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Abstract

Bird calls range from simple tones to rich dynamic multi-harmonic
structures. The more complex calls are very poorly understood at present,
such as those of the scientifically important corvid family (jackdaws,
crows, ravens, etc.). Individual birds can recognise familiar individuals
from calls, but where in the signal is this identity encoded? We studied the
question by applying a combination of feature representations to a dataset
of jackdaw calls, including linear predictive coding (LPC) and adaptive
discrete Fourier transform (aDFT). We demonstrate through a classifica-
tion paradigm that we can strongly outperform a standard spectrogram
representation for identifying individuals, and we apply metric learning to
determine which time-frequency regions contribute most strongly to ro-
bust individual identification. Computational methods can help to direct
our search for understanding of these complex biological signals.

Index Terms: bird, LPC, aDFT, metric learning, corvid, animal communica-
tion

1 Introduction

Bird vocalisations are highly complex. They are often analysed as sinusoidal or
harmonic sounds, or as spectrotemporal “patches” [1], but in general this can
obscure their rich structure: unlike humans, songbirds have two sets of vocal
folds, which they can use simultaneously; and they also have muscles specialised
for rapid pitch modulation [2]. Songbird species make use of these abilities in
different ways, not all of which are fully understood. These complexities pose
problems for signal processing paradigms borrowed from the study of speech or
music. Yet bird vocalisations are an important area of scientific study: from
behavioural studies we know that they can contain information about species,
about individual identity, and more, and so we seek signal processing methods
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Figure 1: Spectrogram of a single jackdaw call (left) and of its LPC residual
(right).

that can represent that information in a form suitable for analysis. Corvids,
a family of songbirds that includes ravens, crows, jays and other species, have
been the focus of much research, due to their social complexity and remark-
able cognitive skills. But unlike in other songbirds, their vocalisations have not
been as extensively studied, maybe because they mainly produce short, non-
tonal vocalisations (calls) that are often structurally complex and may involve
the two-voice phenomenon. However, their vocal complexity, in combination
with high levels of sociality and cognition has made corvids a suitable target
for studying vocal recognition [3]. Jackdaws (C. monedula) are highly vocal,
group-living corvids that breed in colonies and form strong, lifelong pair bonds.
They are highly vocal and use a variety of vocalisations to maintain contact and
communicate with their conspecifics [4]. Recently, it has been suggested that
pair members are able to recognise each other’s contact calls [5]. But are we able
to discriminate individuals by analysing these challenging vocal signals? And
which parts of the signals carry the individual information? To explore these
questions, we analysed a dataset of calls coming from 20 individually recorded
jackdaws, using alternative signal representations together with automatic clas-
sification and metric learning.

2 Method

2.1 Data collection

The dataset came from 20 adult, hand-raised, group-housed jackdaws (in ac-
cordance with the 2010/63/EU European directives for the protection of ani-
mals used for scientific purposes). Individual vocalisations were recorded using
a microphone (TC20, Earthworks, USA) and solid-state recorder (PMD661,
Marantz, Japan, at a sampling rate of 48000 Hz) while the birds were tem-
porarily held in social isolation (for max. 32 minutes) in a sound chamber (2.0
x 2.0 x 1.3 m, fitted with white acoustic foam), as part of a different study.
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Contact calls were classified and clean recordings selected by visual and acous-
tic assessment. Here, we analysed a total of 1156 calls (3 to 93 per individual,
median = 60), with a median duration of 0.272 seconds (standard deviation:
0.047, min: 0.160, max: 0.510 seconds). An example call is shown in Figure 1
(left).

2.2 Signal processing

Our aim was to produce spectrogram representations that allowed individual
identity information to surface most readily. For standard spectrograms we
used a frame size of 1024 with Hann windowing and 75% overlap.

As a potential improvement on this baseline we evaluated linear prediction
(LPC) analysis, widely used in speech processing as a step which aims to sepa-
rate the effects of the glottal source (for songbirds, the syringeal sources) from
the vocal tract filter [6]. To each call we applied LPC analysis of order 10 to the
whole audio clip. Songbirds might encode individuality in fixed/gestural aspects
of the syrinx oscillation and/or the vocal tract setting. We therefore used the
LPC residual (which is an approximation to the syringeal source signal) in the
same way as we would use the original raw audio, for spectrogram processing
(see Figure 1 right), and we also used the LPC spectrum (an approximation
to the vocal tract filter) separately as an alternative spectral representation of
each call.

Separately we explored the use of the adaptive Discrete Fourier Transform
(aDFT) proposed in [7]. This was originally introduced as an alternative, adap-
tive method to compute a spectrogram and the sinusoidal parameters used by
the “adaptive harmonic model” (aHM) in human speech analysis and synthe-
sis. The aDFT is similar to the Discrete Fourier Transform (DFT) but uses
a frequency basis that can completely follow the variations of the fundamental
frequency F0 throughout a recording, in contrast to the constant frequency basis
of DFT. This time-varying F0 is estimated as part of the algorithm, which thus
offers the potential of a more accurate time-frequency representation. The har-
monics can be easily traced and are typically more prominent even in mid/high
frequencies, compared to those in the DFT spectrogram.

In order to apply the aDFT to our dataset only one modification of the orig-
inal algorithm was needed. The F0 variations for human speech are considered
to be between 40 and 700 Hz, but songbirds have an even higher and wider
range. Hence, an F0 range between 80 and 2000 Hz was used for the estimation
of the F0 variations throughout each recording. The values of the F0 curve that
was used as the frequency basis for aDFT were then divided by 2, because of
the potential importance of sub- and inter-harmonics. Furthermore, we tested
this aDFT with and without the adaptive iterative refinement algorithm, also
proposed in [7], which iteratively refines the F0 estimate used to produce the
aDFT spectrogram. We therefore tested ‘unrefined’ and ‘refined’ versions.

The aDFT is designed to improve the characterisation of frequency-
modulated harmonic sounds, and so is a candidate for analysis of songbird
vocalisations (although it does not directly model two-voice phenomena). The
aDFT produces spectrograms with a varying rather than regular temporal frame
rate. In order to perform pairwise comparisons between spectrograms, and to
maximise comparability against the standard spectrogram representation, we
resampled the aDFT spectrograms onto a regular grid (by nearest-neighbour
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Figure 2: aDFT spectrogram of a single call: using unrefined (left) and refined
(right) F0 estimate.

interpolation) at the same frequency and time resolution as the standard spec-
trogram (Figure 2).

2.3 Classification tests

We used a classification paradigm to evaluate the various signal representations.
Our aim was not to achieve the best classification possible, but to probe which
representations gave the clearest indications of individual identity. For this rea-
son, we did not use an arbitrarily powerful classifier, but the well-known and
simple k-nearest-neighbours (kNN) classifier (with k = 3). Data that work well
with a kNN classifier will have their classes in compact, well-separated clusters.
However, the kNN classifier makes few assumptions about class distributions
beyond that: it is tolerant of multimodal classes, and of classes having differ-
ent variances, as long as they remain compact and well-separated. kNN also
naturally encompasses multi-class data and not just binary-labelled data. Since
we were working with multi-class data in a high-dimensional space (spectro-
gram pixels) about which relatively little is known (e.g. class multimodality),
kNN was preferred over other simple discriminators such as linear discriminant
analysis.

The classifier was applied to pairwise distances between spectrograms, eval-
uated using four different distance metrics: Euclidean and Manhattan, each
applied to magnitudes and to log-magnitudes. The sound files were all aligned
by their onset. In order to reduce any problems due to relative misalignment
when measuring pairwise distances, we allowed a relative movement of ±20 ms
and used the alignment that gave the minimum distance.

We therefore obtained classification results using data preprocessed in var-
ious ways: with/without LPC analysis, with a standard spectrogram or aDFT
(and aDFT could be with/without refinement of its F0 estimate), with/without
log-transformed magnitudes, with Euclidean or Manhattan distance. We eval-
uated the contributions of these factors using a mixed-effects statistical model
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Figure 3: t-SNE distance plots for jackdaw calls under two different signal
representations, in this case using Manhattan distance. Left: raw audio; right:
LPC residual. Each marker type/colour represents a different individual. The
axes have no direct interpretation.

(GLMM, with call recording ID as the random factor), to determine whether
each made a significant difference to performance, and to check for interactions
between the factors. In order to help understand the effects of the various
signal-processing choices, we also visualised the pairwise distances using t-SNE
[8].

The above investigations help to ensure that we choose signal processing
methods that elucidate individual-identifying information if it is present, and
through LPC help us to consider one facet of the question of ‘where’ the informa-
tion lies. It is natural to ask to what extent information lies in the onset or the
decay of the call, in the fundamental or the harmonics—the latter question being
particularly pertinent when a call can simultaneously contain energy from the
two syringeal sources. Note that the kNN classifier depends fundamentally on
the distance metric used, and in particular that the relative weighting of features
can make a dramatic difference to results. In the first test we have described,
we varied the metric but did not vary the feature weightings, in effect telling the
classifier to pay equal attention to every pixel. We therefore complemented this
approach by using the large margin nearest neighbours (LMNN) framework (a
type of metric learning) to derive an analysis of the relative importance of each
spectrogram pixel. The LMNN process learns a linear transformation of the
data space in such a way as to maximise the separation of classes, specifically
to optimise kNN performance [9]. It can therefore improve on the basic kNN
classification results; however our focus was not on the improved classification
score but on the linear projection that was learnt. After LMNN was trained
(using the Python metric learn package) we mapped the projection matrix back
onto the spectrogram pixels, giving an overall importance weight for each pixel.
(Note that for implementation reasons we could not include the ±20 ms variable-
alignment in the LMNN test.) To visualise these results, we applied the ranking
transformation to the importance weights (to normalise their dynamic range)
and then plotted them in the same format as spectrograms.
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Figure 4: kNN classification results. Chance level is 8.0%. For each signal
representation, results are shown for each of the four different distance measures.

3 Results

Classification results show clearly that a dramatic improvement over a standard
spectrogram representation is possible (Figure 4). Our GLMM analysis found
a significant effect of all our signal-processing interventions, but also significant
interactions between all of them (as can be seen in the rather bimodal results of
Figure 4), so here we will not focus on the GLMM results in detail. In general the
Manhattan metric gave best results. When using Manhattan distance, we found
that the LPC residual and/or aDFT led to a strong improvement from around
74% to 90% in individual identification; yet the joint application of LPC and
aDFT did not strongly improve results beyond that. The aDFT spectrograms
showed strong performance with either Manhattan or Euclidean distance. The
LPC filter estimate, however, did not lead to strong classification, performing
noticeably worse than the standard spectrogram.

The t-SNE plots give visual indications of the characteristics of the high-
dimensional spaces produced by the variant analyses. Figure 3 shows the
strongest-performing metric (Manhattan distance) for the raw audio and the
LPC residual; the LPC residual can be seen to enhance the per-individual clus-
tering structure. (Plots for aDFT were qualitatively similar to that for the LPC
residual.) Some of the classes appear multimodal, which may for example reflect
an individual’s use of differing call types.

Feature importance weightings derived from LMNN help to understand the
relative importance of specific time-frequency regions, and they also offer clues
as to what sort of benefit the LPC preprocessing gives (Figure 5). For both raw
audio and LPC residual, the strongest-weighted pixels are concentrated soon
after call onset, and place heavy emphasis on regions containing the fundamental
(which in many cases includes a downward sweep from approx. 1 kHz) and
its first one or two harmonics – more broadly speaking, the region 1–3 kHz.
Features which attain more importance after LPC transformation are the higher
frequencies near the onset. LPC analysis inherently produces a residual with a
whiter spectrum, and so for these sounds amplifies the upper harmonics (Figure
1). However this does not inherently lead the LMNN analysis to apply more
weight to them; if the higher harmonics did not contain useful information we
would expect LMNN to suppress them.
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Figure 5: Feature importance maps derived from LMNN, for raw audio (left)
or LPC residual (right). Darker pixels are higher-ranked in LMNN weighting.
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4 Discussion

The results here do not directly tell us about the production or perception pro-
cesses involved in jackdaw contact calls, but they do give us information which
helps to guide investigations into those processes, and also which helps us to
design systems to extract information automatically from such vocalisations.
We have demonstrated that signal processing interventions can dramatically
improve the automatic identification of individuals with a low-complexity clas-
sification algorithm, which tells us that they can transform the signal into a
format in which individuals’ calls have more stable and repeatable character.

Our feature importance analysis suggests that the identifying information
is concentrated soon after onset, and spreads across the fundamental(s) and
harmonics. However, we note that for this particular analysis we could not vary
the relative alignment of the signals, meaning that discriminative information
in the tail-end of calls may not be apparent since calls are variable in length.

We found that both LPC and aDFT lead to representations that facilitate
classification. These are two rather different interventions, yet the improvements
are not strongly additive: results when using both are only a little stronger than
when using either. LPC is a well-known technique, and relatively efficient to
apply, whereas aDFT and related representations are not very well studied, and
take much more computation than a standard spectrogram. The cost-benefit
ratio therefore speaks in favour of the LPC residual for the moment, though we
have shown that advanced adaptive spectrograms are worth exploring for their
surfacing of information present in the signal.

The LPC residual, rather than the LPC filter, showed the strongest connec-
tion with individual identity in our tests. Linear prediction is often used for
source-filter analysis, with the residual interpreted as the glottal or syringeal
source signal. However, the LPC residual is also likely to normalise away any
differences in the channel between bird and microphone, and so one should be
cautious before interpreting the LPC filter component as purely representing
“the vocal tract”. It also means that the improved recognition using the LPC
residual could be interpreted as a normalisation rather than a decomposition.
However—contrary to that line of thought—in the present dataset recordings
are controlled and the channel effects are stable, although factors such as the
orientation of a bird’s head with respect to the microphone can still affect the re-
ceived signal. Nevertheless, our results suggest that the signal component from
the syringeal source contains sufficient information for recognising individuals in
this species, and that this information is not just in the fundamental frequencies
but also involves the overall harmonic structure of the source signal—a sugges-
tion which should be compared against physiological and perceptual evidence
in future.
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