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Abstract
This work studies the use of deep learning methods to directly
model glottal excitation waveforms from context dependent text
features in a text-to-speech synthesis system. Glottal vocoding
is integrated into a deep neural network-based text-to-speech
framework where text and acoustic features can be flexibly used
as both network inputs or outputs. Long short-term memory re-
current neural networks are utilised in two stages: first, in map-
ping text features to acoustic features and second, in predicting
glottal waveforms from the text and/or acoustic features. Re-
sults show that using the text features directly yields similar
quality to the prediction of the excitation from acoustic fea-
tures, both outperforming a baseline system based on using a
fixed glottal pulse for excitation generation.
Index Terms: parametric speech synthesis, glottal vocoding,
excitation modelling, LSTM

1. Introduction
Statistical parametric speech synthesis (SPSS) [1, 2] has be-
come a widely used speech synthesis technique in recent years.
The statistical approach has several attractive properties, includ-
ing good generalisation on unseen text inputs, flexible speaker
adaptation and a small memory footprint compared to unit se-
lection synthesis [3]. However, the overall quality of parametric
synthesis has not yet reached that of the best unit selection tech-
niques. Recently, deep learning techniques have been success-
fully implemented in the acoustic modelling for SPSS [4, 5].
Further improvement has been attained from the use of recur-
rent neural networks (RNNs), taking advantage of the sequen-
tial nature of the parametric speech representation, specifically
by using long short-term memory (LSTM) networks [6] and bi-
directional LSTM [7]. Despite these advances in the acoustic
modelling, the resulting synthetic speech quality still depends
on the underlying parameterisation and reconstruction of the
speech signal, a process known as vocoding.

Vocoders are typically based on the source-filter model of
speech, where a filter conveying speech spectral information is
excited with a source signal. The most prevalent vocoder in
SPSS uses a STRAIGHT [8, 9]-based mel-generalised cepstrum
(MGC) representation for the filter part together with a mixed
excitation signal created by modifying an impulse train to sat-
isfy a specific band-aperiodicity measure. However, using an
impulse train excitation results in a perceptual degradation de-
scribed as ”buzziness” in the reconstructed speech, due to too
much high frequency energy and the zero-phase characteristic

of the impulse. How to best generate a natural excitation signal
and phase for speech synthesised from a parametric representa-
tion remains an open research question.

Several approaches have been proposed to create more nat-
ural vocoded speech. Vocoders relying on the source-filter
model focus on improving the excitation model: proposed tech-
niques include the deterministic plus stochastic model (DSM)
[10], which uses principal component analysis on the filter
residuals to create eigen-representations of residual waveforms,
an MGC-based vocoder replacing the impulse train with the
Liljencrants-Fant parametric model for glottal excitation [11],
and the GlottHMM vocoder [12], which uses glottal inverse fil-
tering (GIF) for vocal tract filter estimation and a natural glottal
flow pulse for creating the excitation. There are also some hy-
brid approaches that use statistical modelling for the acoustic
parameters and unit-selection for excitation generation with a
residual codebook [13] or a glottal pulse library [14]. Simi-
larly to unit selection, the hybrid approach faces the difficulty
of selecting the best unit in terms of acoustic concatenation cri-
teria. In addition to the source-filter-based vocoders, another
approach is the use of sinusoidal vocoders [15, 16] that create
harmonic sinusoidal components based on the spectral envelope
and fundamental frequency (f0) information. These methods
encounter the problem of ”inventing the phase” as well, and
typically use a minimum phase derived from magnitude spec-
trum, which is not entirely justified from the voice production
perspective. An experimental comparison of different vocoder
types found that the sinusoidal vocoders suitable for SPSS have
comparable quality to the source-filter vocoders in an analysis-
synthesis setup [17].

Recently, deep neural networks (DNN) have been applied
in modelling the glottal pulse waveforms, increasing the over-
all quality and flexibility for varying vocal effort [18, 19]. The
glottal flow derivative waveforms are first estimated by the iter-
ative adaptive inverse filtering (IAIF) [20] technique and then
a neural network is trained to predict these waveforms from
the other acoustic features. However, this approach is some-
what sensitive to the accuracy of GIF and glottal closure instant
(GCI) detection. More recently, improved synthesis quality was
reported in [21] for a high-pitched voice by using a more ad-
vanced GIF method, the quasi-closed phase (QCP) [22] inverse
filtering. Overall, taking this kind of modelling approach pro-
vides increased dynamics for the voice source model in a data
driven manner while overcoming the problems with pulse se-
lection in the hybrid approach.

Previous TTS systems utilising glottal vocoding have used
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HMM-based acoustic models mixed together with a DNN-
based excitation model [18, 19, 21]. Compared to these ear-
lier glottal synthesis systems, the current study has three novel-
ties: 1) the HMM-based acoustic models are replaced by deep
bidirectional LSTM. 2) the architecture for the DNN excitation
model is also changed from FF to RNN, and 3) we further inves-
tigate various inputs for the LSTM-based excitation modelling,
including acoustic and text features.

The paper is structured as follows: in section 2 we overview
the synthesis system structure with the various options for ex-
citation modelling, with subsections covering the acoustic fea-
tures, text features, and glottal waveform formatting for DNN.
Section 3 details the experiments on training the synthesis sys-
tems and subjective evaluation of the investigated excitation
methods.

2. Speech synthesis system

Parametrization
with QCP

Speech signal

GCI detection

Glottal pulse
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Figure 1: Overview of the speech synthesis system. Four dif-
ferent networks with feedforward or LSTM structure, and text
and/or acoustic feature inputs are used for modelling the glot-
tal excitation waveforms.

The TTS system examined here is based on our recent
HMM-based platform that utilises glottal vocoding [21]. While
the acoustic parameterisation and the processing of glottal
waveforms remains unchanged, our new contribution in this
work is the investigation of different modelling techniques.
First, the acoustic model of the TTS system now utilises deep
bidirectional LSTM instead of the previous HMM-based ap-
proach. Second, we investigate the prediction of the glottal ex-
citation waveforms using various configurations based on deep
learning. Figure 1 shows the general structure of the proposed
synthesis system. At the training stage, the acoustic parame-
ters, including vocal tract and glottal source features, are first
estimated from the speech signal frame-wise using QCP glottal
inverse filtering, as described in section 2.1. The acoustic fea-
tures are aligned with the text features (see section 2.2) to train
the base synthesis network mapping the text to acoustic fea-
tures. For the excitation modelling, glottal pulses are extracted
from the inverse filtering result and processed, as described in
section 2.3. At the synthesis stage, acoustic parameters are gen-

erated from given text using the LSTM network, from where
they are fed into the excitation modelling networks. Alterna-
tively, text features are used directly to generate the excitation
pulses. After generation, the pulses are truncated and windowed
in accordance with f0, modified for aperiodicity in accordance
with the harmonic-to-noise ratio (HNR), and scaled to the de-
sired energy level. Finally the excitation signal is created with
overlap-add and filtered in accordance with the generated vocal
tract filter.

The different deep learning-based systems used in this work
are summarised in Table 1. To focus the comparison on the ex-
citation models, a base synthesis system mapping text features
to acoustic features (TXT-AC) is shared among the systems.
Four different systems for generating the glottal excitation are
trained. (1) A system using a feedforward (FF) network to map
acoustic features to glottal pulses (AC-GL-FF) is conceptually
equal to that in [21], and can be considered the baseline deep
learning excitation model. (2) By replacing the feedforward net-
work in AC-FF-GL with LSTM, we obtain a new system called
AC-LSTM-GL. Using a recurrent network can be hypothesised
to add context awareness to the network, potentially improv-
ing performance at phoneme boundaries or phonation onsets.
Another novel concept in this work is introducing the text fea-
tures into excitation modelling. To test whether it is possible
to predict glottal waveforms using only the text information,
we build a new network (3) to map the text features directly
to the glottal pulses (TXT-LSTM-GL). Furthermore, the previ-
ous approach of predicting from acoustic features could benefit
from additional context-dependent linguistic information. To
test this, we create the final network (4) by concatenating the
acoustic and text features to the network’s input and train the
network (TXT+AC-LSTM-GL) to map this information to the
glottal pulses. Both of the methods utilising text features use an
LSTM network with the same internal topology.

Table 1: In total, five systems were trained for the experiments:
The base synthesis system (0) generating acoustic features (AC)
from text features (TXT) is shared among compared systems.
The compared systems (1–4) generate glottal excitation wave-
forms (GL) from text and/or acoustic features as follows:

ID System Input Output Network
(0) TXT-LSTM-AC TXT AC LSTM
(1) AC-FF-GL AC GL FF
(2) AC-LSTM-GL AC GL LSTM
(3) TXT-LSTM-GL TXT GL LSTM
(4) TXT+AC-LSTM-GL TXT + AC GL LSTM

2.1. Acoustic features

The extraction of acoustic features is performed similarly to
[21]. First, the speech signal is analysed with the QCP inverse
filtering, giving estimates for the vocal tract filter and the glottal
source. The vocal tract is represented by an all-pole filter whose
LSF coefficients (LSF VT) are used as the parameterisation.
Additional parameters are estimated from the glottal source,
i.e., the source spectral envelope is represented by all-pole filter
LSF parameters (LSF SRC). The fundamental frequency f0 and
the voiced-unvoiced decision (VUV) are further estimated from
the glottal source. Finally, the harmonic-to-noise ratio (HNR)
of the glottal source is estimated to measure aperiodicity in the
excitation. The signal frame energy is included as well for scal-
ing in the synthesis stage. For neural network modelling, the
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acoustic features and their dynamics (∆ and ∆∆) are used. The
f0 is modelled continuously and a separate binary VUV feature
is added. Table 2 lists the acoustic parameters and their dimen-
sions as used in the DNNs.

Table 2: Acoustic features and their dimensions (including
their ∆ and ∆∆ values) used in the various DNN models. The
f0 and VUV are modelled separately in the DNN while the f0
vector otherwise contains the voicing information.

Feature dim. ∆ dim.
f0 1 3
VUV – 1
Energy 1 3
LSF VT 30 90
LSF SRC 10 30
HNR 5 15
total 47 142

2.2. Text features

The same set of context-dependent linguistic features, called the
text features for short, is used for predicting both the acoustic
features and the glottal waveforms. These text features, which
include phoneme, syllable, word, phrase, and sentence level in-
formation, are generated from the text with the Flite [23] speech
synthesis front-end using the Combilex [24] US English lexi-
con, resulting in a total dimensionality of 396. An alignment be-
tween the phoneme-rate text features and the frame-rate signal
features is found with the HMM-based speech synthesis system
(HTS) [25], and at the synthesis stage, the HTS duration models
are used to create the input text features to the DNNs.

2.3. Glottal waveforms

The glottal waveforms estimated by GIF are processed for the
deep network training similarly to [21], as shown in Fig. 2: take
a two pitch-period segment from the estimated glottal volume
velocity derivative waveform, having glottal closure instants
(GCI) at the middle and at both ends, apply cosine window-
ing, and zero-pad the pulse symmetrically to match the fixed
network output dimension of 400 samples. At the synthesis
stage, the generated pulses are truncated to match the desired
f0, windowed again to compete the squared cosine windowing,
and overlap-added to create the excitation. Additionally, for
modelling with RNN the glottal waveforms must be sequential.
In this work, we associate one glottal pulse with each voiced
frame by taking the nearest pulse. A zero-vector is associated
with unvoiced frames.

Figure 2: Processing of the glottal flow derivative waveforms
for training the networks: a two pitch-period segment delimited
by GCI is cosine windowed and zero-padded to desired network
output length.

3. Experiments
3.1. Speech material

The speech material used for training the synthesiser was pro-
duced by a female US English speaking professional voice tal-
ent [26]. The dataset comprises approximately 12,000 utter-
ances totalling 14 hours, of which 500 utterances were used as a
validation set in training and 200 were kept as an unseen test set
for generation, while using the rest for training. The speech was
downsampled to 16 kHz sample rate from the original 48 kHz.

3.2. Training the synthesis systems

All the networks had four hidden layers: for the feedforward
network, the hidden layers were of size 512 with logistic ac-
tivation functions, while the LSTM networks consisted of two
feedforward logistic hidden layers of size 512 with two bidirec-
tional LSTM layers of size 256 stacked on top of them. The
CURRENNT toolkit [27] was employed in training the net-
works. For all networks, the training was stopped after 5 epochs
of no improvement on the validation set. The sum of squared
error (SSE) for the training and validation sets is presented for
each method in Fig. 3 as a function of training epochs, where
the solid lines correspond to training error and dashed lines to
validation error. The error measures show that the text-only
network has higher error level and starts overfitting early com-
pared to the networks including acoustic inputs. Fig. 4 shows
an example of generated excitation waveforms from the various
systems without the added voiced excitation noise component.
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Figure 3: The training errors (solid line) and validation errors
(dashed line) for the DNN excitation systems.

3.3. Subjective listening test

The test stimuli were created by first using the TTS front-end
with HTS-based duration models to create the neural network
text features and then inputting these to the TXT-LSTM-AC net-
work to generate acoustic features before finally using the var-
ious excitation model networks to generate glottal pulses from
the text and generated acoustic features.

A subjective listening test similar to the multiple stimulus
test with hidden reference and anchor (MUSHRA) [28, 29] was
performed, using a real speech sample from the target speaker
with the same linguistic content as the reference. No low-
quality anchor was included in the form of a degraded refer-
ence sample, since the degraded anchor would still have perfect
timing and prosody, and comparing this with TTS samples is
problematic. Instead, a single pulse excitation method, as used
in the original GlottHMM [12], was included in the test to serve
as a non-DNN baseline for the various DNN based excitation
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TXT+AC-LSTM-GL

TXT-LSTM-GL

AC-LSTM-GL

AC-FF-GL
h aU E v @r r

Figure 4: Generated glottal derivative waveforms prior to adding the voiced excitation noise component. The phoneme boundaries
are included to show how the waveforms change their shape along with the linguistic context. In this example, the target word is
”however”.

methods. The evaluation was conducted in a listening booth en-
vironment using Beyerdynamic DT 990 headphones. Thirty na-
tive English speakers with no reported hearing disorders partic-
ipated in the listening test, four of whom were excluded in post-
screening due to inconsistency in finding the hidden reference
or insufficient variance in their answers. The results were anal-
ysed with a repeated measures ANOVA [30] using Greenhouse–
Geisser correction. Analysis shows that the overall test main
effects of method [F (2.94, 73.4) = 29.192, p < .001], and
sample [F (9.89, 247.2) = 10.118, p < .001], as well as the in-
teraction method×sample [F (9.99, 249.9) = 2.134, p = .023]
are statistically significant. Fig. 5 shows the estimated marginal
means and 95% confidence intervals with Bonferroni correc-
tion. Post-hoc tests showed that the DNN-based excitation
methods do not differ significantly, regardless of TXT-LSTM-
GL having a slightly lower mean score. However, the lower
rating of the single pulse method is statistically significant.
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AC–FF-GL AC-LSTM-GL
TXT-LSTM-GL
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Figure 5: Marginal means and 95% confidence intervals for
the methods in the MUSHRA testing. The differences between
DNN-based methods are not statistically significant, regardless
of TXT-LSTM-GL scoring slightly lower. However, the score for
the single pulse excitation (SP) is significantly lower.

Since the MUSHRA test did not provide the resolution
to differentiate between the top three methods, an additional
preference test with forced choice was conducted for AC-FF-
GL, AC-LSTM-GL and TXT+AC-LSTM-GL . The preference
scores are presented in Fig. 6 with 95% confidence intervals es-
timated by normal approximation. Binomial tests indicate that
the LSTM-based AC-LSTM-GL and TXT-AC-LSTM-GL were
preferred over the feedforward AC-FF-GL with p = .002 and
p = .036, respectively. Between the LSTM-based methods,
AC-LSTM-GL was preferred with p = .007.

0 50% 100%

AC-FF-GL AC-LSTM-GL

AC-FF-GL TXT+AC-LSTM-GL

AC-LSTM-GL TXT+AC-LSTM-GL

Figure 6: The preference test shows that the LSTM-based meth-
ods are preferred over the feedforward method, while the LSTM
network using only acoustic features outperforms the network
using the concatenated text and acoustic input.

4. Discussion and Conclusion
Our parametric speech synthesis experiments show that the
glottal vocoder excitations can be predicted relatively well us-
ing text features, which implies that the linguistic context car-
ries meaningful information about the voice source. While
the text-to-glottal (TXT-LSTM-GL) system was rated slightly
lower than the other deep learning based excitation systems,
the system was still rated higher than the single pulse baseline.
Moreover, the preference test indicated the LSTM-based exci-
tation models outperforming the feedforward one. Replicating
the experiments with a male voice could yield larger perceptual
differences since the excitation phase captured in the waveform
becomes more relevant with low-pitched voices.

The straightforward approach of using all available context
information is likely not optimal, as all of the full context might
not be relevant to the excitation, while the increased dimension-
ality makes the modelling problem more challenging. This is
reflected in the preference test, as using only the acoustic fea-
tures was preferred to the concatenated acoustic and text fea-
tures. Selecting the most useful text features remains a task for
future research. Other future work includes joint deep learning
based modelling of the acoustic features and glottal waveforms
aiming to better capture the interactions taking place, and at-
tention modelling to disregard unvoiced regions in the voiced
excitation model.
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