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Abstract
Semantic fluency is a commonly used task in psychology that
provides data about executive function and semantic memory.
Performance on the task is affected by conditions ranging from
depression to dementia. The task involves participants naming
as many members of a given category (e.g. animals) as possi-
ble in sixty seconds. Most of the analyses reported in the lit-
erature only rely on word counts and transcribed data, and do
not take into account the evidence of utterance planning present
in the speech signal. Using data from Korean, we show how
prosodic analyses can be combined with computational linguis-
tic analyses of the words produced to provide further insights
into the processes involved in producing fluency data. We com-
pare our analyses to an established analysis method for semantic
fluency data, manual determination of lexically coherent clus-
ters of words.
Index Terms: verbal fluency, semantic fluency, executive func-
tion, prosody, pauses, Korean, word embeddings

1. Introduction
Semantic fluency is widely used in cognitive psychology and
neuropsychology. For this task, participants are asked to say
as many words that belong to a given category as possible in
sixty seconds. The task provides data about executive function,
in particular the ability to switch between subcategories, and
semantic memory, in particular about structure and richness of
the semantic mental lexicon [1, 2, 3, 4]. Semantic fluency is
also used in clinical practice, often as part of a standardised test
like the Addenbrooke’s Cognitive Examination Revised [5] that
tracks changes in a person’s cognitive status.

In this paper, we focus on a source of information about
fluency performance that has been comparatively neglected in
the literature, namely prosody. Prosodic measures such as pause
duration can be obtained directly from the speech signal without
requiring accurate Automatic Speech Recognition (ASR). Here,
we focus on pauses and disfluencies due to significant prosodic
differences between Korean dialects (cf Sec. 3).

We present pilot results on 40 samples from 20 young na-
tive speakers of Korean. For the automatic analysis of semantic
fluency data, we used a novel approach based on word embed-
dings that scales easily to different languages.

We show that prosodic data closely complements word-
level analyses. Metrics such as the number of pauses corre-
late significantly with the number of switches between subcat-
egories as determined both manually and automatically. Pause
duration also allows a rough estimate of item response laten-
cies between words. Finally, changes in pause duration over

time highlight further potential individual differences in cogni-
tive function.

2. Background
In most of the literature and in clinical practice, performance on
semantic fluency tasks is reported as the number of items pro-
duced, excluding perseverations and insertions, or the number
of words produced in the first, second, third, and fourth 15-
second interval. More detailed analyses require audio record-
ings or writing down each word, and can be quite time-
consuming.

Clustering and Switching. These analyses assume that
when people produce a sequence of stimuli, they access a partic-
ular semantic subcategory, retrieve a series of words from that
subcategory, and then switch to a different one when retrieval is
exhausted. Perhaps the most well known form of this method
was proposed by Troyer and collaborators [1, 6]. The measures
can differentiate between older and younger adults, and people
with different neurodegenerative disorders [7].

Response Times. These analyses focus on the time taken to
search for and access the next lexical item without making as-
sumptions about underlying semantic subcategories. The time
tn between the end of word wn−1 and the beginning of word
wn is taken to be the response time. Hesitations, paralinguistic
vocalisations such as laughter, and verbal comments are usually
regarded as part of response times. Following [8, 2], the re-
sponse times for one speaker are summarised in a linear model
of the form given in Equation 1, where c is a lexical retrieval
constant and s models gradual increases in retrieval time. Like
clustering and switching, item response times (or latencies) are
sensitive to cognitive ageing and cognitive impairment [3].

tn = c+ s ∗ n (1)

Beyond Manual Annotation. While both clustering and
switching and response time analyses are widely used in the
psychological literature, they are time consuming to measure
and therefore less useful for clinical practice. A variety of
automated analysis methods have been proposed that only re-
quire a transcription of the words produced, once they have
been trained on existing language data. For example, Latent
Semantic Analysis [9] has been used to extract clustering infor-
mation, and lexical similarity measures based on WordNet [10]
have been proposed as an alternative to manual scoring.

However, automating transcription of semantic fluency se-
quences by using ASR is difficult. Pakhomov et al. [11] found
that word error rates are high, and that speaker adaptation may
be required.
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Figure 1: Sample Item Response Latency Plots for Trial 1 (left)
and Trial 2 (right). The item response time for a word is the
time between the start of the current word and the end of the
previous one. Numbers in the right corner are participant IDs.

3. Incorporating Prosodic Information
In this paper, we look at three types of prosodic information:
articulation rate, disfluencies, and pause patterns.

Articulation rate can be affected by ageing [12] and mental
and neurological disorders [13, 14]. For Korean, with its pre-
dominantly (C)V(C) syllable structure, we use both the number
of words and the number of syllables per second.

Disfluencies are indicators of speech planning pro-
cesses [15] that are not specifically included in existing anal-
yses. In our Korean material, most disfluencies are filled pauses
that are realised as long central nasal vowels.

Pause patterns were chosen for two reasons. First, they ap-
proximate lexical access times, where lexical access is not im-
mediate, and second, they are an indicator of phrase boundaries.
Pauses are defined as silences longer than 200ms in the speech
signal that are not due to obstruent closures.

While Standard Seoul Korean has lost Middle Korean lex-
ical tones, dialects such as the Kyungsang group spoken in the
South East [16] have preserved them, and their realisation varies
by age group [17]. This makes traditional phrase boundary anal-
yses too complex for the scope of this paper.

4. Data
The dataset used in this paper consists of 40 semantic fluency
test sequences collected from 20 university students who were
native speakers of Korean for an earlier study of computational
models of verbal fluency sequences [18]. Each student was
asked to perform the task twice with at least two days of interval
period between the experiments. Data from day 1 corresponds
to Trial 1, data from day 2 to Trial 2. This allows us to assess
practice effects. Data from trials where the participant failed

to follow instructions (e.g., producing non-animals) were dis-
carded. All trials were audio recorded and ranscribed by a na-
tive Korean speaker. For each participant, we collected demo-
graphic information (age and gender) and determined dialect.
Since the speech data were only collected to develop automated
analysis techniques, no other cognitive tests were performed.

The original number of speakers recorded was 25. Two did
not produce usable data, and three did not return for the sec-
ond recording session, which leaves us with 20 participants who
provided two sets of data each, for a total of 40 recordings.

The mean age was 22 (SD: 2; range: 18–27). 6 (30%)
participants were female, 14 male. There were no significant
differences in age between genders (p < 0.42, Fisher’s Exact
Test). 16 (80%) had a more or less strong standard Seoul ac-
cent, which is not tonal, while 4 were speakers of a potentially
tonal Kyungsang dialect.

5. Method
5.1. Manual Word-Level Analysis

Clusters were manually annotated by two native speakers of
Korean (NJK, JHK) following the established manual scor-
ing method described in [1]. Cohen’s κ was 0.67 unweighted
(95% CI=[0.62–0.72]) and 0.91 weighted (95% CI=[0.89–
0.93]). Since NJK was mainly responsible for developing the
automatic analyses, we used JHK’s annotations as the basis for
the following comparisons.

5.2. Automatic Word-Level Analysis

We propose exploiting word embeddings to automate the pro-
cess of analyzing and scoring semantic fluency sequences. The
initial goal here is to replicate the results obtained from manual
scoring of switches between clusters. We used word embed-
dings instead of the WordNet-derived measures proposed by
Pakhomov et al. [10] because these do not require a carefully
curated linguistic resource.

We vectorized each word using the popular word2vec
model [19] trained on Korean Wikipedia dump from 26 De-
cember 2015. We then calculated cluster boundaries using two
different approaches. The first approach uses cosine similar-
ity (Eq. 2) between two word vectors ~wn−1 and ~wn to identify
switches and the second approach derives switches from bound-
aries between clusters that have been determined using vector
quantization (k-means). We chose cosine similarity because it
is the most popular measure of similarity in vector space models
of semantics [20] and vector quantization because the algorithm
is designed to identify clusters, which intuitively aligns with our
task to automatically find clusters and switches.

cos θ =
~wn−1 · ~wn

‖ ~wn−1‖ ‖ ~wn‖
(2)

We designed the following three cosine similarity-based
markers of a switch: 1) fixed threshold value, 2) sharp changes
in similarity, and 3) low inter-group similarity. The fixed thresh-
old value marks the point where the similarity between two
neighboring words fall below a certain fixed value as a switch
boundary. The fixed values used here were the median and the
25th percentile of all adjacent cosine similarity values rounded
to the nearest second decimal place (0.30 and 0.22 respectively).

The sharp change keeps track of the change in cosine simi-
larity between two subsequent words and marks switches where
the figure deviates sharply from the average similarity change.



We considered changes that are more than twice as large as the
prior average change as sharp.

The inter-group measure calculates the average similarity
between all possible pairs within a certain sub-sequence, and
marks switches where the inter-group similarity is low. We
chose 0.30 and 0.36 because this was the median and 75th

percentile inter-group similarity (rounded to the nearest second
decimal place) of 2 ≤ k ≤ 5 animals selected at random, with
1000 samples from each k.

We applied k-means vector quantization to each vectorized
word sequence to find clusters of words. The algorithm parti-
tions the set of vectorized words into k clusters, where k is ex-
plicitly specified. In our experiment, we tested 2 ≤ k ≤ 5 for
all 40 vectorized CFT sequences using WEKA [21]. Switching
boundaries were marked according to the clusters identified by
the algorithm.

5.3. Acoustic and Prosodic Analysis

Words, pauses, disfluencies, laughter, experimenter com-
ments, and participant comments were annotated using Praat
5.4.08 [22]. Pauses were defined as stretches of signal with-
out any vocalisations with a minimum length of 200ms. For
words with initial voiceless obstruents, the start of the word was
marked at the release of the obstruent closure.

The item response latency of a word wn was calculated as
the time in seconds from the end of the previous word wn−1 to
the start of wn. This included pauses, disfluencies, comments,
and any other non-word sounds. The constant and slope for
each speaker was estimated using a linear mixed model [23]
with trial and participant ID as random effects.

5.4. Statistical Analysis

Differences between Trial 1 and Trial 2 were tested for signif-
icance using the Asymptotic Wilcoxon-Mann-Whitney Test, R
package coin [24], and Spearman’s ρ was used to compute
correlations.

6. Results
6.1. Word-Level Analysis

The participants produced a mean of 23 words per trial (SD:
4.8, range: 14–36). The average number of switches was 11
(SD: 2.9, range: 6–18). There was no significant difference in
both measures between Trial 1 and Trial 2 (p < 0.16 for word
count, p < 0.47 for switches).

Table 1 summarises the correlation between the automatic
measures and the number of switches determined manually. For
both inter-group similarity and the fixed threshold method, we
only report the results for the parameter setting that yielded the
highest correlation. For both methods, this setting is 0.3, the
value derived from the median.

The best correlation is obtained for the fixed threshold. All
other methods tend to underestimate the number of switches
present by 2–5 on average, whereas the average difference be-
tween the number of switches as defined by the median thresh-
old of cosine similarity and the number of switches found by
JHK is -0.25 (SD: 3.1). Results from the three best-performing
measures do not vary significantly by trial (fixed threshold:
p < 0.29, vector quantization: p < 0.96, inter-group simi-
larity: p < 0.76).

Table 1: Correlation between manually determined switches
and automatically determined switches (Spearman’s ρ). *:
p <0.05, **:p <0.01, ***:p <0.001

(a) Cosine Similarity (b) k-means
fixed threshold*** 0.53 k=2 0.19
abrupt change* 0.40 k=3* 0.39
inter-group similarity** 0.43 k=4* 0.33

k=5 0.26

Table 2: Descriptive Statistics for Item Response Time Analysis.

M SD Range
Values First 0.55 0.53 0.00–2.80

Median 0.74 0.46 0.00–2.67
3rd Quartile 2.49 0.94 0.99–6.22
Max 8.64 3.65 3.2–15.8

Model Constant 1.24 0.25 0.59–1.47
Slope 0.00 0.2 -0.02–0.08

6.2. Acoustic and Prosodic Analysis

Table 2 summarises item response time statistics. The lag be-
tween the first and the second word and the median lag between
words are both relatively short compared to the third quartile.
This indicates that for most speakers, we see mostly brief re-
sponse times, interspersed with a few long ones.

The latency between first and second word and the median
latency are both significantly lower in Trial 2 (first: p < 0.003,
mean ∆ -0.42, 95% confidence interval [-0.69,-0.19]; median:
p < 0.05, mean ∆ -0.24, 95% CI [-0.46,-0.04]).

Looking at the linear mixed model, we find that the inter-
cept (the constant in Eq. 1) shows substantial variation, while
the slope is nearly flat. Fig. 1 plots the time course of response
latencies for six participants for Trial 1 and Trial 2. The basic
pattern consists of latencies that vary randomly across a con-
stant, as the model suggests. In addition, however, many par-
ticipants show several clear outliers. These are responsible for
the substantial variation in third quartiles and maximum latency
values shown in Table 2.

Of the descriptive latency statistics, only the third quartile
correlates with the manual number of switches (ρ = −0.33,
p < 0.04), all others do not (median: ρ = 0.10, first la-
tency ρ = 0.12, maximum latency ρ = −0.25). This sug-
gests that participants who deviate more from the constant pat-
tern of latencies may find it harder to switch between subcate-
gories. Both the third quartile (ρ = −0.50, p < 0.005) and the
maximum latency (ρ = −0.41, p < 0.01) also correlate with
the number of switches determined using the fixed threshold
method.

Table 3 summarises the results of the prosodic analysis. Of
the prosodic measures, only the number of disfluencies is af-
fected by trial; later trials are less disfluent. Both the number
of pauses and the articulation rate in words per second correlate
positively with the number of manually determined switches.
The correlations between the number of switches determined
automatically using a fixed threshold for cosine similarity and
the various prosodic measures listed in Table 3 are even higher.
This suggests that the number of words produced may be a me-
diating variable here.



Table 3: Prosodic Analysis. Descriptive Statistics, differences between trials (Asymptotic Wilcoxon-Mann-Whitney test) and correlation
with number of switches (Spearman’s ρ). Automatic switches determined by fixed threshold method. *: p <0.05, **:p <0.01,
***:p <0.001

Measure M SD Range ∆trial (95% CI) ρswitch

Man. Auto
No. Disfluencies 2.45 3.15 0–12 1* [0,4] -0.11 -0.07
No. Pauses 23.45 5.53 11–33 -1 [-4,3] 0.45** 0.51***
Pauses Median 1.33 0.49 0.66–3.11 -0.02 [-0.28,0.18] -0.14 -0.32*

in sec Max 7.12 3.19 2.59–15.78 1.15 [-0.56,3.16] -0.10 -0.40**
Rate Word 1.75 0.26 1.24–2.21 -0.02 [-0.20,0.15] 0.45** 0.60***

in 1/sec Syllable 4 0.55 3.00–5.32 -0.14 [-0.52,0.22] 0.27 0.31*

7. Discussion
7.1. Information in the Speech Signal

Word-level lexical analysis and acoustic / prosodic analysis pro-
vide complementary sources of information about the internal
structure of verbal fluency data. Pause durations contain infor-
mation about lexical access times, are less sensitive to practice
effects than item response times, and correlate with the num-
ber of switches detected manually. This fits well with the lit-
erature. While cluster and switching based models and item
response time models have somewhat different theoretical un-
derpinnings, in practice, their results are fairly similar [3].

Our young participants vary substantially in their response
latency patterns. For some participants, item response times
show additional peaks over the course of the utterance that are
typically followed by several shorter response latencies. Ab-
wender et al. [25] suggested an additional type of switch that
might account for these patterns, hard switches, where partici-
pants produce a sequence of one-word clusters. Initial inspec-
tion of the data suggests that hard switches cannot explain all of
the variation seen. For example, participants like 2893, Trial 2,
(Fig. 1) show an almost level latency pattern, even though most
of the switches are hard switches. Thus, it remains to be seen
whether these differences in response patterns are mainly due
to executive function [2] (i.e., difficulties with switching to new
lexical categories) or to slower lexical access times for some
parts of semantic memory.

The speech data would also benefit from prosodic annota-
tion using KToBI system [26]. This would give us information
about the type of boundary tone that corresponds to longer re-
sponse latencies and their communicative function [27]. Such
an analysis needs to be sensitive to dialect.

Looking at speaking and articulation rates, we find that par-
ticipants produce far more words in the first quarter of the ut-
terance than in each of the remaining quarters. For some par-
ticipants, this decline is sharper than for others. Such a pat-
tern is normal [28, 29, 30]. One potential reason is that par-
ticipants first retrieve clusters associated with relatively fre-
quent words, and then require longer to search for less frequent
words [28, 30]. As Raboutet et al. [30] found, using traditional
normative corpus data to estimate frequencies is problematic if
the underlying corpus is not well-balanced.

Finally, it is worth noting that some of the non-speech
events we found in the data, and that have also been reported in
other studies [3] (e.g., laughter, comments) may have occurred
because the data was collected face-to-face. Before setting up a
mechanism for administering the task remotely, as in [31], sam-
ple data needs to be collected in both communication situations.

7.2. Towards Combined Automated Analysis

Both word-level analysis and prosodic analysis are compara-
tively language-independent and easy to automate. Our linguis-
tic analysis approach relies on deriving similarities from word
embeddings. Unlike some researchers [32, 33], who have exten-
sively used clustering algorithms, we are not looking to charac-
terise the organisation of semantic memory. We chose to use
a context prediction-based model of distributional word repre-
sentation rather than count-based models like Latent Semantic
Analysis (LSA), as the former performs better than the latter in
various NLP tasks such as measuring semantic relation similar-
ity and syntactic regularities [34, 35].

The acoustic and prosodic analysis is also relatively robust
and easy to implement. If recording quality is high and back-
ground noise is low, automated pause detection is comparatively
straightforward. Information about pausing patterns might also
complement ASR analyses. Fully replicating our approach re-
quires detectors for disfluencies and relevant non-speech events
such as laughter, which will be useful when semantic fluency
is used to track changes in cognitive function due to mental
health [28, 36].

8. Conclusion
We have shown that prosodic and lexical-level analyses of se-
mantic fluency data complement each other well. Since our
baseline findings on this data set fit well with what we know
from the literature about semantic fluency, we are reasonably
confident that our findings will hold for larger, more diverse data
sets. In future, we plan to record fluency data from a larger sam-
ple that varies along dimensions known to affect executive func-
tion and fluency performance, such as age and mental health.

We have also highlighted patterns in item response laten-
cies that require further investigation in a study that uses de-
tailed psychological testing in combination with full prosodic
and phonetic annotations to identify potential reasons and in-
vestigate relevant aspects of intonation and speech rhythm.

Finally, our acoustic analysis relies completely on manual
annotation. It would be interesting to see whether the findings
can be replicated with robust detection algorithms for pauses
and paralinguistic vocalisations.
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