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Abstract

This paper presents a range of error correction techniques aimed
at improving the accuracy of a lightly supervised alignment task
for broadcast subtitles. Lightly supervised approaches are fre-
quently used in the multimedia domain, either for subtitling
purposes or for providing a more reliable source for training
speech–based systems. The proposed methods focus on directly
correcting of the alignment output using different techniques to
infer word insertions and words with inaccurate time bound-
aries. The features used by the classification models are the
outputs from the alignment system, such as confidence mea-
sures, and word or segment duration. Experiments in this paper
are based on broadcast material provided by the BBC to the
Multi–Genre Broadcast (MGB) challenge participants. Results,
show that the order alignment F–measure improves up to 2.6%
absolute (15.8% relative) when combining insertion and word–
boundary correction.
Index Terms: Lightly supervised alignment, broadcast media,
broadcast subtitles, regression techniques

1. Introduction
The multimedia broadcast domain is increasingly becoming an
important area for research topics related to spoken language
technologies. Applications such as automatic transcription of
broadcast shows or information retrieval from multimedia data
require training of acoustic and language models matched to
the specific multimedia scenario. Although large amounts of
multi–genre data exist and could be exploited as a rich source
of training material, it is usually found that only subtitle tran-
scription exist for this data. However, subtitles present a series
of difficulties for use in acoustic model training. On one hand,
they include only approximate segment–level timing informa-
tion. On the other hand, subtitles always digress from the actual
speech, either as a result of paraphrasing in manual subtitling,
or due to errors in automatic subtitling. Hence, the task of align-
ing an unreliable text to audio has significant relevance to work
in the broadcast media domain.

As standard Viterbi–based forced alignment is usually not
appropriate for very long segments, lightly supervised ap-
proaches [1] are commonly employed. For those scenarios
where transcriptions are incomplete, [2] and [3] propose the
use of large background acoustic and language models, and [4]
implements a method for sentence–level alignment based on
grapheme acoustic models. Moreover, if transcript quality is
very poor [5] presents an alternative to improve lightly super-
vised decoding using phone level mismatch information. Other
related works such as [6] take also into account situations where
transcripts include a mixture of languages.

To provide a benchmark that allows researchers to com-
pare and improve their systems, we proposed lightly supervised

alignment to be studied in the context of the Multi-Genre Broad-
cast (MGB) challenge [7]. The challenge explored spoken lan-
guage systems performance for general broadcast media, fol-
lowing the steps of previous evaluations. The Hub4 series [8]
was organised by NIST to evaluate broadcast news transcription
in English. The ESTER campaign [9] studied rich transcription
of French broadcast news, while the Albayzin campaigns [10]
did the same for audio processing of Spanish broadcast news.
The MediaEval campaigns [11] include tasks in automatic re-
trieval and classification of broadcast data in several languages.

Trying to overcome the lack of complete and reliable refer-
ence subtitles, we have addressed the problem by manipulating
the lightly supervised alignment output. Such an approach re-
quired to study the type of errors that occur in a lightly super-
vised alignment system. With that knowledge, one can develop
a post–processing stage that aims to amend errors in the align-
ment process. Standard regression and classification techniques
based on the boundary correction models presented in [12] are
applied to correct word insertions and word–boundary errors,
considering different architectures and sets of features.

The rest of the paper is organised as follows: Section 2 de-
scribes the state–of–the–art of systems used in lightly super-
vised alignment tasks, while Section 3 focuses on the post-
processing stages developed to correct the alignment output.
Section 4 describes the experimental data used and details the
baseline systems built, with Section 5 providing analysis of the
errors in the alignment output and giving upper bounds for the
error correction systems. Finally, Section 6 focuses on the re-
sults achieved when correcting alignment errors, and Section 7
concludes this work and proposes future research.

2. Lightly supervised alignment
A state–of–the–art lightly supervised alignment system [13, 3,
14, 4], typically has a structure as the one shown in Figure 1.
The input audio is first processed by Voice Activity Detection
(VAD) that identifies boundaries for the segments where speech
is present. Meanwhile, standard text normalisation and tokeni-
sation are applied to the input subtitles. A language model
adapted to these subtitles is then trained. This can be achieved
by interpolating a subtitle–only language model with a larger
background language model [14], or by creating word networks
constrained by the subtitles [4]. Next, an ASR decoding stage
processes the speech segments as obtained previously. Since an
adapted language model is used in this decoding, this stage is
usually referred to as lightly supervised decoding [13]. Such
decoding process can be as complex as necessary, including the
use of multiple decoding passes and speaker adaptation. The
transcript hypothesis given by the lightly supervised decoding
stage is then aligned to the original input text. This can usually
be performed via recursive dynamic programming approaches
where sequences of words from the subtitles are assigned to
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Figure 1: A standard approach to lightly supervised alignment.

the speech segments, based on how well they match the out-
put of the lightly supervised decoding, for instance, using the
Levenshtein distance [3]. The output of the lightly supervised
alignment is a set of speech segments whose transcripts contain
words from the original subtitle text. At this stage, a second
alignment can be used to provide precise word–boundaries for
this output and the process is complete.

This process is liable to several organic errors. First, the
system only outputs words contained in the original subtitles,
i. e., words not in the subtitles can not be recovered. Second,
the system aims to output all words in the original subtitles, so
words not present in the audio may appear in the output. And,
third, the word–boundaries rely on the quality of the decoding
and alignment models used and will not always be accurate.
Error recovery stages can be added to the diagram in Figure 1,
for instance based on further ASR decodings [15]. This paper
proposes new work on the error recovery strategy.

3. Error correction proposal
With the aim of improving the accuracy of lightly supervised
alignment systems this paper proposes applying at its output re-
gression techniques to correct misalignments. This approach
focuses on recovering two types of errors as mentioned in Sec-
tion 2: insertions and word–boundary errors. Figure 2 shows
a diagram including post–processing stages designed to correct
both types of errors. The process takes as input the outcome of
a lightly supervised alignment system, as the one in Figure 1. It
starts by performing Viterbi forced alignment to provide time–
boundaries for the lightly supervised aligned words. At this
stage, several instances of Viterbi alignment can be obtained,
with different acoustic models, with the purpose of providing
distinct alignments. Next, a confidence measure score is com-
puted for each word and segment in the Viterbi aligned out-
put(s). Then, a classification model trained to identify which
words in the aligned output are not present in the spoken audio
is applied and such words are removed. The final step uses a re-
gression model to provide an estimation of how inaccurate the
time boundaries of the words are from one or multiple Viterbi
alignments, which is used to correct the word boundaries.

Figure 2 depicts a generic system where error correc-
tion can be implemented in different ways. Viterbi alignment
and confidence measure calculation can be done with different
acoustic models and approaches. The error correction modules
can generally employ any type of classification and regression
with the desired features of choice. Section 4.2 will discuss the
specific choice of models and features used in this paper.

Figure 2 can also lead to simpler or complex error correc-
tion configurations by removing some stages from the general
system. If insertions are the only target of the correction system,
extra Viterbi alignment stages can be discarded, as well as the
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Figure 2: Post–processing error correction diagram.

word–boundary correction stage. If only word–boundaries are
to be corrected, the insertion correction stage can be removed,
and one or several Viterbi alignments can be used (Figure 2 gen-
eralises to 1, 2, 3 or more alignments). Different Viterbi align-
ments are liable to produce distinct word–boundary hypotheses
depending on the the type of model used, the features it uses or
the input data they were trained on. The use of several hypoth-
esis from multiple Viterbi alignment systems is used in Figure
2 as a way of improving the final boundary estimation. All of
these possible subsystems, including the complete system, will
be evaluated in Section 6.

4. Experimental data and setup
The experiments for this paper are based on the setup for Task
2 of the MGB challenge [7]: Alignment of broadcast audio to
a subtitle file, i. e., lightly supervised alignment. The data for
this goal contained several shows broadcast by the BBC dur-
ing 2008. The number of shows and the amount of audio for
the training, development and evaluation sets were as shown in
Table 1. The 1,500 hours of raw audio were the only acous-
tic data that could be used for training according to the MGB
rules. Although no true transcripts were available, lightly su-
pervised transcripts were given to facilitate training of models.
Other data provided within the MGB challenge were 640 mil-
lion words of subtitle text corresponding to shows broadcast
from the 1970s to 2008. These subtitles were the only linguistic
data available for training language models.

Table 1: Data for the lightly supervised alignment task.
Dataset Number of Shows Broadcast Time
Training 2,193 1,580.4 h.

Development 47 28.4 h.
Evaluation 16 11.2 h.

4.1. Baseline system
The system used for lightly supervised alignment was as shown
in Figure 3. It followed the diagram in Figure 1 in consist-
ing of a first stage of lightly supervised decoding, followed
by lightly supervised alignment. The lightly supervised decod-
ing stage operated as follows: first, a DNN–based speech seg-
mentation module identified segments of speech in the show.
An initial transcription for these segments was obtained from
a speaker independent DNN–HMM system [16] trained on 700
hours of acoustic training data using the Kaldi toolkit [17]. This
stage used a background language model trained on the subtitle
data using SRILM [18]. This output was used to provide re–
segmentation, speaker clustering and speaker adaptation to the
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Figure 3: System for lightly supervised alignment experiments.

second decoding stage. This decoding was based on a DNN–
GMM–HMM system trained on 700 hours of speech using TNet
[19] and HTK [20]. This second stage used a language model
interpolated from the background language model and the sub-
titles for the show using the SRILM toolkit [18]. Finally, the
output was aligned to the subtitles in a recursive lightly super-
vised alignment stage. The modules for this baseline system
were also part of the systems submitted by the University of
Sheffield to Tasks 1 and 3 (transcription and diarisation) of the
MGB challenge and further description can be found in their
respective system description [21, 22].

The results achieved by this system in the development and
evaluation sets of the MGB Task 2 are shown in Table 2. These
results were obtained using the official MGB Task 2 scoring
script. Performance is assessed in terms of F–measure, calcu-
lated as the geometric mean of the precision and recall of the
system. For this task, precision is calculated as the number of
words correct in the hypothesis, over the total number of words
in the hypothesis. Recall is calculated as the number of words
correct in the hypothesis, over the total number of words in the
manual reference. A word in the hypothesis is considered cor-
rect if it matches the same word in the reference with a bound-
ary error of up to 100 milliseconds (10 frames). Only words
appearing in the original subtitles were considered for scoring.
The results show that the baseline system performed better in
terms of recall, and that the F–measure achieved varied from
0.85 in the development data to 0.83 in the evaluation data.

Table 2: Lightly supervised alignment baseline results.
Dataset Precision Recall F–measure

Development 0.8451 0.8655 0.8551
Evaluation 0.8179 0.8559 0.8365

4.2. Alignment correction models
The implementation of the error correction strategy as proposed
in Figure 2 used two different DNN–GMM–HMM systems for
producing a Viterbi forced alignment of the baseline lightly su-
pervised alignment output. The main system was trained on
700 hours of speech with sequence–trained DNN bottleneck
features, while the secondary system was trained on 500 hours
of speech with cross–entropy trained bottlenecks [21]. The con-
fidence measure estimation was based on DNN posteriors [23].
Finally, the error correction modules were based on regression

trees using the scikit–learn machine learning toolkit [24]. Re-
gression trees were successfully used before by [12] to correct
phone–boundary errors in the TIMIT database [25].

The set of features used in the regression trees were chosen
from the following: confidence score of the word, duration of
the word, number of phones in the word, confidence measure
of the segment in which the word is included, duration of the
segment, and number of words in the segment. The features to
be used, as well as other hyperparameters for training of the re-
gression trees (tree depth and minimum numbers of examples
per leaf) were optimised on the development set. The predicted
variable depends on the kind of error to recover. In case of
insertions, it is a value between 0 and 1, where a low value indi-
cates a higher confidence of the word being an insertion. When
dealing with word–boundaries, it is an unbounded integer that
refers to the signed deviation in frames between Viterbi forced
alignment and manual reference time–stamps. Two different re-
gression trees are required to infer the boundary correction, one
for the beginning and one for the end of the word respectively.

5. Error analysis and oracle systems
Taking into account the baseline results presented in Table 2 for
the development dataset, it was first studied which types of er-
rors occurred in the lightly supervised alignment output. Four
categories of errors were observed: deletions (D, words in sub-
titles and in manual reference but not in the alignment output),
insertions (I, words in the alignment output and in the subti-
tles but not in manual reference) and word–boundary errors (T1
and T2, differentiating whether the words in the manual refer-
ence and the alignment output present some overlap in time or
not). Table 3 presents the number of deletions, insertions and
word–boundary errors found in the output of the baseline sys-
tem considering the development set.

Table 3: Number of errors per category in the lightly supervised
alignment system in the development set.

D I T1 T2
Number of errors 8,875 11,842 3,429 6,980

It can be seen that the most common errors are insertions
(11,842), followed by word–boundary errors (10,409 adding T1
and T2) and finally deletions are the least common (8,875). Us-
ing these oracle outputs, regression trees were trained to pre-
dict insertions and boundary errors. When dealing with word–
boundary errors, sparsity in the examples used for training be-
comes an issue. Figure 4 shows the distribution of words with
boundary errors in the baseline system regarding the distance in
frames from the manual reference to the alignment output (from
11 up to 100 frames). It can be seen that there were very few
examples of words with a given value of frame distance from
the reference to the alignment output. Word–boundary errors of
10 or less are not errors in the task and were not studied.

At this stage, oracle error correction stages were designed
in order to provide upper boundaries to the error correction sys-
tem presented. The oracle output was obtained by manually
removing a specific category of errors in the baseline system
output. The results in the development set are shown in Table 4.
The largest improvement in F–measure provided by correcting
a single type of error is 0.0646 with the correction of word–
boundary errors (T), due to an increase in both precision and
recall. Correcting all deletion errors (D) highly increases the re-
call, but the global F–measure only improves by 0.0270. Inser-
tion correction (I) produces a large effect in precision improve-
ment with an improvement in F–measure of 0.0356. Finally, the



Table 5: Lightly supervised alignment error correction results.
Development set Evaluation set

Correction stage Precision Recall F–measure Rel. Impr. Precision Recall F–measure Rel. Impr.
I 0.9135 0.8537 0.8826 18.6% 0.8888 0.8418 0.8647 17.2%

T (single Viterbi) 0.8476 0.8671 0.8573 1.5% 0.8209 0.8579 0.8390 1.5%
T (two Viterbis) 0.8478 0.8661 0.8568 1.2% 0.8178 0.8541 0.8355 -0.6%

I+T (single Viterbi) 0.9018 0.8624 0.8817 18.4% 0.8732 0.8518 0.8624 15.8%
I+T (two Viterbis) 0.9010 0.8621 0.8811 17.9% 0.8723 0.8511 0.8616 15.4%
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Figure 4: Distribution of words with incorrect boundaries in the
lightly supervised alignment system in the development set.

combined correction of I and T, the target of the experiments,
has an upper bound of 0.9586 in F–measure, given by the oracle
results. The results are also expressed as relative improvement
over the baseline, using an F–measure of 1.0 as the upper value.

Rel.Impr. =
Fsystem − Fbaseline

1.0− Fbaseline
(1)

Table 4: Results and relative improvement over the baseline us-
ing oracle error correction on the development set.

Error Precision Recall F–measure Rel. Impr.
D 0.8480 0.9191 0.8821 18.6%
I 0.9165 0.8663 0.8907 24.6%
T 0.9089 0.9308 0.9197 44.6%

I and T 0.9864 0.9323 0.9586 71.4%

6. Results
A complete set of experiments were performed to optimise hy-
perparameters in the regression models used. The optimal value
for tree depth was found to be 10, and the optimal value for min-
imum samples per leaf was found to be 500 for I error correc-
tion, and 1000 for T recovering. Regarding features, presented
in Section 4.2, the optimal set was found to be the 5–feature set
for the I correction, i. e., confidence score, duration and number
of phones of the word and confidence measure and duration of
the segment of the word, and the 3–feature set for the T correc-
tion, this is, confidence score, duration and number of phones
of the word. Finally, a threshold had to be found in order to de-
cide whether a word was removed or not following the insertion
correction. The optimal threshold value was found to be 0.4.
Words with regression output of 0.4 or lower were discarded
from the lightly supervised output.

Table 5 presents the results for different error correction
scenarios as described in Section 3. The best result on the devel-
opment set was obtained when using only insertion correction,
with an F–measure improvement of 0.0275. This was an 18.6%
relative improvement over the baseline and it improved 77.2%
compared to the upper bound given by the oracle (0.8907). The
improvement obtained by correcting only word–boundary er-
rors was less significant (0.0022, or 1.5% relative), and the com-
bination of insertion and word–boundary correction produced
smaller gains than insertion error correction alone (0.0266 or
18.4% relative). Furthermore, the use of two Viterbi alignment

systems produced a very small drop in gain compared to using
a single Viterbi system.

A similar pattern of results was observed on the evaluation
set, also shown in Table 5. F–measure values indicated the dif-
ficulty of correcting errors of the word boundaries, where only
small gains of 1.5% relative were observed. As shown when
studying the distribution of boundary errors in words, it is pos-
sible that regression trees were not the most appropriate model
for this task. Nevertheless, regression trees were shown to give
significant gains in the detection of insertions (0.0282, or 17.2%
relative). The combination of both systems produced smaller
gains (0.0259 or 15.8% relative). The use of multiple Viterbi
alignments to improve the correction of word boundaries was
found to produce very small change in the results. This can be
due to the shown weakness of regression trees for this task; also
the two systems used for Viterbi alignment might not have been
distinct enough to provide a gain to each other, since both were
trained on MGB acoustic model training data.

7. Conclusions and future work
This paper presented a set of error correction methods to be con-
sidered for post–processing of the output of a lightly supervised
alignment system. Insertions and word–boundary errors were
amended by applying regression and classification techniques
based on boundary correction models. Results shown a large
improvement when using this setup to remove insertions, with
17–18% relative improvement in F–measure, and up to 77% of
errors recovered compared to a manual oracle. However, word–
boundary error correction became a more challenging task due
to the sparsity of input data to the correction models training.
Although small gains of 1.5% relative were achieved, the com-
bination of insertion and word–boundary did not manage to im-
prove over the insertion–only correction results.

Future research could focus on considering new sets of in-
put features, including some information about neighbouring
words and silences, as well as using confidence scores obtained
applying newer techniques. Alternative regression approaches
for word–boundary correction might help improve the perfor-
mance of this system. These improved alignment output can
then be used to train better acoustic models or to improve the
output of automatic captioning systems.

8. Data access management
All the data related to the MGB challenge, including audio files,
subtitle text and scoring scripts is available via special license
with the BBC on http://www.mgb-challenge.org/.
All system outputs and scoring results are available with DOI
10.15131/shef.data.3437426
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