddings, which are half size
w.r.t. DNN 1. This suggest that the embeddings of larger size
contain more detrimental information about channel since all
DNNs reached the same performance on the training data.

Motivated by this, we explore further dimensionality reduc-
tion via PCA in Table 8. We see that with smaller embeddings,
we are able to get improvements even reducing the dimension-
ality up to 25. Best results are achieved with embeddings from
DNN 2 whose dimensionality (406) is close to the typical i-
vector (400 or 600). Besides, we achieved a performance of
17.44%, close to our i-vector baseline (16.93%) and score level
fusion of both gave us a Cavg of 15.69%.

4.2. Analysis on NIST LRE 2017

After developing the embedding system for the NIST LRE
2017, where it was included in the primary submission of BUT
team (a fusion of 3 i-vector systems and the embedding system),

Table 8: Results with PCA on top of embeddings for LID on the
NIST LRE 2015 evaluation dataset.

Cavg × 100

System None 100 25

DNN 1 (orig 812) 20.04 18.67 19.98
DNN 2 (orig 406) 19.19 18.11 17.44
DNN 3 (orig 203) 19.30 18.70 18.13

Figure 4: Influence of data augmentation on DNN-embeddings
for LID on the NIST LRE 2017 evaluation dataset.

we performed a post-evaluation analysis.
First, we compared the architecture with the same config-

uration as DNN 1 in previous section with a larger one, where
the fully connected layer has 1500 units and both embeddings
are 512-dimensional. With that larger model, performance im-
proved from 22.18% to 19.86% (Cprimary).

Moreover, we extended the training dataset by performing
data augmentation through addition of noise, reverberation and
tempo variations of original audio files. Figure 4 shows the
comparison of performance when training with up to 11 copies
of the original data with different corruptions. In general, in-
creasing the number of copies of the data yields improvements
in performance. In particular, adding any noisy version of the
data (combined or not with other corruptions) makes the system
more robust against data mismatch, providing gains in perfor-
mance. The only two cases in which data augmentation does not
improve the system trained only on original data are the ones in
which just reverberation or tempo variations are performed.

5. Conclusions
The main contributions of this Ph.D. Thesis are the following.
First, the proposed end-to-end approaches for LID based on
CDNNs and LSTMs, which provide an alternative to i-vectors
with less parameters. Secondly, the systematic study of bottle-
neck feature DNN-based LID systems and the analysis of this
approach for SID, which show that optimal DNN configuration
for BNFs for LID and SID might differ from the most beneficial
for ASR, task for which the DNN is trained. Finally, the novel
approach based on embeddings for LID, in line with previous
works in SID, which provides a fixed-length representation of
utterances directly learned by the DNN for the target task able
to outperform the well-established i-vectors.

In terms of articles, from research directly output from this
Ph.D. Thesis, two journal articles and seven peer reviewed in-
ternational conference papers were published.
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