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Abstract

It has been known for a long time that the classic Hidden-
Markov-Model (HMM) derivation for speech recognition con-
tains assumptions such as independence of observation vectors
and weak duration modeling that are practical but unrealistic.
When using the hybrid approach this is amplified by trying to
fit a discriminative model into a generative one. Hidden Condi-
tional Random Fields (CRFs) and segmental models (e.g. Semi-
Markov CRFs / Segmental CRFs) have been proposed as an al-
ternative, but for a long time have failed to get traction until
recently. In this paper we explore different length modeling ap-
proaches for segmental models, their relation to attention-based
systems. Furthermore we show experimental results on a hand-
writing recognition task and to the best of our knowledge the
first reported results on the Switchboard 300h speech recogni-
tion corpus using this approach.
Index Terms: automatic speech recognition (ASR), (hidden)
conditional random fields, segmental models, encoder-decoder,
attention mechanism

1. Introduction
Classic Hidden-Markov-Models (HMMs) are known to be lim-
ited in the sense that the derivation of their decision rule as-
sumes conditional independence of features given the state-
sequence and only has weak duration modeling[1]. One way to
alleviate these problems is to use segmental models. These gen-
erally assume a probability distribution that assigns a label w to
a sequence of frames x in contrast to the framewise class con-
ditional distribution p(x|s) required by classic HMMs. Early
works on this topic include [2] and [3]. Most recent works are
based on [4], where Semi-Markov CRFs are presented. No ex-
plicit length modeling is done in this approach. The feature
functions used in the model may include length features, but
the model is normalized over the set of output labels.

In [5] a set of hand-engineered segment features is used to
improve upon a baseline HMM system on data from Bing Mo-
bile voice-search. The authors of [6] also use this framework
but model the joint probability distribution of labels and seg-
mentation. The authors introduce boundary features that result
in a reduction in training and evaluation complexity. The model
is evaluated on the TIMIT corpus, in contrast to the previously
mentioned approaches which use the model for re-scoring, the
model is applied in the first-pass decoding. In [7] and [8] the
authors focus on evaluating various deep neural network (DNN)
architectures to model the joint probability distribution of seg-
ment boundaries and labels. Variability in segment length is
handled by evaluating a fixed number of DNNs evenly spread
across the segment. In [9] a multi-pass approach to incorporate
higher-order features is used. The publications [10] and [11]

present work using an architecture similar to ours (and simi-
lar also [12, 13]), introducing a stochastic alignment. A series
of bidirectional long short-term memory (LSTM) layers is fol-
lowed by a decoder layer. The hidden state of this decoder layer
is used in the feature-function to determine the joint probabil-
ity of label and segmentation. In [10] a handwriting task [14]
and a Chinese-character segmentation task and Part-Of-Speech-
tagging are used to evaluate the model. [11] evaluate their work
on the TIMIT corpus. In [15] higher order features are inte-
grated by changing the decoder. It does not see every frame of a
segment, only a fixed number of frames (similar to [7, 8]). This
allows it to iterate over multiple segments, creating a higher-
order CRF. Evaluation (given segment boundaries) is again on
TIMIT. In [16] a different aspect of segment modeling is ad-
dressed. In order to improve training convergence and final per-
formance multi-task learning is applied by simultaneously op-
timizing a CTC-loss [17]. Again TIMIT is used for evaluation.
In previous work from our group [18, 19] inverted alignments
were introduced as a form of deep Segmental CRFs. For these
studies the length model was static and did not incorporate in-
formation from the input features.

In this paper we address the problem of integrating dis-
criminative neural network based acoustic models properly into
a speech recognition system by using a segmental approach.
In the derivation of this approach the need to model segment-
lengths occurs naturally and we investigate various ways to re-
alize expressive length-models. Evaluations are first performed
on a handwriting task and the two most successful models are
then evaluated on the Switchboard English 300h task. These
are, to the best of our knowledge, the first results of a Segmen-
tal CRF system on this task. In addition we compare this ap-
proach to the recently introduced attention mechanism from a
modeling perspective.

The rest of the paper is structured as follows: First we de-
rive different decision rules for classic HMMs, Segmental CRFs
and recently introduced attention-systems and point out the ma-
jor differences and similarities. Next we describe the neural net-
work architecture and its training. Afterwards we show experi-
mental results for a handwriting task and Switchboard English
300h. An outlook into future work and a conclusion finishes the
paper.

2. Model derivation

The classic Bayes decision rule r for sequence-to-sequence
classification is:

r : xT1 → wN1 = arg max
wN

1

p(wN1 |xT1 )



where xT1 is a sequence of observation vectors of length T and
wN1 a sequence of output labels of length N . From this starting
point we look at three different modeling approaches: Hybrid-
HMM, segmental models and attention models.

2.1. Hybrid-HMM

In classic HMM-Systems [20], a sequence of states sT1 is intro-
duced as hidden variables and we assume conditional indepen-
dence of observations given the state1. To use a discriminative
acoustic model we need to use Bayes identity to swap the de-
pendence between state and observation.

arg max
wN

1

p(wN1 |xT1 ) = arg max
wN

1

{
p(wN1 ) · p(xT1 |wN1 )

}
p(wN1 ) · p(xT1 |wN1 ) = p(wN1 ) ·

∑
sT1

p(sT1 , x
T
1 |wN1 )

= p(wN1 ) ·
∑
sT1

∏
t

p(xt|st) · p(st|st−1)

= p(wN1 ) ·
∑
sT1

∏
t

p(st|xt)
p(st)

· p(st|st−1)

= p(wN1 ) ·max
sT1

∏
t

p(st|xt)
p(st)

· p(st|st−1)

2.2. Segmental Model

Segmental models are sometimes derived by defining feature
functions on sub-sequences of xT1 (e.g. [5]) that are used in a
log-linear model. Alternatively, we can view the segmentation
as the introduction of a hidden variable of label boundaries tN0
such that output label wn is assigned the features xtntn−1+1. We
assume t0 = 0, tN = T (coverage) and tn < tm ⇔ n < m
(monotonicity). This is analogous to [18].

arg max
wN

1

p(wN1 |xT1 ) = arg max
wN

1

∑
tN0

p(wN1 , t
N
0 |xT1 )


= arg max

wN
1

∑
tN0

∏
n

p(wn, tn|wn−1
1 , tn−1

0 , xT1 )


(first order Markov assumption)

= arg max
wN

1

∑
tN0

∏
n

p(wn, tn|wn−1, tn−1, x
T
1 )


(maximum approximation for segmentation)

= arg max
wN

1 ,t
N
0

{∏
n

p(wn, tn|wn−1, tn−1, x
T
1 )

}

In practice we do not estimate absolute positions tn, but instead
estimate ∆tn = tn − tn−1. If the input for the estimator is
dependent on tn and tn−1 we do not write ∆tn but stick to tn.

From this base form we can derive multiple variants:
p(wn, tn|wn−1, tn−1, x

T
1 ) = · · ·

1. Static length model:
· · · = p(wn|tn, tn−1, x

T
1 ) · p(∆tn)

1For consistency with our previous publications, in the following
equations, we denote model assumptions with the equal sign.

2. Data dependent length model:
· · · = p(wn|tn, tn−1, x

T
1 ) · p(tn|tn−1, x

T
1 )

3. Joint distribution without label feedback:
· · · = p(wn, tn|tn−1, x

T
1 )

4. Label dependent length model:
· · · = p(wn|tn−1, x

T
1 ) · p(tn|wn, tn−1, x

T
1 )

For the first three variants we limit the maximum length of
each segment to improve computational performance. In the
fourth variant, similar to a geometric distribution, we can model
p(tn|wn, tn−1, x

T
1 ) using a frame-by-frame decision (continue

or terminate). This results in a framewise criterion and thus
an enforcement of a maximum segment length is not neces-
sary. The label-dependent framewise termination probability
p(end|t, wn, xT1 ) is realized with one sigmoid unit per label.

p(tn|wn, tn−1, x
T
1 ) = tn−1∏

t=tn−1+1

1− p(end|t, wn, xT1 )

 · p(end|tn, wn, xT1 )

We would like to point out that in tasks like speech
or handwriting recognition it is useful to keep the language
model p(wN1 ) on the level of output symbols (words), but use
smaller units (characters, mono-/(tied) triphones) for the acous-
tic model. Thus, the language model can be trained on larger
text corpus and during decoding, the acoustic model scores and
language model scores are combined in a log-linear fashion
(mixture of experts).

All of the previous derivations where done with a fixed N .
However, during decoding the sentence length is unknown and
thus the full decision rule is:

r : xT1 → wN1 = arg max
N,wN

1

p(N,wN1 |xT1 )

= arg max
N,wN

1

p(N |xT1 ) · p(wN1 |N, xT1 )

If no sentence-length model is used, short sequences with low
individual probability per label might have a higher total prob-
ability than long sequences with high probability per label be-
cause long sequences contain more factors. This is a known
problem and is sometimes fixed by adding a length penalty
e.g. in [21].

2.3. Attention Mechanism

Acoustic models using what is called an attention mechanism
have recently been proposed [22, 23, 24, 25, 21, 26, 27] and
have recently been able to outperform state-of-the art hybrid
HMM systems[28].

The decision rule is as follows:

arg max
wN

1

p(wN1 |xT1 ) =

N∏
n=1

p(wn|wn−1
1 , xT1 )

=

N∏
n=1

p(wn|wn−1
1 , cn(wn−1

1 , xT1 ))

Where cn is the output of the attention mechanism which
uses attention weights αt,n derived from an energy function
et,n(wn1 , x

T
1 ) and the encoder output ht(xT1 ) at time t.

Similar to variants 1-3 of our model, some attentions sys-
tems limit the attention weights to a window of fixed length



[24, 27]. Other use a gating mechanism to limit the attention
[22]. The approach that is most similar to ours is hard mono-
tonic attention [26]. There the authors use a stochastic process
to determine the window size based on a framewise sampling
and then focus the attention weights exclusively on the last
frame within this window. The framewise decision to extend
the window is similar to what we do in variant 4 and similar to
the emit/shift decision in [12], except that we evaluate the la-
bel probability at the beginning of the window and include the
length probability in the probability of the sequence.

3. Neural Network Architecture and
Training

We build our neural networks similar to the ones described
in the above mentioned publications. Several layers of bi-
directional LSTM layers[29] form the encoder, which trans-
forms the inputs sequence xT1 into a sequence hT1 . Optionally,
downsampling is performed between the first and second layer
by average pooling two consecutive frames, resulting in an out-
put sequence hdT/2e1 . Based on this encoder output we use a
single layer forward LSTM-layer to estimate various probability
distributions in the segmental model. Distributions over length
use a softmax that spans multiple time-frames.

Variant 4 of our model has two components: the label pre-
diction posterior p(wn|tn−1, x

T
1 ), which is trained with targets

at the beginning of a segment, and the framewise termination
probability p(end|t, wn, xT1 ), which is realized by a sigmoid
unit for every label, trained using framewise targets by max-
imizing the logarithm of the corresponding sigmoid units at
those positions. The label prediction posterior and termination
probability were optimized in a multi-task fashion by connect-
ing both output layers to the same encoder network.

Training can be performed by maximizing the cross-
entropy on sequence level:

L =
∑
r

log p
((
wN1

)
r
|
(
xT1

)
r

)

This can be done by expectation-maximization, i.e. opti-
mizing the ratio of two parameter sets p and q.

log
p(wN1 |xT1 )

q(wN1 |xT1 )
=
∑
tN0

q(tN0 |wN1 , xT1 ) log
p(wN1 |xT1 )

q(wN1 |xT1 )

≥
∑
tN0

q(tN0 |wN1 , xT1 ) log
p(wN1 |xT1 )

q(wN1 |xT1 )

−
∑
tN0

q(tN0 |wN1 , xT1 ) log
q(tN0 |wN1 , xT1 )

p(tN0 |wN1 , xT1 )︸ ︷︷ ︸
≥0 (KL-divergence)

=
∑
tN0

q(tN0 |wN1 , xT1 ) log
p(wN1 , t

N
0 |xT1 )

q(wN1 , t
N
0 |xT1 )

= Q(p, q)−Q(q, q)

With Q(p, q) =
∑
tN0
q(tN0 |wN1 , xT1 ) log p(wN1 , t

N
0 |xT1 ).

When we insert our model assumptions we get:

Q(p, q) =
∑
tN0

q(tN0 |wN1 , xT1 ) log

N∏
n=1

p(wn, tn|tn−1, x
T
1 )

=
∑
n,t,t′

∑
tN0 :tn=t,

tn−1=t
′

q(tN0 |wN1 , xT1 ) log p(wN1 , t
N
0 |xT1 )

=
∑
n,t,t′

γn(t, t′|wN1 , xT1 ) log p(wN1 , t
N
0 |xT1 )

Then we get the following derivative for e.g. the joint probabil-
ity distribution model:

∂Q(p, q)

∂p(w, t|t′, xT1 )
=

1

p(w, t|t′, xT1 )

∑
n:wn=w

γn(t, t′|wN1 , xT1 )

γn can be computed via the well known forward-backward al-
gorithm, or if we apply the Viterbi-approximation to the sum
over tN0 we arrive at a single time segmentation. Some of our
early experiments showed that this approximation can result in
the NN displaying a high confidence for arbitrary labels in seg-
ments that were not seen during training. This problem did not
occur while training the framewise model (Variant 4). As train-
ing from scratch using the Baum-Welch algorithm did not con-
verge reliably we used an alignment generated by another sys-
tem as a starting point to approximate γn. Given a framewise
alignment αL1 we define

ψ(w, t|t′) =

{
1 if t = arg min

τ>t′
ατ 6= ατ+1 ∧ w = αt′

0 else

We train the model by optimizing

L =
∑
t,t′,c

ψ(w, t|t′) log p(w, t|t′, xT1 )

4. Experiments
The search for the best word sequence for our segmental models
is done using with several modified versions of the dynamic
tree-search decoder in [30]. More details on an older version of
our inverted decoder can be found in [19].

4.1. IAM

We first present results on the IAM Handwriting database [31],
which is based on the Lancaster-Oslo/Bergen (LOB) corpus. It
consists of a train, validation and evaluation part, which contain
6482, 976 and 2915 lines of text, respectively. We use a 50k
lexicon with an OOV-rate of 4.01% / 3.47% on the validation /
evaluation part, respectively. No handling of OOVs (i.e. using
sub-words) has been done in our model, thus they are respon-
sible for the majority of the errors. The language model is a
5-gram count-based model. As input to our model, we used
frames extracted from a sliding window of 8×32 pixels and a
shift of 3. We then applied a moment-based size normalization
together with a dimensionality reduction to 20 principal compo-
nents. The acoustic (visual) model was trained on an alignment
generated by a previously trained LSTM hybrid system.

The encoder used in this task is a 4-layer BLSTM with 512
units per direction. The decoder for variants 1-3 is a 256-cell
mono-directional LSTM layer. We tried (and optimized) dif-
ferent length models (Table 1). As could be expected a static



Model valid-set eval-set
baseline (hybrid, vsc) 10.9% 14.4%

Variant 1 (single state per character) 15.4% 20.5%
Variant 2 (single state per character) 13.5% 17.5%
Variant 3 (single state per character) 12.6% 16.6%
Variant 3 (vsc + length-norm.) 11.7% 14.9%
Variant 4 (single state per character) 12.5% 16.1%

Table 1: Results on the IAM database, all results are WER,
vsc = variable number of states per character

length model (Variant 1) performed worst. It was estimated on
the alignment of the training corpus. A separate decoding layer
(shared encoder, multi-task learning) for length modeling re-
duced the WER by 1.9% absolute (Variant 2). Next we removed
the length model decoder again and changed the softmax for
the label decoder to normalize over all durations, thus estimat-
ing the joint distribution of labels and lengths (Variant 3). This
improved performance by 0.9% absolute. The framewise model
(Variant 4) achieved basically the same performance. Until now
we used a single state per character. Our baseline uses a vary-
ing number of states per character (VSC) (depending on the av-
erage width of the symbol). The resulting average number of
states per symbol is 7.13. This model performed better when
we added length normalization (multiplying by segment length
in log-domain). This is due to the fact that these sub-character
segments tend to be very short and our window size can easily
span many of these sub-characters. In this setting it can occur
that a single ”bad” hypothesis can receive a better score than
multiple hypothesis that might locally have the highest proba-
bility. With length normalization and VSC we get another 0.9%
absolute improvement. This system is only 0.8%/0.5% worse
than our very competitive baseline.

Variant 4 using models with 1-state per character is a model
that requires little tuning - the most important parameters are
the language model scale and a calibration exponent. The lan-
guage model scale for these models is usually around 1.0-2.0,
as a rule-of-thumb it corresponds to the language model scale
of the hybrid baseline dividend by the average character length.
A calibration exponent β is applied to the framewise termina-
tion probability (usually around 0.5) and effectively balances
insertions and deletions on a character level:

p′(end|t, wn, xT1 ) = p(end|t, wn, xT1 )β

p′(end|t, wn, xT1 ) = 1− p′(end|t, wn, xT1 )

4.2. Switchboard

The NN architecture was the same as the one used for the IAM
experiments, except for network depth. More details on the
BLSTM training can be found in [32]. We train our models on
Gammatone features [33] extracted from the 300h Switchboard-
1 Release 2 and evaluate performance on the Hub5’00 corpus.
The language model is a 4-gram count-based model trained
on the transcripts of the training and Fisher English corpora.
The alignment used for training was generated by a sequence-
discriminatively trained tandem system. Our best baseline sys-
tem uses a classification and regression tree (CART) to tie 3-
state triphones into a fixed number of acoustic models. For
our hybrid setup we use a CART with 9001 clusters. As the
joint model (Variant 3) performs a softmax over the the seg-
ment length and the labels, a large CART is too costly during
training. Thus we also estimated a smaller CART (with only

Model target DS LN CH SWB Σ

hybrid
1-sta. monophone no N/A 27.3 14.0 20.6
1-sta. 1501-CART no N/A 23.6 12.1 17.8
3-sta. 9001-CART no N/A 21.6 11.0 16.3

Var. 3
1-sta. monophones

no no 42.5 22.1 32.3
yes yes 34.5 17.6 26.1

3-sta. monophone no yes 34.9 19.3 27.4
1-sta. 1501-CART yes yes 29.6 15.0 22.3

Var. 4 3-sta. 9001-CART no no 25.6 13.0 19.3

Table 2: Results on the Hub5’00 evaluation corpus in
terms of %WER, DS=downsampling, LN=length normaliza-
tion, CH=Callhome part, SWB=Switchboard part, sta. = state

1501 clusters) and tested monophones. As the encoder can see
past segment boundaries the NN could be able to incorporate
knowledge of past and future acoustic events into the decision
making process.

For the Switchboard experiments, additionally to the lan-
guage model scale as tuning parameter, we introduced a silence
penalty to balance deletions and insertions, and we limited the
maximum segment length to values around 12-25, depending
on downsampling and number of states. For the Var. 3 1-
state monophone model we experimented with extra penalties
for long silence segments and got some small improvements.

In Table 2 we see results for The Hub5’00 evaluation cor-
pus. As expected our baseline system performs better when
output labels are more fine-grained. A similar trend can be ob-
served for segment-based models. The newly presented models
do not yet reach the performance of our baseline system, so
more work has to be done to examine possible improvements.
One limiting factor for us was training time. The training time
increases proportionally to the maximum window size (for Vari-
ant 1-3).

5. Future Work
The systems we presented in this paper were all trained given a
fixed alignment. In future we want to investigate ways to train
our models end-to-end from scratch. We have found that mod-
eling the length of a sequence seems to be important in some
settings. Thus we will investigate ways to incorporate this into
our decoder, probably by decoding in a label-synchronous fash-
ion.

6. Conclusions
In this paper we have presented a framework to embed discrim-
inative acoustic models into a mathematically sound framework
for ASR. We examined various length models within this frame-
work and while the results on Switchboard are not state-of-the-
art yet, we believe that they do warrant further research into this
topic. The connection to attention systems is also intriguing as
they represent a similar approach.
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