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Abstract
Building high accuracy speech recognition systems with limited

language resources is a highly challenging task. Although the

use of multi-language data for acoustic models yields improve-

ments, performance is often unsatisfactory with highly limited

acoustic training data. In these situations, it is possible to con-

sider using multiple well trained acoustic models and combine

the system outputs together. Unfortunately, the computational

cost associated with these approaches is high as multiple decod-

ing runs are required. To address this problem, this paper exam-

ines schemes based on log-linear score combination. This has

a number of advantages over standard combination schemes.

Even with limited acoustic training data, it is possible to train,

for example, phone-specific combination weights, allowing de-

tailed relationships between the available well trained models to

be obtained. To ensure robust parameter estimation, this paper

casts log-linear score combination into a structured support vec-

tor machine (SSVM) learning task. This yields a method to train

model parameters with good generalisation properties. Here the

SSVM feature space is a set of scores from well-trained individ-

ual systems. The SSVM approach is compared to lattice rescor-

ing and confusion network combination using language packs

released within the IARPA Babel program.

Index Terms: system combination, structured support vector

machines, speech recognition, keyword spotting

1. Introduction
Automatic speech recognition (ASR) systems generally require

training on large amounts of data to achieve high accuracy.

However, sufficient data cannot normally be guaranteed for

many low resource languages. Automated approaches can be

used to increase the amount of training data, such as synthe-

sising speech with the known transcriptions [1] and using un-

transcribed audio in semi-supervised training [2]. An alterna-

tive solution to this problem is to use data from other languages

to train a multilingual deep neural network (DNN) [3, 4] to

produce more robust bottleneck features. Although these data

augmentation schemes yield improvements [5, 6], performance

is often unsatisfactory. Thus, a combination of multiple well

trained systems might be preferred.

In general system combination approaches can be divided

into two distinct groups, i.e. hypothesis combination and log-

likelihood score combination. Recogniser output voting error
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plied, of IARPA, DoD/ARL, or the U.S. Government.

reduction (ROVER) [7] and confusion network combination

(CNC) [8] are typical examples of combining the hypotheses

generated by different recognisers. In these approaches, differ-

ent hypotheses to be combined are generated from separate de-

coding runs on various systems. It is computationally expensive

to run multiple passes of decoding, and the cost is even higher

when speech recognition is an intermediate process, such as in

keyword spotting (KWS) [9]. Thus, more efficient approaches

based on log-likelihood score combination might be preferred.

Here, the log-likelihoods from different systems are combined,

and only a single decoding run is required.

Joint decoding [10] is a typical example of log-likelihood

score combination, where the state (frame level) log-likelihoods

of tandem [11] and hybrid [4] systems are linearly com-

bined. The systems to be combined share the same hidden

Markov model (HMM) topology and the combination weights

are typically manually set. This makes joint decoding highly

constrained. An alternative to combining frame level log-

likelihoods is to combine segment level HMM log-likelihoods.

This relaxes the frame level Markov assumption to the segment

level, and synchronises systems at the phone (or word) level

rather than frame. This relaxation also allows long-span depen-

dency within the segments to be captured.

In [12], structured discriminative models are trained using

the feature space based on phone log-likelihoods with the same

context but different central phone generated by tandem and hy-

brid systems. Small gains were observed from using additional

log-likelihoods extracted from the same models. [13] exam-

ines combination of hybrid and tandem systems with log-linear

models, and applies learnt phone-specific combination weights

to frame level joint decoding, achieving a small performance

gain. [14] discusses model combination at sentence level, using

system-specific combination weights. A more general frame-

work was introduced by [15], where systems are combined

at word level, and the word-specific combination weights are

trained with the minimum Bayes risk (MBR) criterion. Another

approach was investigated in [16]. However, these approaches

are still limited as some words in decoding may not appear in

training, especially in low resource language tasks.

The log-likelihood score combination approach is investi-

gated in this paper. This approach is cast into a structured

support vector machine (SSVM) [17, 18, 19] learning task to

robustly estimate phone-specific combination weights. In this

work, a more meaningful feature space is used, which is based

on phone log-likelihoods from multiple systems, rather than us-

ing extra phone log-likelihoods with the same context extracted

from a single system. This paper also discusses assumptions

applied in typical combination approaches, such as frame level

and segment level lattice rescoring, and investigate what impact

these assumptions have on system combination gains. To as-

sess the impact of different approaches on a downstream task,

KWS performance is also examined. All experiments are car-
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ried out on the highly challenging IARPA Babel evaluation task.

The paper is organised as follows. In section 2 different com-

monly used combination approaches and the generation of com-

plementary systems are discussed. The SSVM is introduced in

section 3. Finally, experimental results and conclusions are pre-

sented in sections 4 and 5.

2. System Combination

In standard decoding, the Viterbi algorithm is employed to find

the best hypothesis Ŵ . Given an utterance O, the decoding

process can be described as:

Ŵ = argmax
W

{

p(O|W )P (W )α
}

(1)

where p(O|W ) and P (W ) are the likelihood and probability

given by the acoustic (AM) and language (LM) models. α is

the LM scale factor. In hypothesis combination approaches,

such as ROVER [7], multiple decoding runs are required which

is computationally expensive. Alternatively, a single set of lat-

tices generated by one system can be rescored by using other

systems. Then the hypothesis combination approaches can be

applied to the lattices rescored by different systems. This type

of approach can significantly reduce the computational over-

head as the search space (or hypotheses) is given by the lattice.

The rescoring process can be described as:

Ŵ = argmax
W∈L

{

p(O|W )P (W )α
}

(2)

where W ∈ L denotes a possible hypothesis given by a de-

terminised lattice. p(O|W ) and P (W ) are the likelihood and

probability given by AM and LM, respectively, which might

differ from the ones used to generate the lattice. This approach

is referred to as frame level lattice rescoring in this paper.

A far more efficient way to rescore the lattice is to fix both

the search space and phone segmentations, referred to as seg-

ment level lattice rescoring. It can be expressed as:

(Ŵ , ρ̂) = argmax
W,ρ∈L

{( |ρ|
∏

i=1

p
(

O(i)|wi

)

)

P (W )α
}

(3)

where W,ρ ∈ L denotes a possible hypothesis and the corre-

sponding segmentation given by a lattice, and p(O(i)|wi) is the

likelihood (corresponding to segment O(i) with triphone label1

wi) given by an AM, which might differ from the one generat-

ing the lattice. |ρ| is the number of segments. By using loga-

rithms, equation (3) can be rewritten as:

(Ŵ , ρ̂) = argmax
W,ρ∈L

{

[

1
α

]

T
[

∑|ρ|
i=1 log p

(

O(i)|wi

)

logP (W )

]

}

(4)

This is a linear combination of log-likelihoods from a single

system. Before introducing the SSVM approach, the possible

ways of generating complementary systems (that make different

errors) will be discussed in the following subsection.

2.1. Complementary System Generation

In system combination, it is assumed that the systems to be

combined complement each other. The most commonly used

approach to generating complementary systems is simply to

train a number of independent systems with different acous-

1The following discussion on phonemic systems also applies to

graphemic systems.
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Figure 1: Tandem and stacked hybrid systems.

tic modelling techniques. These individual systems might use

different front-ends, segmentations, dictionaries or decision

trees [20, 21]. Figure 1 illustrates the framework of the tandem

and stacked hybrid systems used in this work. In this frame-

work, complementary systems might be generated, for example,

by using different (unilingual or multilingual) data to train the

bottleneck DNN, employing different input feature types, using

different supervisions to train the transforms, semi-supervised

AM training, or using different structures or activation functions

for the bottleneck or hybrid DNNs. All these approaches lead to

potentially complementary systems, but there is no theoretical

guarantee, hence a number of experiments must be performed

to select the optimal combination [20]. However, standard ap-

proaches to assess how complementary individual systems are

would involve multiple decoding runs which are time consum-

ing. Alternatively, complementarity can be efficiently evaluated

by the combination approaches based on lattice rescoring with

different AMs. This is examined in the experimental section.

3. Structured Support Vector Machines

In its basic form, a support vector machine (SVM) is a linear

classifier [22]. To classify observation sequences O into one of

many possible sentences W with a SVM, the simplest option

is to map them jointly into a fixed dimensional representation

Φ(O,W ). Unfortunately extracting fixed dimensional features

from variable-length observation sequences and modelling the

vast, unstructured, mostly unseen space of possible sentences

is non-trivial [23]. Instead, a structured assumption is usually

imposed on the label space making sentences to be variable-

length sequences of finite vocabulary units such as words or

phones. The variable-length issue is then delegated to those

units by aligning them with observations to yield alignment ρ

dependent feature vectors Φ(O,W,ρ). This serves the basis of

structured discriminative models including SSVMs. Classifica-

tion is performed by solving a semi-Markov inference problem

[24]:

(Ŵ , ρ̂) = argmax
W,ρ

{

α
TΦ

(

O,W,ρ
)

}

(5)

Efficient inference can be performed if the search space in equa-

tion (5) is constrained to fewer hypotheses encoded compactly

in a lattice [25, 26]. Such lattices can be efficiently generated

using standard HMM-based approaches [27]. It is simple to no-

tice that the inference problem in equation (5) or its lattice based

approximation includes equation (4) as a subproblem. This re-

lationship will be explored in the rest of this section.

The key concept of SVMs is a margin defined as the dis-

tance between the closest correct and incorrect class example

[22]. For SSVMs this can be defined by:

M
(

Wn,ρn,W,ρ;α,On

)

= α
TΦ

(

On,Wn,ρn

)

−α
TΦ

(

On,W,ρ
)

(6)
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where (Wn,ρn) and (W,ρ) are correct and incorrect align-

ments for observation sequence On. For a sequence classifi-

cation task it is important to take into account loss, L(Wn,W ),
as different alignments make different number of transcription

errors. Training then consists of minimising the largest viola-

tion of the loss-augmented margin [17]:

FLM(α) = − log p(α) +

N
∑

n=1

[

max
W 6=Wn

{

L(Wn,W )−

M
(

Wn,ρn,W,ρ;α,On

)

}

]

+

(7)

where N is the number of training examples, and [·]+ is the

hinge loss. W 6= Wn denotes any possible hypothesis that

differs from the reference Wn
2. p(α) = N (µα, CI) ∝

exp
(

− 1
C
||α − µα||

2
)

is the Gaussian prior with mean µα

and diagonal covariance CI . The objective function in (7) can

be efficiently solved by using the cutting plane algorithm [28].

In this work, the segmentations corresponding to the references

are the most likely segmentations given by the HMMs. An alter-

native approach to obtain optimal segmentations by using dis-

criminative models is discussed in [17].

There are a number of possible forms for alignment de-

pendent feature vectors Φ
(

O,W,ρ
)

. Typically they consist of

observation and transition features [26]. Observation features

are extracted from variable-length observation sequences asso-

ciated with units whereas transition features are extracted on

transitions from one unit to another. One simple form is [29]:

Φ
(

O,W,ρ
)

=











∑|ρ|
i=1 δ(wi, v1)φ

(

O(i), wi

)

...
∑|ρ|

i=1 δ(wi, vL)φ
(

O(i), wi

)

logP (W )











(8)

where {vl}
L
l=1 denotes all possible phone units in the dictio-

nary. δ(·) is the Kronecker delta3. φ(O(i), wi) is the obser-
vation feature vector for segment O(i). In general, this fea-
ture vector can be produced by using any approach capable of
mapping variable length observation sequences to fixed length.
It can be a first and higher order observation statistics tradi-
tionally used with frame level models [30, 31]. Other ex-
amples include score spaces [32, 33, 34] and event detectors
[26, 16]. A simplest example is given in (4), where the mapping
for a segment O(i) with label wi is a log-likelihood, namely

φ(O(i), wi) =
[

log p(O(i)|wi)
]

. This work employs a more

general form, which consists of log-likelihoods from multiple
AMs, rather than a single one. Let K be the number of AMs,
the observation feature vector φ(O(i), wi) and the correspond-
ing phone-specific weights can be described as:

φ
(

O(i), wi

)

=









log p1
(

O(i), wi

)

.

.

.

log pK

(

O(i), wi

)









, αwi
=







α
1
wi

.

.

.
α

K

wi






(9)

By setting the weights corresponding to an individual system to

1 and others to 0, the SSVM will retrieve the performance of

segment level lattice rescoring described in (4). Moreover, by

using these manually set weights in the prior, optimal weights

can be learnt by using the large margin training criterion (7).

2Since segmentations are introduced, hypotheses having a different

segmentation to the reference are treated as different to the reference.
3When segment label wi is a triphone and vl is a monophone, in the

delta function the context of wi is stripped off.

This approach is adopted in the experiments, where the SSVMs

are trained based on these priors with strong baselines.

4. Experiments

Different system combination approaches discussed in the pre-

vious sections are examined in this section, with ASR and

KWS performance presented. Experiments are performed on

the Swahili and Javanese full language packs4 released within

the IARPA Babel program, which contain around 40 hours of

transcribed conversational telephone speech data for training.

Approach Decoding # KWS #

Standard 4 4

Rescoring (frame) 1 4

Rescoring (segment) 1 4

SSVM 1 1

Table 1: Resource requirements of different approaches.

A combination of 4 joint decoding [10] (tandem and hybrid)

systems is examined. Table 1 lists the number of decoding and

KWS runs for different combination approaches. As discussed

in section 2, for the “Standard” combination approach, 4 passes

of joint decoding are run to generate 4 sets of hypotheses. Then

CNC is used to combine these hypotheses. This approach also

requires 4 KWS runs, with the final KWS result obtained by

merging the 4 KWS posting lists. For the frame and segment

level lattice “Rescoring” approaches, only 1 decoding run is re-

quired to generate 1 set of lattices which can then be rescored

as discussed in section 2. It is worth noting that rescoring may

use different pruning settings to the standard decoding. Similar

to the standard approach, 4 KWS runs are performed based on

these 4 sets of rescored lattices, and finally the 4 KWS posting

lists are merged. In the “SSVM” approach discussed in sec-

tion 3, only 1 decoding run is required to generate the lattices.

Then the lattices are rescored by using the log-likelihoods from

different systems (those form the joint features) and the learnt

combination weights for the SSVM as described in equation (5).

Based on the rescored lattices, only 1 KWS run is required.

4.1. Experiments on Swahili

Table 2 gives the word error rates (WER) on the Swahili dev set.

S1, S2, S3 and S4 are joint decoding systems, which combine

the tandem and hybrid log-likelihoods at frame level. S1, S2 and

S3 differ in the structure of the bottleneck DNN5: they use 26,

39 and 62 dimensional bottlenecks respectively. S4 uses 39-d

bottleneck and semi-supervised training. Lattices generated by

the S1 system are used for rescoring experiments. For example,

the SSVM combination weights are trained based on lattices

generated with a bigram language model (LM). In decoding,

bigram lattices are rescored with a trigram LM and the scores

from the systems to be combined. In the first block (from row

1 to 4) of Table 2, all the numbers are confusion network (CN)

results. The second block lists the CNC results.

Since S1, S2, S3 and S4 use different model structures and

are trained with different training technologies, they may com-

plement each other. Moreover, these 4 joint decoding systems

have comparable performance (see “Standard” column), this

makes a good combined performance possible, and experiments

show that the CNC result (43.5%) is much better than the result

of any individual system. For the system combination results,

4Swahili IARPA-babel202b-v1.0d, Javanese IARPA-babel402b-

v1.0a.
5These DNNs are generated by different sites (CUED and RWTH).
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System Standard
Rescoring SSVM

Frame Segment Manual Train

S1 44.7 44.8 45.0

43.8 43.1
S2 45.6 45.3 45.7

S3 44.6 44.6 45.1

S4 44.7 44.7 45.5

CNC 43.5 43.5 43.7 – –

Time (hrs) 19 7 10 9 9

Table 2: WER performance on Swahili (202) Eval15 dev set.

System Standard
Rescoring SSVM

Frame Segment Manual Train

S1 0.543 0.543 0.541

0.559 0.558
S2 0.537 0.535 0.539

S3 0.540 0.543 0.545

S4 0.544 0.543 0.535

PM 0.570 0.566 0.561 – –

Time (hrs) 25 14 15 3 3

Table 3: MTWV performance on Swahili (202) Eval15 dev set.

frame level lattice rescoring achieves the same result (43.5%),

indicating that the S1 lattices contain good sets of hypotheses

enabling equation (2) to approximate equation (1) accurately.

Segment level lattice rescoring gives a worse result (43.7%),

suggesting the segmentations from S1 lattices are not optimal

for S2, S3 and S4. Since the rescoring approaches only need

1 decoding run, the complementarity of individual systems can

be efficiently evaluated by these approaches. For the SSVM,

with manually set weights6, the performance (43.8%) is worse

than the CNC result of the “Standard” approach. Phone-specific

trained weights yield a 0.7% absolute performance gain in the

SSVM to 43.1%, which is better than the “Standard” CNC re-

sult 43.5%. As seen in Table 2, the frame level lattice rescoring

takes slightly less time than SSVM due to the time consuming

generation of log-likelihood scores.

Table 3 gives the KWS performance for the different combi-

nation approaches, measured by maximum term weighted value

(MTWV) [35]. The “Standard” posting list merge (PM) ap-

proach (that merges the posting lists generated by S1, S2, S3

and S4) achieves the best result (0.570). However, this ap-

proach is highly inefficient as 4 decoding and 4 KWS runs are

required. More efficient approaches based on lattice rescoring

can be used, with 1 decoding and 4 KWS runs. Although frame

and segment level rescoring yield accurate approximations to

frame-level inference in terms of WER, these approaches dis-

play sensitivity in terms of KWS. They obtain worse PM re-

sults, i.e. 0.566 and 0.561 for the frame and segment levels.

These results are better than any result of the individual sys-

tems S1, S2, S3 and S4, given in the “Standard” column. Since

4 KWS runs are highly inefficient, the SSVM combination ap-

proach can also be adopted, where only 1 KWS run is required.

As shown in Table 3, this is 5× faster. Although for both the

manually set and trained weights, the performances are worse

than the “Standard” PM result, the “SSVM” results (0.559 and

0.558) are much better than the “Standard” results of the indi-

vidual systems. SSVM training does not help for KWS, as it

aims to reduce overall classification errors but gives high dele-

tion error rate. In conclusion, the suggested KWS approach is

a SSVM with manually set weights, since, compared with other

schemes, this approach is much more efficient and has much

better performance than any individual systems.

6These system-dependent weights are (α
4
,
α

4
,
α

4
,
α

4
) for S1, S2, S3

and S4, where α = (0.25, 1.0) corresponding to tandem and hybrid.

System Standard
SSVM

Manual Train

J1 53.0

52.6 52.4
J2 53.6

J3 54.6

J4 59.8

CNC 52.4 – –

Time (hrs) 49 13 13

Table 4: WER performance on Javanese (402) dev set.

System Standard
SSVM

Manual Train

J1 0.451

0.461 0.459
J2 0.446

J3 0.420

J4 0.362

PM 0.463 – –

Time (hrs) 40 8 8

Table 5: MTWV performance on Javanese (402) dev set.

4.2. Experiments on Javanese

It is time consuming to generate multiple complementary sys-

tems using different model structures or modelling techniques.

A simple way to create possible complementary systems is to

use different bottleneck features, and this approach is examined

on the Babel Javanese data. The systems J1, J2, J3 and J4 pre-

sented in Table 4 only differ in the bottleneck DNNs, which

are trained on different data sets: J4 – unilingual; J3 – 11 lan-

guages7; J2 – 24 languages8; J1 – 24 languages with fine-tuning

to Javanese. These individual systems can be relatively easily

generated, but the results in Table 4 show that these systems are

not good examples of complementary systems. The CNC result

(52.4%) is not significantly better than the J1 result (53.0%).

These systems have high deletion rate. The SSVM can only

match the CNC result. This indicates that it is hard for SSVMs

to take advantage of extra features from other systems, when in-

dividual systems are not complementary. However, the SSVM

with trained weights is the most efficient and effective approach.

For the KWS results shown in Table 5, the SSVM with

manually set weights9, has a comparable result (0.461) to the

PM (0.463), but only 1 KWS run is required by the SSVM, and

only needs 1/5 of the time used by the standard approach.

5. Conclusions
This paper has examined the impact of different combination

approaches on both the ASR and KWS performance. The pro-

posed SSVM combination approach, that only needs 1 decod-

ing and 1 KWS run, can achieve good ASR and KWS perfor-

mance very efficiently. However, training the SSVM weights

gives worse KWS performance which needs to be investigated

further.

7Cantonese IARPA-babel101b-v0.4c, Assamese IARPA-

babel102b-v0.5a, Bengali IARPA-babel103b-v0.4b, Pashto IARPA-

babel104b-v0.4aY, Turkish IARPA-babel105b-v0.4, Tagalog IARPA-

babel106-v0.2f, Vietnamese IARPA-babel107b-v0.7, Haitian Creole

IARPA-babel201b-v0.2b, Lao IARPA-babel203b-v3.1a, Tamil IARPA-

babel204b-v1.1b, Zulu IARPA-babel206b-v0.1d.
8Plus Kurmanji Kurdish IARPA-babel205b-v1.0a, Tok Pisin

IARPA-babel207b-v1.0b, Cebuano IARPA-babel301b-v2.0b, Kazakh

IARPA-babel302b-v1.0a, Telugu IARPA-babel303b-v1.0a, Lithuanian

IARPA-babel304b-v1.0b, Swahili IARPA-babel202b-v1.0d, Guarani

IARPA-babel305b-v1.0a, Igbo IARPA-babel306b-v2.0c, Amharic

IARPA-babel307b-v1.0b, Mongolian IARPA-babel401b-v2.0b, Ja-

vanese IARPA-babel402b-v1.0b, Dholuo IARPA-babel403b-v1.0b
9Since the individual systems do not have comparable performance,

the system-dependent weights are set to (0.6α, 0.3α, 0.1α,0).
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