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Abstract

Speaker diarisation, the task of answering “who spoke when?”,

is often considered to consist of three independent stages:

speech activity detection, speaker segmentation and speaker

clustering. These represent the separation of speech and non-

speech, the splitting into speaker homogeneous speech seg-

ments, followed by grouping together those which belong to

the same speaker. This paper is concerned with speaker clus-

tering, which is typically performed by bottom-up clustering

using the Bayesian information criterion (BIC). We present a

novel semi-supervised method of speaker clustering based on

a deep neural network (DNN) model. A speaker separation

DNN trained on independent data is used to iteratively rela-

bel the test data set. This is achieved by reconfiguration of the

output layer, combined with fine tuning in each iteration. A

stopping criterion involving posteriors as confidence scores is

investigated. Results are shown on a meeting task (RT07) for

single distant microphones and compared with standard diari-

sation approaches. The new method achieves a diarisation error

rate (DER) of 14.8%, compared to a baseline of 19.9%.

Index Terms: speaker diarisation, speaker separation, deep

neural network

1. Introduction
Speaker diarisation is the task of answering “who spoke when?”

in an audio recording [1, 2]. Three stages are considered:

speech activity detection, where speech-only segments of time

are found; speaker segmentation, or speaker change detection,

where these segments are split into speaker homogeneous seg-

ments; and finally speaker clustering, in which the segments are

grouped into same-speaker clusters. Diarisation has been well

studied over the years, and several toolkits are available for this

task, however most are designed to perform well for a specific

type of data [4, 5, 6]. The most common method of speaker

clustering is agglomerative hierarchical clustering (AHC), also

known as bottom-up clustering, using the Bayesian informa-

tion criterion (BIC) as the decision metric and stopping crite-

rion. This can occur in iterations of Viterbi realignment using

speaker models based on the previous clustering iteration [3].

This paper presents a novel method of speaker clustering using

deep neural networks. Traditionally being an unsupervised task,

speaker clustering with discriminate classifiers, such as DNNs

has not been successful. This is due to the difficulty discrimi-

nate classifiers have with mislabelled data.

In previous work integrating neural networks into a speaker

diarisation system, a speaker segmentation stage using auto-

associative neural networks (AANN) was proposed [7]. A win-

dowing method is used where an AANN model is trained for

the left half of the window and tested on the right to give a

confidence score on how likely each part belongs to the same

speaker. More recently, artificial neural networks (ANN) have

been trained to learn a feature transform [8, 9]. DNN senone

posteriors have also been combined with i-vector extraction

[10]. The method we present involves training a DNN which

learns how to separate speakers. DNNs which can classify

speakers have been implemented in the speaker recognition

field [11] which involves projecting acoustic features into a

lower-dimensional feature set. Our own previous work has also

implemented speaker separation DNNs [12].

The method proposed in this paper was partially introduced

in our diarisation system [12] and ASR system [13] for the

MGB challenge 2015 [14]. DNNs are iteratively adapted, where

a previously trained speaker separation DNN is retrained using

an initial clustering output. The DNN resegments and reclusters

the data. This gave an absolute DER improvement of 2%. How-

ever, this configuration is limited to situations where an initial

clustering is available. This paper presents the extension of this

adaptation to speaker clustering, having removed the need of a

prior clustering. For implementing this novel speaker cluster-

ing method, two prerequisites are necessary: a DNN trained to

classify speakers; and a speech/non-speech segmentation of the

audio file. This speech/non-speech segmentation can contain

speaker-homogeneous segments or be speech-only. A DNN for

each audio file is iteratively built and adapted given the input

segments. The segments are relabelled every iteration, with an

option to allow speaker boundaries to occur within the speech

segments. This is speaker segmentation. Methods of filtering

the data used for adaptation allows to improve purity. Bene-

fits of an automatic stopping criterion over a fixed number of

iterations is investigated. The method is evaluated on an estab-

lished test set, meeting data from the NIST Rich Transcription

evaluations in 2007 (RT’07) [16].

The proposed method is presented in Section 2, which con-

sists of training the speaker separation DNN, reconfiguring the

final layer and finally the stopping criterion. Methods of fil-

tering the input data the segmentation used for adaptation are

detailed in Section 3. The experimental setup is covered in Sec-

tion 4 and finally, the results are shown in Section 5.

2. Speaker clustering using DNNs

The DNN-based speaker clustering method is semi-supervised

as it requires a speaker separation DNN (ssDNN) to be trained

beforehand. Also, speech segments are required as input into

the clusterer. The algorithm in depicted in Figure 1. The it-

erative process begins by building new DNNs based on the ss-

DNN, one for each audio file. The final layer of the ssDNN is

removed and replaced and adaptation is carried out using the

input speech segments. Decoding is carried out on these same

segments which can allow speaker segmentation and the data is

relabelled. If the stopping criterion is met, the relabelled seg-

ments are the final output, otherwise the process is repeated us-

ing the output segments as the new segments for updating the

network in the next iteration.
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Figure 1: The algorithm is depicted where the solid line repre-

sents the input speech segments and the dashed line represents

the ssDNN.

.

2.1. Speaker separation DNN (ssDNN)

For the semi-supervised part of the method, a DNN is trained

which learns how to separate, or classify, speakers. This is car-

ried out by training a network which has several hidden layers,

including a bottleneck layer. This bottleneck layer aims to cap-

ture the key information necessary to classify what has been

learnt, in this case the target classes are speakers. It is assumed

that the network is working in a similar way as to how bottle-

neck features are produced, such as i-vectors [15]. This assump-

tion leads to the next stage in the method, where the final layer

is replaced.

2.2. Reconfiguring the final layer

For each audio file, new DNNs are derived from the ssDNN.

The final layer is removed and replaced by an initial untrained

final layer. The use of the ssDNN as a starting point is to use its

knowledge of how to separate different speakers, ideally cap-

tured at the bottleneck.

The built networks are then adapted using the provided

speech segments. These could be speaker homogeneous or

speech only segments. The initial iteration begins by adapting

the built DNN with these segments, where each segment has

a distinct label, i.e. a label representing the segment number.

These are the target classes for the DNNs. This is equivalent to

the standard approach of bottom-up clustering where each seg-

ment begins as a separate cluster. This adaptation of the built

networks can occur in any number of adaptation iterations, as

opposed to iterations of the algorithm. However, it was found

that a single iteration of the adaptation stage was sufficient.

Viterbi decoding occurs on the same speech segments used

for adapting the DNNs. Decoding can occur frame-by-frame

which allows the input speech segments to split to obtain

speaker boundaries. This produces a relabelled and reseg-

mented output of the input speech segments. The method imple-

mented in this way allows for speaker segmentation at the same

time as speaker clustering. If wishing to keep the same segment

boundaries and prevent speaker segmentation from occurring,

the log probabilities for each segment can be considered. The

class with the highest average log probability per frame is cho-

sen for that segment.

If the stopping criterion is met, the relabelled segments out-

put from the decoding stage are the final output. Otherwise, the

iterative process begins again. The target classes for the next

iteration, the number of nodes in the final layer, are the classes

found in the decoding output. The data for adaptation is the la-

belled output segments. If a target class has found no data in the

decoding, the class is removed from the adaptation. This means

classes can be lost, but never gained.

2.3. Stopping criterion

As in all clustering algorithms, it is key to know when to cease

iterations of clustering. In speaker diarisation, the aim is to stop

clustering when the correct number of speakers is reached, but

this is unknown. Here each audio file is treated independently.

A simple method for stopping would be to stop training after a

set number of iterations, this being the same for each audio file.

A more advanced stopping criterion varies for each audio

file, such as the ∆BIC in standard methods. Several options

exist for choosing a stopping criterion: an average probability

per frame; the minimum probability; or the maximum probabil-

ity across all segments. The percentage of change between the

current iteration and previous iteration can be calculated. Once

the change is less than a decided threshold, the iterations cease.

The lower the change implies the system is heading towards

convergence. Best results were obtained using the percentage

of change of the average probability per frame between itera-

tions.

3. Data Filtering

Discriminant classifiers behave badly when presented with im-

pure data. The speech segments used for adaptation are vital to

be as pure as possible, in terms of speaker error. Small errors

here would lead to errors being learnt by the DNNs and poten-

tially increasing every iteration. Selecting pure segments for

adaptation would give the system a better starting point. This

can occur in two parts of the system: the input speech segments;

and decoding the segments.

3.1. Improving purity

There are various ways to refine and improve upon the input

segments used for adaptation. The input speech segments in the

first iteration are from the provided speech/non-speech segmen-

tation, where the speech-only segments are used. All further

iterations derive the adaptation data from the decoded output in

the previous iteration.

Short segments can cause problems as they contain little in-

formation to base an entire speaker on each in the first iteration.

One option is to remove them completely from the adaptation

stage. This allows longer segments, which contain more infor-

mation, to be used. The decoding will still occur using all the

segments but these will be filtered by time for each adaptation

stage.

Further to filtering by time, DNNs do work better when pre-

sented with more data. Knowing initially the short segments

could disrupt the adaptation, with each iteration the amount of

filtered short segments could be reduced. This assumes each

adaptation iteration is getting closer to stability and conver-

gence.

If the provided speech-only segments are allowed to split

(creating speaker boundaries) during the decoding, then these

provided segments which have been given more than one class

can be removed from the next adaptation iteration. This could

help to reduce impure segments being given to the DNN for it

to adapt to, avoiding adapting to incorrect data.



3.2. Decoding

Decoding is carried out on all the provided speech-only seg-

ments. There are several ways to improve and tune the decoding

stage. First, a fixed state duration using hidden Markov models

(HMMs) can be enforced. It must be noted that a state dura-

tion longer than a segments length will cause this segment not

to be decoded, thus removed from the output. This can cause

missed speech in the final scoring. To avoid this missed speech,

any segment less than the state duration can be decoded frame

by frame. The prior probabilities for each target class can also

be varied, opposed to keeping every class at an equal probabil-

ity of occurring. This allows classes represented by more data

to have a higher probability and thus be more likely to be se-

lected for a segment. Lastly, the grammar scale factor can be

varied. Changing this helps to balance acoustic and language

model scores.

4. Experimental Setup
The configuration for the ssDNN training, DNN adaptation and

experiments are described below. The data used as test along

with the evaluation metrics and baseline systems are also de-

scribed.

4.1. Data

Experiments are carried out on NIST RT’07 meeting data [16].

This is a standard dataset for speaker diarisation produced

by NIST for evaluation purposes. Single distant microphone

(SDM) audio is used and the dataset consists of 8 meetings with

a total of 35 speakers. Manual reference segmentation has been

produced for RT’07 to the accuracy of 0.1 second. This means

the results displayed on this paper are not comparable with pre-

vious published RT’07 results. The updated manual reference

is avaliable from our website1. This has allowed for completely

speaker pure segments to be used in our DNN adaptation, and

the overlapping portions have been removed. There are 10847

non-overlapping segments.

4.2. DNN training

DNNs were trained using filterbanks of 23 dimensions with

a context window of 16 frames on both sides. Log Mel-

filterbanks are used as opposed to Mel frequency cepstral coef-

ficients (MFCCs) as they are found to yield better performance

with DNNs [18]. The ssDNN is trained on meeting data in the

AMI corpus [19]. Individual headset microphone audio (IHM)

is used. The input layer has 368 nodes, four hidden layers have

1745, and a bottleneck layer is used with 13 nodes. The final

output layer has 183 nodes, representing 183 speakers. Differ-

ent ssDNNs were tested where the number of hidden layers, size

of the hidden layers and the size of the bottleneck was varied.

The configuration described produced the lowest DERs.

4.3. Measuring diarisation performance

Diarisation error rate (DER) is the standard metric for speaker

diarisation. It is the sum of three frame error values: miss

(MS), false alarm (FA) and speaker error (SE) [1, 2, 20]. Missed

speech refers to reference speech detected as silence, false alarm

is reference silence detected as speech, and speaker error mea-

sures the percentage of scored time in which a speaker label is

assigned to the wrong speaker. The definition of DER was es-

tablished by NIST [16], which also includes a “collar”, typically

0.25 seconds. The reason for the collar is to allow for human

errors in the reference, any error values inside the collar time

are not counted. However, as the manual reference segments

are used, the collar is set to 0.0 seconds.

1mini.dcs.shef.ac.uk/resources/dia-improvedrt07reference/

Baseline DER #spkrs #segs

speaker-cluster 19.9 29 10689

SHoUT 26.6 41 11522

Table 1: Two baseline methods showing the DER, number of

speakers (#spkrs) and number of segments (#segs).

4.4. Baseline experiments

Two baselines are implemented. The first is our own speaker

clustering tool, referred to as speaker-cluster, which implements

a standard method in the field of speaker diarisation: bottom-

up clustering using BIC as the decision metric and as the stop-

ping criterion. This does a single pass of speaker clustering

and thus does not resegment the data. The second is a public

domian toolkit, SHoUT [6]. It is designed for diarisation of

meetings and uses BIC segmentation and BIC stopping crite-

rion in an unsupervised model training regime. The manual ref-

erence segmentation is given which runs a rough clustering for

initial speaker models and then resegments the data using these

models in several passes. This changes the speech/non-speech

segmentation.

5. Results
Results have been divided into three types of experiments: base-

lines, fixed number of training iterations, and invoking a stop-

ping criterion. The latter two result in no missed or false alram

speech due to using the reference segmentation.

5.1. Baselines

The results for the two baselines are shown in Table 1. The

speaker-cluster tool achieves a DER of 19.9%. As it does

not resegment the input, it produces 0.0% FA but it does pro-

duce 0.1% MS due to ignoring segments of little length (less

than 3 frames). However, SHoUT does resegment in terms of

speech/non-speech so the overall DER of 26.6% is higher than

the speaker cluster tool due to causing MS and FA. It is not

a comparable number because of this issue, so the baseline of

19.9% will be used.

5.2. Fixed iterations

Results for the experiments which stop after a fixed number of

training iterations are shown in Table 2, and the scores are taken

after 5 iterations. Figure 2 displays results from 10 iterations of

the final experiment. Two audio recording results are displayed.

They show the progression of the DER, the number of speakers

and probability scores. The fifth iteration was decided upon as

the number of speakers settles across the files at iteration 5.

A first experiment was performed where the provided seg-

ments where forced not to split, speaker segmentation was pre-

vented. Despite the segmentation being the reference, it per-

forms poorly. This is compared to allowing the input speech

segments to split. This improves the DER down to 29.8% and

finds more speakers. It does however more than double the

number of segments produced. Next, at each iteration, 25%

of the time in the shortest segments is removed, again reducing

the DER. Both the number of speakers and number of segments

increase. Implementing a state duration of 30 states, reduces

the number of segments, speakers and DER. In the penultimate

experiment, reducing the amount of time filtered and removing

the split segments from the training at each iteration produces

further gains, although the number of speakers drops below the

reference number. The last experiment changed the grammar

scale factor from 1 to 6. This causes a decrease in DER to

14.9% and has found the correct number of speakers overall.



System DER #spkrs #segs #iters

5l.368.1745.13:nosplits 47.4 29 10847 40

5l.368.1745.13:splits 29.8 38 27545 40

+timefilter=0.25 27.8 54 35230 40

+states=30 21.8 49 15675 40

+reducefilt+rmsplits 19.3 32 15270 40

+gsf=6 14.9 35 13090 40

Table 2: Results with a fixed number of 5 training iterations

showing the DER, number of speakers (#spkrs), number of

segments (#segs) and the number of iterations across all files

(#iters).

System DER #spkrs #segs #iters

5l.368.1745.13:nosplits 49.9 29 10847 48

5l.368.1745.13:splits 29.8 38 27510 40

+timefilter=0.25 27.7 54 34765 46

+states=30 21.1 49 15302 56

+reducefilt+rmsplits 18.3 31 14943 53

+gsf=6 14.8 35 13024 50

Table 3: Results using the automatic stopping criterion show-

ing the DER, number of speakers (#spkrs), number of segments

(#segs) and the number of iterations across all files (#iters).

The number of split speech segments has reduced.

Overall, the DER has successfully decreased at each stage

and the last three experiments have achieved results lower than

the baselines. After filtering the training segments by time, each

further experiment reduces the number of segments until the fi-

nal experiment which over segments by 10%, a drop from 69%.

Lastly, if the final experiment is continued for 50 iterations, the

DER reaches 13.0%, stopping at 5 iterations is a loss of 1.9%.

5.3. Stopping criterion

Table 3 shows the results for the same experiments in Table

2, however the automatic stopping criterion is put in place. A

threshold of 1% is applied, meaning if the percentage of change

between two iterations is less than this threshold, the current

iteration is chosen as the final iteration. This allows a similar

number of iterations to occur. Similar progress through exper-

iments is seen here, however in most stages the DER is lower

than (or equal to) the equivalent experiment with a fixed number

of iterations. The penultimate experiment gives the largest gain,

from 19.3% to 18.3%, a 1% gain. This shows implementing a

stopping criterion produces better or same results than a fixed

number of iterations. Unfortunately this is not true for the first

experiment as the DER increases, however the DER is already

large and problematic at nearly 50%.

As previously mentioned, the final experiment was contin-

ued for 50 iterations. For each audio file, the iteration with the

lowest DER was manually selected and these were scored. The

overall DER reaches 12.9%, this score is the goal of the au-

tomatic stopping criterion with a large number of iterations to

choose from. Error of 1.9% is gained in the suggested stopping

criterion which is produced with a lower number of iterations.

In terms of computation, 1.9% DER is gained from having the

ability to use a large number of iterations and less computation

increases the DER.

With the stopping criterion in place, Recording7 stops at it-

eration 8 and Recording8 stops at iteration 9 in Figure 2, when

the percentage of change in scores is less than the 1% thresh-

old. The DER is not stable, but the change is small after the
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Figure 2: Results for two audio files: the DER, number of

speakers (#spkrs), number of reference speakers (#refspkrs) and

average probabilities (score) for each iteration.

fifth iteration and Recording8 shows this may not always be a

reduction in DER over time. However, the stopping criterion

helps to reduce the DER or keep it the same as a fixed number

of iterations.

6. Conclusions
A novel semi-supervised speaker clustering technique for

speaker diarisation is proposed which uses DNNs. It requires

a pretrained speaker separation DNN which is used as a starting

point for building new DNNs for each audio file. The newly

built DNNs are then iteratively adapted using speech segments.

An average probability per frame stopping criterion, involving

change across iterations, allows for the training iterations to au-

tomatically stop. It is shown to reduce or keep the same DER

score in a similar number of iterations. Experiments involved

filtering the adaptation segments and improving the decoding

stage, both in order to produce purer segments to readapt the

DNN to. The experiments show a fixed number of training iter-

ations reaches 14.8% as well as experiments invoking stopping

criterion. This is lower than the baseline of 19.9%. A large

number of iterations, 50, can reduce the DER by 1.9% in the

final experiment, if computation is not an issue.
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