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Abstract

The majority of existing speech emotion recognition research

focuses on automatic emotion detection using training and test-

ing data from same corpus collected under the same conditions.

The performance of such systems has been shown to drop sig-

nificantly in cross-corpus and cross-language scenarios. To ad-

dress the problem, this paper exploits a transfer learning tech-

nique to improve the performance of speech emotion recogni-

tion systems that is novel in cross-language and cross-corpus

scenarios. Evaluations on five different corpora in three differ-

ent languages show that Deep Belief Networks (DBNs) offer

better accuracy than previous approaches on cross-corpus emo-

tion recognition, relative to a Sparse Autoencoder and SVM

baseline system. Results also suggest that using a large number

of languages for training and using a small fraction of the target

data in training can significantly boost accuracy compared with

baseline also for the corpus with limited training examples.

Index Terms: cross-corpus, speech, emotion recognition, Deep

Belief Networks

1. Introduction

In recent years, speech emotion recognition has received in-

creasing interest. Speech emotion recognition focuses on us-

ing linguistic and acoustic attributes as input features and ma-

chine learning models as classifiers to classify the emotions

of the speaker [1]. These systems achieve promising results

when training and testing are performed from the same cor-

pus. However, for real applications, such systems have been

demonstrated not to perform well when speech utterances from

different languages and different age groups, in quite different

conditions, are combined [2].

At present, various emotional corpora exist, but they are

dissimilar in terms of the spoken language, type of emotion (i.e.,

naturalistic, elicited, or acted) and labelling scheme (i.e., di-

mensional or categorical) [3]. There are more than 5,000 spoken

languages around the world, but only 389 languages account for

94% of the world’s population1 . Even for 389 languages, very

few adequate resources (speech corpus) are available for lan-

guage and speech processing research. This means that research

in language and speech analysis must confront the problem of

data scarcity for many languages. This imbalance, variation, di-

versity, and dynamics in speech and language databases means

that it is almost impossible to learn a model from a single corpus

and then expect it to be effective in practice in general.

In automatic speech emotion recognition, most studies fo-

cus on a single corpus at a time, without considering the per-

1https://www.ethnologue.com/statistics

formance of model in cross-language and cross-corpus scenar-

ios. However, ever since transfer learning has been applied to

cross-domain classification and pattern recognition problems,

interest in applying it to cross-corpus emotion recognition has

bee growing. Transfer learning focuses on adapting knowledge

from available auxiliary resources to transfer this learning to

a target domain, where a very few or even no labelled data is

available [4, 5].

Deep neural network (DNN) based transfer learning has

recently improved image classification by using a very large

dataset as source domain and small data as a target domain [6].

Inspired by this success, deep learning based transfer learning

has recently been used for speech analysis. However, the exist-

ing research has focused on basic DNNs. The impact of using

models like Deep Belief Networks (DBNs), which have strong

generalisation power and are therefore suitable for cross-corpus

emotion recognition, has not been thoroughly explored. A few

studies have explored DBNs for speech emotion recognition

(e.g., [7, 8]) and numerous studies focus on DBNs for features

extraction [9–11] from speech signal. However, transfer learn-

ing using DBNs is very rare. Furthermore, how to maximise the

transfer learning performance for cross-corpus/cross-language

emotion recognition still needs to be explored further.

In this study, we address the above challenges. We inves-

tigate DBNs for transfer learning over five widely-used emo-

tional speech databases. By using the experimental results from

various scenarios, we indicated how a large gain in accuracy

comparable to baseline can be achieved using transfer learning

technique for cross-corpus emotion recognition.

2. Related Work

Although cross-language and cross-corpus speech emotion

recognition is an interesting problem, relatively few studies

have addressed this topic. Existing studies have mostly studied

the preliminary feasibility of cross-corpus learning and pointed

to the need for further in-depth research. For example, Schuller

et al. [3] used six different corpora to analyse cross-corpora

emotion recognition using support vector machines (SVM) and

highlighted the limitations of current systems for cross-corpus

emotion recognition. Eyben et al. [12] used four corpora to eval-

uate some pilot experiments on cross-corpus emotion recogni-

tion while using SVM. They used three datasets for training

and a fourth for testing, and showed that the cross-corpus emo-

tion recognition is feasible. To explore the universal cues of

emotions across languages, Xia et al. [13] investigated cross-

language emotion recognition for Mandarin vs. Western lan-

guages (i.e., German, and Danish). The authors focused on

gender-specific speech emotion recognition and achieved the

http://arxiv.org/abs/1801.06353v4
https://www.ethnologue.com/statistics


classification rates higher than the chance level but less than

baseline accuracy. Albornoz et al. [14] developed an ensemble

SVM for emotion detection with a focus on emotion recognition

in unseen languages.

Deep learning techniques have been widely used for trans-

fer learning in speech recognition but only basic DNN mod-

els have been utilised so far. Lim et al. [15] proposed cross-

acoustic transfer learning framework by using DNNs. The au-

thors trained a model on a large data of speech and use it for

sound event classification. After a series of experiments, the

results showed that the cross-acoustic transfer learning can sig-

nificantly enhance the sound event classification rate. In [16],

authors used a single DNN for speaker and language recogni-

tion with a large gain on performance by training the model

on speech recognition data. These studies exploited the mod-

els that have good learning abilities so that the learned features

are transferable to enable model adaptation regarding the target

domain.

In this paper, we use Deep Belief Networks (DBNs) for

transfer learning speech emotion. The key reason for employ-

ing DBN is its power of generalisation, which is not present

in most conventional DNN models [17]. Because, the building

block of DBNs (i.e., RBMs) are universal approximators and

very powerful to approximate any distribution [18]. Intuitively,

for cross-corpus and cross-language emotion recognition, the

generalisation power of a model is crucial. In addition, DBN

can learn more powerful and effective discriminative long-range

of features [19] that have been shown to help in speech-related

problems [20].

Apart from DNNs, researchers have also used interesting

deep architectures for transfer learning. In [21], the authors fo-

cused on using Progressive Neural Networks to transfer knowl-

edge for three paralinguistic tasks, i.e., emotion, speaker, and

gender detection. Progressive Networks are useful for conduct-

ing multitasking in a network, however, we focus on a single

task of emotion recognition as speaker and gender recognition

are not the focus of this paper. Zong et al. [22] proposed a

domain-adaptive least-squares regression (DaLSR) model for

cross-corpus speech emotion recognition. They used three

datasets for the evaluations and found that DaLSR can achieved

better results than other models like SVM. They did not focus

on achieving results higher than the baseline accuracy. Simi-

larly, Deng et al. [23] used sparse autoencoders (AE) for fea-

ture transfer learning in speech emotion recognition. They used

six standard databases and a single-layer sparse AE and train

this model on class-specific instances from the target domain,

then apply this representation to the source domain for recon-

struction of those data. This experimental approach improves

the performance of the model as compared with independent

learning from every source domain.

3. Experimental Setup

3.1. Speech Databases

To investigate the performance of DBN for cross-corpora and

cross-language emotion recognition, we selected five publicly

available and highly popular corpora which have maximum di-

versity in languages. These databases are annotated differently,

therefore, one of the only consistent ways to investigate transfer

learning is by considering the binary positive/negative valence

classification problem. We adopt the binary valence mapping

per emotion category from [3,23,29]. The names of the datasets

used in our experiment and the categorical mappings to binary

valence classes are provided in Table 1. These databases were

chosen to span a variety of languages.

3.2. Speech Features

In this study, we use eGeMAPS feature set, which is a widely

used reference feature set for speech emotion recognition stud-

ies [21]. The feature set includes Low-Level Descriptor (LLD)

features of the speech signal which are described most relevant

to emotions by Paralinguistic studies [29]. The eGeMAPS fea-

ture set contains 88 features including frequency, energy, spec-

tral, cepstral, and dynamic information. The overall compo-

nents are the arithmetic mean and coefficient of variation of 18

LLDs, 6 temporal features, 4 statistics over the unvoiced seg-

ments, 8 functionals applied to loudness and pitch, and 26 addi-

tional dynamic and cepstral components.

3.3. Deep Belief Networks

DBNs are very popular deep architectures that consist of the

stack of Restricted Boltzmann Machines (RBMs) to make a

powerful probabilistic generative model by using layer-wise

training in a greedy manner. RBM is an undirected stochas-

tic neural network consisting of a visible layer, a hidden layer,

and a bias unit. Each visible unit of the visible layer is fully

connected to hidden units in the hidden layer, and the bias is

connected to all the visible units and the hidden units. There is

no connection between visible to visible and between hidden to

hidden units. RBMs can also be used as classifiers. They are

trained on the joint distribution of input data and corresponding

labels, then the label is assigned to the new input which has the

highest probability under the model. The joint distribution of

between visible layer (v) and hidden layer (h) is given by [30]:

P (v, h) =
1

Z
exp(−E(v, h)) (1)

where Z represents the normalisation constant and E(v, h)
is an energy function which is defined as:

E(v, h) = −
D
∑

i=1

k
∑

j=1

Wijvihj −
D
∑

i=1

bivi −
k

∑

j=1

ajhj (2)

where vi and hi are the binary states of visible and hidden units.

Wij represents the weights of connections between hidden and

visible nodes. The conditional probabilities for the visible and

hidden units are given by the following equations, where g is

the sigmoid function: g(x) = 1

1+e−x
.

P (vi = 1|h) = g
(

b
v
i +

∑

j

hjWij

)

(3)

P (hj = 1|v) = g
(

b
h
j +

∑

i

viWij

)

(4)

An RBM is pre-trained for the maximisation of data log-

likelihood logP (v). The stack of generatively pre-trained

RBMs constitutes a powerful DBN that can be discriminatively

fine-tuned to improve performance. Weight initialisation with

pre-training can help the network to avoid poor local minima

and give better discriminative results when compared with a

neural network initialised by small random weights [31]. In

this work, we also use layer-by-layer pre-training for DBN. The

description of DBNs and their training methodologies can be

reviewed in [30, 32].



Table 1: Corpora information and the mapping of class labels onto Negative/Positive valence.

Corpus Language Age Utterances Negative Valance Positive Valance References

FAU-AIBO German Children 18216 Angry, Touchy, Emphatic, Reprimanding Motherese, Joyful, Neutral, Rest [24]

IEMOCAP English Adults 5531 Angry, Sadness Neutral, Happy, Excited [25]

EMO-DB German Adults 494 Anger, Sadness, Fear, Disgust, Boredom Neutral, Happiness [26]

SAVEE English Adults 480 Anger, Sadness, Fear, Disgust Neutral, Happiness, Surprise [27]

EMOVO Italian Adults 588 Anger, Sadness, Fear, Disgust Neutral, Joy, Surprise [28]

During experimental work, a DBN with three RBM layers

was selected, where the first two RBMs have 1000 hidden unit

each, and the third RBM have 2000 hidden units with learning

rate of 10−3 and 500 epochs. This configuration was obtained

using cross validation experiments on validation data. The other

network parameters were chosen by following the setup in [8,

33].

4. Results

In this section, we explore various scenarios for cross-corpus

and cross-language speech emotion recognition and conduct ex-

periments to test the scenarios.

4.1. Within Corpus Scheme

In order to obtain the baseline comparison results, we com-

pare the performance of DBN with a popular approach of using

sparse autoencoder (AE) with SVM for feature transfer learning

in speech emotion recognition [23]. This preliminary experi-

ment enables us to set maximum achievable baseline accuracy

when both systems are trained and tested using the data of same

corpus. For baseline experiments, 75% of randomly selected

data is used for training and remaining 25% unseen data is used

for testing. Figure 1 shows the comparison results, where DBN

outperforms sparse AE for all databases.
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Figure 1: Comparison of baseline accuracy using DBN and

sparse AE on different databases.

4.2. Language Tests

In this experiment, we use one language dataset for training and

the remaining datasets for testing. For brevity, we just use FAU-

AIBO (German) and IEMOCAP (English) datasets for training.

In order to evaluate the model on IEMOCAP, we used two ses-

sions out of five with two-fold cross validation because over-

all data is large. The other databases are small comparative

to IEMOCAP, therefore, we used them completely. Figure 2

shows the recognition rate achieved in these experiments and its

comparison with previous techniques using sparse autoencoder

and SVM (sparse AE+SVM) for cross-corpus transfer learning.

When the IEMOCAP database was used for training the DBN,

we performed pairwise testing using OHM and MONT sepa-

rately for FAU-AIBO. It can be noted from Figure 2 that DBN

outperforms sparse AE for all scenarios. Beyond this point, the

accuracy of sparse AE is not given, as we observe that DBNs

consistently outperform sparse AE.

4.3. Percentage of Target Data

In this experiment, we vary the percentage (10% to 80%) of

the target dataset for the training of the model. The train-

ing was performed using IEMOCAP and FAU-AIBO separately

and EMOVO, EMO-DB and SAVEE were used for testing. The

results are shown in Figure 3. The straight horizontal lines in

the figure show the baseline recognition rate for the respective

corpora. These results show that the recognition rate signifi-

cantly improves (than baseline) by including target domain data

with the training data.

4.4. Multi-language Training

In this experiment, we use multiple languages jointly for train-

ing to observe whether this improves the performance of using

languages individually for training. We use both FAU-AIBO

and IEMOCAP for training and remaining for testing. We also

evaluate the model within the corpora. For IEMOCAP, we

used three sessions (plus FAU-AIBO) for training and testing

was performed using the remaining two sessions with two-fold

cross validation. Similarly, for FAU-AIBO, a two-fold cross-

validation was used, i.e., training on OHM (plus IEMOCAP)

and evaluating on MONT and the inverse.

Further, we also performed training using a leave-one-data-

out scheme. For FAU-AIBO, we have performed evaluation by

using OHM and MONT independently taking the average re-

sults. In the case of IEMOCAP, we used two sessions (with

two-fold cross validation) to evaluate the model. This performs

better than baseline and two-language training as shown in Fig-

ure 4.

5. Discussion

From the experiments, Leave-one-Out seems to be standing out

in-terms of obtaining the highest accuracy. This essentially

means that training the model using a large range of languages

would help learn many intrinsic features from each languages,

which can essentially help to achieve high accuracy in an un-

known language - even higher than when the same language is

used for training and testing (baseline). The performance of the

Leave-one-out (see Figure 4) on EMOVO database is a prime

example of this. Both German and English languages have two

datasets each, i.e., in a Leave-one-Out scheme there will be at

least one of these language in the training set. But for EMOVO

there will be a situation that emotions in the Italian language

are predicted simply based on emotions in German and English

language.

Another interesting aspect we learned from the experiments

that including a fraction of the target data into training can
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Figure 2: Comparison of language tests using DBN and sparse AE. Figure 2a represents the recognition rate using IEMOCAP (English)

for training and other databases for testing whereas 2b shows the recognition rate using FAU-AIBO (German) for training and other

databases for testing.
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Figure 3: Impact of using a percentage of target date with training data. Where 3a shows the training with IEMOCAP and 3b is when

training is performed using FAU-AIBO.
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Figure 4: Comparison of baseline results and transfer learning

using FAU-AIBO+IEMOCAP and leave-one-language-out

scheme.

help improve the performance and help achieve better results

than baseline. Based on our experiments, augmenting other

databases with around 20% of data (around 90 utterances in

case of EMO-DB) from the target database can help achieve

better than the baseline accuracy. However, this is worse while

using FAU-AIBO for training. Interestingly, IEMOCAP per-

forms well on EMO-DB that is in the German language as com-

pared to FAU-AIBO that is also in German. We note that FAU-

AIBO consists of children speech whereas EMO-DB database

contains adult speech.

The performance of DBN in the language test results in

Figure 2 using both IEMOCAP (English) and FAU-AIBO (Ger-

man) on target datasets is poor than the baseline. The drop in ac-

curacy is not only for the target dataset with a different language

but also for target data having similar language. From this ex-

periment, we learned that the different studio conditions, age

and language differences, and type of emotional corpus cause

drop in the performance of the model. This problem can be

addressed by previous two findings, i.e., either by training the

model with the data of multiple languages or by including a

small portion of data target domain with training data.

6. Conclusions

In this paper, we investigated the performance of DBNs for

transfer learning based cross-corpus and cross-language speech

emotion recognition. In order to evaluate the feature transfer-

ence across different corpora, we performed comprehensive ex-

periments and found that DBNs outperformed sparse autoen-

coders due to its increased feature learning abilities. Also,

DBNs can learn from many training languages and improve the

baseline accuracy even also when a small fraction of target data

is included in the model while training it with a single corpus.

For practical applications, these findings would be very help-

ful to build a robust speech emotion recognition system using

data from multiple languages. Also, this would be equally use-

ful for emotion recognition in languages with very limited or no

datasets.
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