
ar
X

iv
:1

80
5.

07
02

4v
1

 [
cs

.C
L

]
 1

8
M

ay
 2

01
8

Gated Recurrent Unit Based Acoustic Modeling with Future Context

Jie Li1, Xiaorui Wang1, Yuanyuan Zhao2, Yan Li1

1Kwai, Beijing, P.R. China
2Institute of Automation, Chinese Academy of Sciences, Beijing, P.R.China

{lijie03, wangxiaorui, liyan}@kuaishou.com, yyzhao5231@ia.ac.cn

Abstract

The use of future contextual information is typically shown to

be helpful for acoustic modeling. However, for the recurrent

neural network (RNN), it’s not so easy to model the future tem-

poral context effectively, meanwhile keep lower model latency.

In this paper, we attempt to design a RNN acoustic model that

being capable of utilizing the future context effectively and di-

rectly, with the model latency and computation cost as low as

possible. The proposed model is based on the minimal gated re-

current unit (mGRU) with an input projection layer inserted in

it. Two context modules, temporal encoding and temporal con-

volution, are specifically designed for this architecture to model

the future context. Experimental results on the Switchboard

task and an internal Mandarin ASR task show that, the pro-

posed model performs much better than long short-term mem-

ory (LSTM) and mGRU models, whereas enables online decod-

ing with a maximum latency of 170 ms. This model even out-

performs a very strong baseline, TDNN-LSTM, with smaller

model latency and almost half less parameters.

Index Terms: speech recognition, acoustic modeling, future

temporal context, gated recurrent unit

1. Introduction

It is typically shown to be beneficial for acoustic modeling to

make full use of the future contextual information. In the liter-

ature, there are variety of methods to realize this idea for dif-

ferent model architectures. For feed-forward neural network

(FFNN), this context is usually provided by splicing a fixed set

of future frames in the input representation[1]. It also exists

other approaches relating modifying FFNN model structures.

The authors in [2, 3] proposed a model called feedforward se-

quential memory networks (FSMN), which is a standard FFNN

equipped with some learnable memory blocks in the hidden lay-

ers to encode the long context information into a fixed-size rep-

resentation. The time delay neural network (TDNN) [4, 5] is an-

other FFNN architecture which has been shown to be effective

in modeling long range dependencies through temporal convo-

lution over context.

As for unidirectional recurrent neural network (RNN), this

is usually accomplished using a delayed prediction of the out-

put labels[6]. However, this method only provides quite limited

modeling power of future context, as shown in [7]. While for

bidirectional RNN, this is accomplished by processing the data

in the backward direction using a separate RNN layer [8, 9, 10].

Although the bidirectional versions have been shown to outper-

form the unidirectional ones with a large margin [11, 12], the

latency of bidirectional models is significantly larger, making

them unsuitable for online speech recognition. To overcome

this limitation, chunk based training and decoding schemes

such as context-sensitive-chunk (CSC) [13, 14] and latency-

controlled (LC) BLSTM [11, 15] have been investigated. How-

ever, the model latency is still quite high, since in all these on-

line variants, inference is restricted to chunk-level increments

to amortize the computation cost of backward RNN. For ex-

ample, the decoding latency of LC-BLSTM in [15] is about

600 ms, which is the sum of chunk size Nc and future con-

text frames Nr . To overcome the shortcomings of the chunk-

based methods, Peddinti et al. [7] proposed the use of tempo-

ral convolution, in the form of TDNN layers, for modeling the

future temporal context while affording inference with frame-

level increments. The proposed model is called TDNN-LSTM,

and is designed by interleaving of temporal convolution (TDNN

layers) with unidirectional long short-term memory (LSTM)

[16, 17, 18, 19] layers. This model was shown to outperform

bidirectional LSTM in two automatic speech recognition (ASR)

tasks, while enabling online decoding with a maximum latency

of 200 ms [7].

However, TDNN-LSTM’s ability to model the future con-

text comes from the TDNN part, whereas the LSTM itself is

incapable of utilizing the future information effectively. In this

paper, we attempt to design a RNN acoustic model that can

model the future context effectively and directly, without the

dependence on extra layers, for instance, TDNN layers. In ad-

dition, the model latency and computation cost should be as low

as possible.

With this purpose, we choose to use the minimal gated

recurrent unit (mGRU) [20] as our base RNN model in this

work. mGRU is a revised version of GRU [21, 22] and con-

tains only one multiplicative gate, making the computational

cost of mGRU much smaller than GRU and vanilla LSTM [19].

Based on mGRU, we propose to insert a linear input projection

layer to mGRU, getting a model called mGRUIP. The inserted

linear projection layer compresses the input vector and hidden

state vector simultaneously. Since the size of this layer is much

smaller than cell number, mGRUIP contains much less parame-

ters than mGRU. In addition to this, there are two other advan-

tages of the input projection layer. The first one is that inserting

this layer is beneficial to the ASR performance. Our experi-

ments on a 309-hour Switchboard task show that mGRUIP out-

performs mGRU significantly. This finding is consistent with

that in LSTM with input projection layer (LSTMIP) [23].

The second (also the most important) advantage is that this

input projection forms a bottleneck in the recurrent layer, mak-

ing it possible to design a module on it, that can utilize the fu-

ture context information effectively, meanwhile without signif-

icantly increasing the model size. In this work, we design two

kinds of context modules specifically for mGRUIP, making it

capable of modeling future temporal context effectively and di-

rectly. The first module is referred to as temporal encoding, in

which one mGRUIP layer is equipped with a context block to

encode the future context information into a fixed-size repre-

sentation, similar with FSMN. Temporal encoding is performed

at the input projection layer, making the increase of computa-

http://arxiv.org/abs/1805.07024v1

tion cost quite small. The second module borrows the idea from

TDNN, and is called temporal convolution as the transforms in

it are tied across time steps. In temporal convolution, future

context information from several frames is spliced together and

compressed by the input projection layer. Thanks to the small

dimensionality of the projection, temporal convolution brings

quite limited additional parameters. In this work, these two con-

text modules are shown to be quite effective on two ASR tasks,

while maintaining low latency (170 ms) online decoding. It is

shown that compared with LSTM and mGRU, mGRUIP with

temporal convolution provides more than 13% relative WER re-

duction on the full Switchboard Hub5’00 test set, while on our

1400-hour internal Mandarin ASR task, the relative gain is 13%

to 24% for different test sets. What’s more, the proposed model

outperforms TDNN-LSTM with smaller decoding latency and

almost half less parameters.

This paper is organized as follows. Section 2 describes the

model architecture of GRU and its variants, including the pro-

posed mGRUIP and the two context modules. The related work

is introduced in Section 3. We report our experimental results

on two ASR tasks in Section 4 and conclude this work in Sec-

tion 5.

2. Model Architecures

In this section, we will first make a brief introduction to

the model structure of GRU and mGRU. Then the proposed

mGRUIP and two context modules will be introduced in detail.

2.1. GRU

The GRU model is defined by the following equations (the layer

index l has been omitted for simplicity):

zt = σ(Wzxt + Uzht−1 + bz) (1)

rt = σ(Wrxt + Urht−1 + br) (2)

h̃t = tanh(Whxt + Uh(ht−1 ∗ rt) + bh) (3)

ht = zt ∗ ht−1 + (1− zt) ∗ h̃t (4)

In particular, zt and rt are vectors corresponding to the

update and reset gates respectively, where ∗ denotes element-

wise multiplication. The activations of both gates are element-

wise logistic sigmoid functions σ(·), constraining the values of

zt and rt ranging from 0 to 1. ht represents the output state

vector for the current time frame t, while h̃t is the candidate

state obtained with a hyperbolic tangent. The network is fed by

the current input vector xt (speech features or output vector of

previous layer), and the parameters of the model are Wz, Wr,

Wh (the feed-forward connections), Uz , Ur , Uh (the recurrent

weights), and the bias vectors bz, br, bh.

2.2. mGRU

mGRU, short for minimal GRU, is a revised version of the GRU

described above. It is proposed by [20] and contains two mod-

ifications: removing the reset gate and replacing the hyperbolic

tangent function with ReLU activation. Thus it leads to the fol-

lowing update equations:

zt = σ(Wzxt + Uzht−1 + bz) (5)

h̃t = ReLU(BN(Whxt + Uhht−1) + bh) (6)

ht = zt ∗ ht−1 + (1− zt) ∗ h̃t (7)

where BN means batch normalization.

2.3. mGRUIP

In this work, a novel model called mGRUIP is proposed by in-

serting a linear input projection layer into mGRU. In mGRUIP,

the output state vector ht is calculated from the input vector xt

by the following equations:

vt = Wv[xt;ht−1] (8)

zt = σ(Wzvt + bz) (9)

h̃t = ReLU(BN(Whvt) + bh) (10)

ht = zt ∗ ht−1 + (1− zt) ∗ h̃t (11)

In mGRUIP, the current input vector xt and the previous

output state vector ht−1, are concatenated together and com-

pressed into a lower dimensional projected vector vt by weight

matrices Wv. Then the update gate activation zt and the candi-

date state vector h̃t are calculated based on the projected vector

vt.

mGRUIP can reduce the parameters of mGRU significantly.

The total number of parameters in a standard mGRU network,

ignoring the biases, can be computed as follows:

NmGRU = ni×nc×2 + nc×nc×2

where nc is the number of hidden neurons, ni the number of in-

put units, and NmGRU is the total parameter number of mGRU.

While for mGRUIP, this value becomes:

NmGRUIP = (ni + nc)×np + np×nc×2

where np is the number of units in the input projection layer.

Assuming nc equal with ni, the ratio of these two numbers is:

NmGRUIP

NmGRU

=
np

nc

In a typical configuration we can set nc = 1024 and np = 512,

hence the parameters of mGRUIP is just half of mGRU, making

the computation quite efficient. Despite this, our experiments

on Switchboard task show that mGRUIP outperforms mGRU

with the same number of neurons, i.e., nc. What’s more, in-

creasing nc while decreasing np can further enlarge the gains.

2.4. mGRUIP with Context Module

The input projection layer forms a bottleneck in mGRUIP, mak-

ing it easier to utilize the future context effectively, in the mean-

time keep the increase of model size acceptable. In this paper,

two kinds of context module, namely temporal encoding and

temporal convolution, are specifically designed for mGRUIP.

2.4.1. mGRUIP with Temporal Encoding

In temporal encoding, context information from several future

frames are encoded into a fixed-size representation at the input

projection layer. Thus equation (8) in a standard mGRUIP now

becomes:

v
l
t = W

l
v[x

l
t;h

l
t−1] +

K∑

i=1

f(vl−1

t+s×i) (12)

where the last summation part in equation (12) stands for tem-

poral encoding. In particular, vl−1

t+s×i is the input projection

vector of layer l − 1 from the (t + s × i)th frame. s ≥ 1 is

the step stride and K is the order of future context. f(·) de-

notes the transform function applied to vl−1
t . In this work, we

tried 3 forms: identity (f(x) = x), scale (f(x) = m ∗ x) and

affine transform (f(x) = Wx). Preliminary results show that

the identity function gives slightly better performance than the

other two forms. Thus we choose f(x) = x for the rest of this

paper. It should be noted that in this case, temporal encoding

brings no additional parameters for mGRUIP.

2.4.2. mGRUIP with Temporal Convolution

Temporal encoding uses the projection vector of lower layer

(vl−1

t+s×i) to represent the future context, while in temporal con-

volution, the future information is extracted from the output

state vector of lower layer and then compressed by the input

projection. Equation (8) now becomes:

v
l
t = W

l
v[x

l
t;h

l
t−1] +W

l
p[h

l−1

t+s×i; · · · ;h
l−1

t+s×K](13)

where the last part represents temporal convolution. In partic-

ular, hl−1

t+s×i is the output state vector of layer l − 1 on the

(t + s × i)th frame. Same as temporal encoding, s is the step

stride and K is the context order. According to this equation,

hl−1

t+s×i from K future frames are spliced together and projected

to a lower dimensional space by matrixW l
p. Assuming the num-

ber of hidden neurons in layer l− 1 is nc, temporal convolution

brings K × nc × np additional parameters. However, since the

value of np is usually quite small and we generally splice no

more than two frames (K ≤ 2), the increase of the model size

is limited and acceptable.

3. Related Work

The authors in [23] proposed to insert an input projection

layer to vanilla LSTM to reduce the computation cost. In this

work, we tried this idea on mGRU[20], getting a model called

mGRUIP, which is shown to be more effective and more effi-

cient than mGRU.

TDNN-LSTM [7] is one of the most powerful acoustic

model that can utilize future context effectively while has rel-

atively low model latency. However, the ability of modeling the

future temporal context comes from TDNN and has nothing to

do with the LSTM layers. In this work, thanks to the input pro-

jection layer, we empower the mGRUIP to be capable of mod-

eling the future context effectively and directly, by equipping

it with one of the two proposed context modules, temporal en-

coding and temporal convolution. These two modules borrows

the ideas from FSMN [2, 3] and TDNN [4, 5] respectively. The

difference is that, FSMN and TDNN belong to FFNN, therefore

both of them need to model the future context as well as the past

information to capture the long-term dependencies. Whereas

the two proposed context modules are placed in a RNN layer,

and they only need to focus on the future context, leaving the

history to be modeled by recurrent connections.

Row convolution [24], which encodes future context by ap-

plying a context-independent weight matrix, is another method

to model the future context for RNN. The idea is similar with

the two proposed context modules. However, row convolution

in [24] is only placed above all recurrent layers. While in this

work, we place context modules in all hidden layers (except the

first one). This layer-wise context expansion makes the higher

layers having the ability to learn wider temporal relationships

than lower layers. What’s more, the objective function is also

different: connectionist temporal classification (CTC) [25] in

[24] while lattice-free MMI (LF-MMI) [26] in this work.

4. Experiments

In this section, we evaluate the effectiveness and efficiency of

the proposed mGRUIP on two ASR tasks. The first one is the

309-hour Switchboard conversational telephone speech task,

and the second one is an internal Mandarin voice input task with

1400-hour training data. All the models in this paper are trained

LF-MMI objective function computed on 33Hz outputs [26].

4.1. Switchboard ASR Task

The training data set consists of 309-hour Switchboard-I train-

ing data. Evaluation is performed in terms of word error rate

(WER) on the full Switchboard Hub5’00 test set, consisting of

two subsets: Switchboard (SWB) and CallHome (CHE). The

experimental setup follows [26]. We use the speed-perturbation

technique [28] for 3-fold data augmentation, and iVectors to

perform instantaneous adaptation of the neural network [29].

WER results are reported after 4-gram LM rescoring of lattices

generated using a trigram LM. For details about the model train-

ing, the reader is directed to [26].

4.1.1. Baseline Models

Two baseline models, LSTM and mGRU, are trained for this

task. Both of them contain 5 hidden layers, and the cell number

for each layer is 1024. For LSTM, we add a recurrent projec-

tion layer on top of the memory blocks with a dimension of

512, compressing the cell output from 1024 to 512 dimension.

For mGRU, to reduce the parameters of softmax output matrix,

we insert a 512-dimensional linear bottleneck layer between the

last hidden layer and the softmax layer. Both models are trained

with an output delay of 50 ms. The input feature to both models

at time step t is a spliced version from frame t−2 through t+2.

Therefore, they both have a model latency of 70 ms. Following

[7], we use a mixed frame rate (MFR) across layers. In particu-

lar, the first hidden layer is operated at 100Hz frame rate while

the rest of higher layers use a frame rate of 33Hz.

4.1.2. mGRUIP

To evaluate the effectiveness of the proposed mGRUIP, we train

two models containing 5 layers, mGRUIP-A and mGRUIP-B,

with different architectures. In mGRUIP-A, each hidden layer

consists 1024 cells (nc = 1024, same as the baseline models),

and the input projection layer has 512 units (np = 512). While

for mGRUIP-B, the cell number is 2560 and the projection di-

mension is 256. The training configurations are kept same as

the baseline models.

Table 1: Performance comparison of LSTM, mGRU and

mGRUIP on Switchboard task.

Model
#Param WER (%)

(M) SWB CHM Total

LSTM 19.7 10.3 20.7 15.6

mGRU 22.1 10.2 20.6 15.5

mGRUIP-A 13.1 9.8 19.0 14.5

mGRUIP-B 16.2 9.7 18.8 14.3

The performance of the two mGRUIP models and two base-

line models is shown in Table 1. We can see that, for these

two baseline models, mGRU has more parameters and performs

slightly better than LSTM. The proposed model mGRUIP-A

contains much less parameters than the baseline mGRU (13.1M

vs. 22.1M), but performs significantly better on the full test set

(14.5 vs. 15.5). This means that the input projection layer can

not only reduce the parameter of mGRU, but also being benefi-

cial to the performance. It is also shown that mGRUIP-B out-

performs mGRUIP-A, meaning that we can improve the ASR

performance by increasing the cell number, meanwhile without

significantly increasing the model size by reducing the projec-

tion dimension in mGRUIP. Compared with mGRU, mGRUIP-

B provides 7.7% relative WER reduction on the full test set

whereas using 5.9M less parameters. In the following experi-

ments, we will set nc = 2560 and np = 256 for the mGRUIP

related models.

4.1.3. mGRUIP with Context Modules

It’s obvious that temporal encoding and temporal convolution

can utilize more future context information by increasing K

and s in equation (12) and (13). However, this will lead to

the increase of model latency and model parameters (for tem-

poral convolution). In this work, we did a lot of experiments

and found the most cost-effective settings for these two context

modules are as follows:

Table 2: The most cost-effective settings for two context mod-

ules.

Layer l = 2 l = 3 l = 4 l = 5

K × s 1× 1 1× 3 1× 3 1× 3

As shown in Table 2, all the four higher mGRUIP layers

(except the first one) are equipped with context modules. The

context order K for all of them is 1, and the step stride s is 3

for the highest three layers while being 1 for the second hidden

layer (l = 2), making the operating frame rates same as the

baselines. After equipped context modules with this setting, the

latency of mGRUIP is increased from 70 ms to 170 ms. Table

3 shows the performance of mGRUIP with these two context

modules. We also train a TDNN-LSTM model following [7],

and the results are shown in the second line of Table 3.

Table 3: Performance comparison of LSTM, mGRU and

mGRUIP on Switchboard task.

Model
#Param Latency WER (%)

(M) (ms) SWB CHM Total

LSTM 19.7 70 10.3 20.7 15.6
TDNN-LSTM 34.8 200 9.0 19.7 14.4

mGRUIP-B 16.2 70 9.7 18.8 14.3
+Ctx Encd 16.2 170 9.5 18.0 13.8
+Ctx Conv 18.7 170 9.2 17.8 13.5

MFR-BLSTM[7] - 2020 9.0 - 13.6
TDNN-BLSTM-C[7] - 2130 9.0 - 13.8

Several observations can be found in Table 3. First, both of

the two context modules can improve the ASR performance of

mGRUIP. Temporal convolution is more powerful than tempo-

ral encoding, while brings some additional parameters. Second,

compared to LSTM, mGRUIP-B equipped with temporal con-

volution provides 13.5% relative WER reduction, with a frac-

tion of the cost of 100 ms additional model latency. Third,

mGRUIP-B with temporal convolution is more effective than

TDNN-LSTM on the full test set (13.5 vs. 14.4), with smaller

model latency and much less parameters (18.7M vs. 34.8M).

What’s more, compared with the two most powerful models in

[7] (the last two lines of Table 3), the proposed model outper-

forms them on the full set with much smaller model latency

(170 ms vs. 2000 ms).

4.2. Internal Mandarin ASR Task

The second task is an internal Mandarin ASR task, of which

the training set contains 1400 hours mobile recording data. The

performance is evaluated on five public-available test sets, in-

cluding three clean and two noisy ones. The three clean sets:

• AiShell dev: the development set of the released corpus

AiShell-1[30], containing 14326 utterances.

• AiShell test: the test set of the released corpus AiShell-

1, containing 7176 utterances.

• THCHS-30 Clean: the clean test set of THCHS-30

database[31], containing 2496 utterances.

The two noisy test sets are:

• THCHS-30 Car: the corrupted version of THCHS-

30 Clean by car noise, the noise level is 0db.

• THCHS-30 Cafe: the corrupted version of THCHS-

30 Clean by cafeteria noise, the noise level is 0db.

Three ASR systems are built for this task: LSTM, TDNN-

LSTM and mGRUIP-B with temporal convolution. The model

architectures and the training configurations are all the same as

Switchboard task. Results are shown in Table 4.

Table 4: Performance of different models on internal Mandarin

ASR task.

Test LSTM TDNN-LSTM
mGRUIP

CER(%) CERR

AiShell dev 5.39 4.81 4.66 13.5%
AiShell test 6.62 5.98 5.71 13.8%

THCHS-30 Clean 11.93 10.97 10.38 13.0%

THCHS-30 Car 12.69 11.38 10.77 15.1%
THCHS-30 Cafe 53.19 44.20 40.26 24.3%

CERR column in Table 4 means the relative CER reduc-

tion of mGRUIP over LSTM. It’s shown that mGRUIP performs

much better than the baseline LSTM model on this task. On the

three clean test sets, the CERR is about 13%, and the gain is

even larger on the two very noisy sets, from 15% to 24%.

5. Conclusions

The aim of this paper is to design a RNN acoustic model that

being capable of utilizing the future context effectively and di-

rectly, with the model latency and computation cost as low as

possible. To achieve this goal, we choose the minimal GRU as

our base model and propose to insert an input projection layer

into it to further reduce the parameters. To model the future con-

text effectively, we design two kinds of context modules, tem-

poral encoding and temporal convolution, specifically for this

architecture. Experimental results on the Switchboard task and

an internal Mandarin ASR task show that, the proposed model

performs much better than LSTM and mGRU models, whereas

enables online decoding with a latency of 170 ms. This model

even outperforms a very strong baseline, TDNN-LSTM, with

smaller model latency and almost half less parameters.

6. References

[1] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition,” IEEE Transactions on Audio Speech & Language

Processing, vol. 20, no. 1, pp. 30–42, 2012.

[2] S. Zhang, C. Liu, H. Jiang, S. Wei, L. Dai, and Y. Hu, “Feed-
forward sequential memory networks: A new structure to learn
long-term dependency,” Computer Science, 2015.

[3] S. Zhang, H. Jiang, S. Xiong, S. Wei, and L. R. Dai, “Com-
pact feedforward sequential memory networks for large vocab-
ulary continuous speech recognition,” in INTERSPEECH, 2016,
pp. 3389–3393.

[4] A. W. M. Ieee, T. Hanazawa, G. Hinton, K. S. M. Ieee, and K. J.
Lang, “Phoneme recognition using time-delay neural networks,”
Readings in Speech Recognition, vol. 1, no. 2, pp. 393–404, 1990.

[5] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal con-
texts,” in INTERSPEECH, 2015.

[6] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory
based recurrent neural network architectures for large vocabulary
speech recognition,” Computer Science, pp. 338–342, 2014.

[7] V. Peddinti, Y. Wang, D. Povey, and S. Khudanpur, “Low latency
acoustic modeling using temporal convolution and lstms,” IEEE

Signal Processing Letters, vol. PP, no. 99, pp. 1–1, 2017.

[8] M. Schuster and K. K. Paliwal, Bidirectional recurrent neural net-

works. IEEE Press, 1997.

[9] A. Graves, S. Fernndez, and J. Schmidhuber, Bidirectional LSTM

Networks for Improved Phoneme Classification and Recognition.
Springer Berlin Heidelberg, 2005.

[10] A. Graves, N. Jaitly, and A. R. Mohamed, “Hybrid speech recog-
nition with deep bidirectional lstm,” in Automatic Speech Recog-

nition and Understanding, 2014, pp. 273–278.

[11] Y. Zhang, G. Chen, D. Yu, K. Yao, S. Khudanpur, and J. Glass,
“Highway long short-term memory rnns for distant speech recog-
nition,” Computer Science, pp. 5755–5759, 2015.

[12] A. Zeyer, R. Schlter, and H. Ney, “Towards online-recognition
with deep bidirectional lstm acoustic models,” in INTERSPEECH,
2016, pp. 3424–3428.

[13] K. Chen and Q. Huo, Training deep bidirectional LSTM acoustic

model for LVCSR by a context-sensitive-chunk BPTT approach.
IEEE Press, 2016.

[14] K. Chen, Z. J. Yan, and Q. Huo, “A context-sensitive-chunk bptt
approach to training deep lstm/blstm recurrent neural networks for
offline handwriting recognition,” in International Conference on

Document Analysis and Recognition, 2016, pp. 411–415.

[15] S. Xue and Z. Yan, “Improving latency-controlled blstm acous-
tic models for online speech recognition,” in IEEE International

Conference on Acoustics, Speech and Signal Processing, 2017,
pp. 5340–5344.

[16] S. Hochreiter and J. Schmidhuber, Long short-term memory.
Springer Berlin Heidelberg, 1997.

[17] G. F. A., J. Schmidhuber, and F. Cummins, Learning to Forget:

Continual Prediction with LSTM. Istituto Dalle Molle Di Studi
Sull Intelligenza Artificiale, 1999.

[18] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and
count,” in Ieee-Inns-Enns International Joint Conference on Neu-

ral Networks, 2000, pp. 189–194 vol.3.

[19] A. Graves and J. Schmidhuber, “Framewise phoneme classifica-
tion with bidirectional lstm and other neural network architec-
tures,” Neural Netw, vol. 18, no. 5-6, p. 602, 2005.

[20] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Improv-
ing speech recognition by revising gated recurrent units,” INTER-

SPEECH, pp. 1308–1312, 2017.

[21] K. Cho, B. V. Merrienboer, D. Bahdanau, and Y. Bengio, “On
the properties of neural machine translation: Encoder-decoder ap-
proaches,” Computer Science, 2014.

[22] J. Chung, C. Gulcehre, K. H. Cho, and Y. Bengio, “Empirical eval-
uation of gated recurrent neural networks on sequence modeling,”
Eprint Arxiv, 2014.

[23] T. Masuko, “Computational cost reduction of long short-term
memory based on simultaneous compression of input and hid-
den state,” in Automatic Speech Recognition and Understanding,
2017.

[24] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, and G. Di-
amos, “Deep speech 2: End-to-end speech recognition in english
and mandarin,” in ICML, 2015.

[25] A. Graves and F. Gomez, “Connectionist temporal classifica-
tion:labelling unsegmented sequence data with recurrent neural
networks,” in International Conference on Machine Learning,
2006, pp. 369–376.

[26] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar,
X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained
neural networks for asr based on lattice-free mmi,” in INTER-

SPEECH, 2016, pp. 2751–2755.

[27] K. Vesel, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks,” Proc Inter-

speech, 2013.

[28] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmen-
tation for speech recognition,” Proc Interspeech, 2015.

[29] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adap-
tation of neural network acoustic models using i-vectors,” in Au-

tomatic Speech Recognition and Understanding, 2014, pp. 55–59.

[30] H. Bu, J. Du, X. Na, B. Wu, and H. Zheng, “Aishell-1: An open-
source mandarin speech corpus and a speech recognition base-
line,” 2017.

[31] Z. Z. Dong Wang, Xuewei Zhang, “Thchs-30 : A
free chinese speech corpus,” 2015. [Online]. Available:
http://arxiv.org/abs/1512.01882

http://arxiv.org/abs/1512.01882

	1 Introduction
	2 Model Architecures
	2.1 GRU
	2.2 mGRU
	2.3 mGRUIP
	2.4 mGRUIP with Context Module
	2.4.1 mGRUIP with Temporal Encoding
	2.4.2 mGRUIP with Temporal Convolution

	3 Related Work
	4 Experiments
	4.1 Switchboard ASR Task
	4.1.1 Baseline Models
	4.1.2 mGRUIP
	4.1.3 mGRUIP with Context Modules

	4.2 Internal Mandarin ASR Task

	5 Conclusions
	6 References

