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Abstract
This paper proposes an end-to-end approach for single-channel
speaker-independent multi-speaker speech separation, where
time-frequency (T-F) masking, the short-time Fourier transform
(STFT), and its inverse are represented as layers within a deep
network. Previous approaches, rather than computing a loss on
the reconstructed signal, used a surrogate loss based on the tar-
get STFT magnitudes. This ignores reconstruction error intro-
duced by phase inconsistency. In our approach, the loss func-
tion is directly defined on the reconstructed signals, which are
optimized for best separation. In addition, we train through
unfolded iterations of a phase reconstruction algorithm, repre-
sented as a series of STFT and inverse STFT layers. While
mask values are typically limited to lie between zero and one
for approaches using the mixture phase for reconstruction, this
limitation is less relevant if the estimated magnitudes are to be
used together with phase reconstruction. We thus propose sev-
eral novel activation functions for the output layer of the T-F
masking, to allow mask values beyond one. On the publicly-
available wsj0-2mix dataset, our approach achieves state-of-
the-art 12.6 dB scale-invariant signal-to-distortion ratio (SI-
SDR) and 13.1 dB SDR, revealing new possibilities for deep
learning based phase reconstruction and representing a funda-
mental progress towards solving the notoriously-hard cocktail
party problem.
Index Terms: deep clustering, chimera++ network, iterative
phase reconstruction, cocktail party problem.

1. Introduction
Recent years have witnessed exciting advances towards solv-
ing the cocktail party problem. The inventions of deep clus-
tering [1, 2, 3], deep attractor networks [4, 5] and permu-
tation free training [1, 2, 6, 7] have dramatically improved
the performance of single-channel speaker-independent multi-
speaker speech separation, demonstrating overwhelming advan-
tages over previous methods including graphical modeling ap-
proaches [8], spectral clustering approaches [9], and CASA
methods [10].

However, all of these conduct separation on the magnitude
in the time-frequency (T-F) domain and directly use the mix-
ture phase for time-domain re-synthesis, largely because phase
is difficult to estimate. It is well-known that this incurs a phase
inconsistency problem [11, 12, 13], especially for speech pro-
cessing, where there is typically at least half overlap between
consecutive frames. This overlap makes the STFT representa-
tion of a speech signal highly redundant. As a result, the en-
hanced STFT representation obtained using the estimated mag-
nitude and mixture phase would not be in the consistent STFT
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domain, meaning that it is not guaranteed that there exists a
time-domain signal having that STFT representation.

To improve the consistency, one stream of research is fo-
cused on iterative methods such as the classic Griffin-Lim al-
gorithm [14], multiple input spectrogram inverse (MISI) [15],
ISSIR [16], and consistent Wiener filtering [17], which can re-
cover the clean phase to some extent starting from the mixture
phase and a good estimated magnitude by iteratively perform-
ing STFT and iSTFT [13]. There are some previous attempts at
naively applying such iterative algorithms as a post-processing
step on the magnitudes produced by deep learning based speech
enhancement and separation [18, 19, 20, 3]. However, this usu-
ally only leads to small improvements, even though the magni-
tude estimates from DNNs are reasonably good. We think that
this is possibly because the T-F masking is performed without
being aware of the later phase reconstruction steps and hence
may not produce spectral structures that are appropriate for it-
erative phase reconstruction.

This study hence proposes a novel end-to-end speech sep-
aration algorithm that trains through iterative phase reconstruc-
tion via T-F masking for signal-level approximation. On the
publicly-available wsj0-2mix corpus, our algorithm reaches
12.6 dB scale-invariant SDR, which surpasses the previous best
by a large margin and is comparable to the oracle 12.7 dB re-
sult obtained using the so-called ideal ratio mask (IRM). Our
study shows, for the first time and based on a large open dataset,
that deep learning based phase reconstruction leads to tangible
and large improvements when combined with state-of-the-art
magnitude-domain separation.

2. Chimera++ Network
To elicit a good phase via phase reconstruction, it is necessary to
first obtain a good enough magnitude estimate. Our recent study
[3] proposed a novel multi-task learning approach combining
the regularization capability of deep clustering with the ease
of end-to-end training of mask inference, yielding significant
improvements over the individual models.

The key idea of deep clustering [1] is to learn a high-
dimensional embedding vector for each T-F unit using a pow-
erful deep neural network (DNN) such that the embeddings of
the T-F units dominated by the same speaker are close to each
other in the embedding space while farther otherwise. This
way, simple clustering methods like k-means can be applied
to the learned embeddings to perform separation at run time.
More specifically, the network computes a unit-length embed-
ding vector vi ∈ R1×D corresponding to the ith T-F element.
Similarly, yi ∈ R1×C is a one-hot label vector representing
which source in a mixture dominates the ith T-F unit. Vertically
stacking these, we form the embedding matrix V ∈ RTF×D
and the label matrix Y ∈ RTF×C . The embeddings are learned
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by approximating the affinity matrix from the embeddings:

LDC,classic = ‖V V T − Y Y T‖2F (1)

Our recent study [3] suggests that an alternative loss func-
tion, which whitens the embedding in a k-means objective,
leads to better separation performance.

LDC,W = ‖V (V TV )−
1
2 − Y (Y TY )−1Y TV (V TV )−

1
2 ‖2F

= D − tr
(
(V TV )−1V TY (Y TY )−1Y TV

)
(2)

To learn the embeddings, bi-directional LSTM (BLSTM)
is usually used to model the context information from past and
future frames. The network architecture is shown at the bottom
of Fig. 1, where the DC embedding layer is a fully-connected
layer with a non-linearity such as a logistic sigmoid, followed
by unit-length normalization for each frequency.

Another permutation-free training scheme was proposed for
mask-inference networks first in [1], and was later found to be
working very well in [2] and [6]. The idea is to train a mask-
inference network to minimize the minimum loss over all per-
mutations. Following [7], the phase-sensitive mask (PSM) [21]
is used as the training target. It is common in phase-sensitive
spectrum approximation (PSA) to truncate the unbounded mask
values. Using Tba(x) = min(max(x, a), b), the truncated PSA
(tPSA) objective is

LtPSA = min
π∈P

∑
c

∥∥∥M̂π(c) � |X|

− T
γ|X|
0 (|Sc| � cos(∠Sc − ∠X))

∥∥∥
1
, (3)

where ∠X is the mixture phase, ∠Sc the phase of the c-th
source, P the set of permutations on {1, . . . , C}, |X| the mix-
ture magnitude, M̂c the c-th estimated mask, |Sc| the magni-
tude of the c-th reference source, � denotes element-wise ma-
trix multiplication, and γ is a mask truncation factor. Sigmoidal
activation together with γ = 1 is commonly used in the output
layer of T-F masking. To endow the network with more capa-
bility, multiple activation functions that can work with γ > 1
will be discussed in Section 3.4.

Following [22], our recent study [3] proposed a chimera++
network combining the two approaches via multi-task learning,
as illustrated in the bottom of Fig. 1. The loss function is a
weighted sum of the deep clustering loss and the mask inference
loss.

Lchi++
α

= αLDC,W + (1− α)LtPSA (4)

Only the MI output is needed to make predictions at run time.

3. Proposed Algorithms
3.1. Iterative Phase Reconstruction

There are multiple target sources to be separated in each mixture
in our study. The Griffin-Lim algorithm [14] only performs it-
erative reconstruction for each source independently. In [3], we
therefore proposed to utilize the MISI algorithm [15] (see Algo-
rithm 1) to reconstruct the clean phase of each source starting
from the estimated magnitude of each source and the mixture
phase, where the sum of the reconstructed time-domain signals
after each iteration is constrained to be the same as the mix-
ture signal. Note that the estimated magnitudes remain fixed
during iterations, while the phase of each source are iteratively
reconstructed. In [3], the phase reconstruction was only added
as a post-processing, and it was not part of the objective func-
tion during training, which remained computed on the time-

Input : Mixture time-domain signal x, mixture complex
spectrogram X , mixture phase ∠X , enhanced
magnitudes Âc = M̂c ◦ |X| for c = 1, . . . , C, and
iteration number K

Output : Reconstructed phase θ̂(K)
c and signal ŝ(K)

c for
c = 1, . . . , C

ŝ
(0)
c = iSTFT(Âc,∠X), for c = 1, . . . , C;

for i = 1, . . . ,K do
δ(i−1) = x−

∑C
c=1 ŝ

(i−1)
c ;

θ̂
(i)
c = ∠STFT

(
ŝ
(i−1)
c + δ(i−1)

C

)
, for c = 1, . . . , C;

ŝ
(i)
c = iSTFT(Âc, θ̂

(i)
c ), for c = 1, . . . , C;

end
Algorithm 1: Iterative phase reconstruction based on MISI.
STFT(·) extracts the STFT magnitude and phase of a signal,
and iSTFT(·,·) reconstructs a time-domain signal from a mag-
nitude and a phase.

frequency representation of the estimated signal, prior to resyn-
thesis. In this paper, we go several steps further.

3.2. Waveform Approximation

The first step in phase reconstruction algorithms such as MISI is
to reconstruct a waveform from a time-frequency domain rep-
resentation using the inverse STFT. We thus consider a first ob-
jective function computed on the waveform reconstructed by
iSTFT, denoted as waveform approximation (WA), and repre-
sent iSTFT as various layers on top of the mask inference layer,
so that end-to-end optimization can be performed. The label
permutation problem is resolved by minimizing the minimum
L1 loss of all the permutations at the waveform level. We de-
note the model trained this way as WA. The objective function
to train this model is

LWA = min
π∈P

∑
c

∥∥∥ŝ(0)π(c) − sc∥∥∥
1
, (5)

where sc denotes the time-domain signal of source c, and ŝ(0)c
denotes the c-th time-domain signal obtained by inverse STFT
from the combination of the c-th estimated magnitude and the
mixture phase. Note that mixture phase is still used here and no
phase reconstruction is yet performed. This corresponds to the
initialization step in Algorithm 1.

In [23], a time-domain reconstruction approach is proposed
for speech enhancement. However, their approach only trains
a feed-forward mask-inference DNN through iDFT separately
for each frame using squared error in the time domain. By Par-
seval’s theorem, this is equivalent to optimizing the mask for
minimum squared error in the complex spectrum domain, when
using the noisy phases, as in [21], proposed in the same con-
ference. A follow-up work [19] of [23] supplies clean phase
during training. However, this makes their approach equivalent
to conventional magnitude spectrum approximation [24], which
does not perform as well as the phase-sensitive mask [25]. Clos-
est to the above WA objective, an adaptive front-end framework
was recently proposed [26] in which the STFT and its inverse
are subsumed by the network, along with the noisy phase, so
that training is effectively end-to-end in the time-domain. The
proposed method then replaces the STFT and its inverse by
trainable linear convolutional layers. Unfortunately the paper
does not compare training through the STFT to the conventional
method so the results are uninformative about this direction.

3.3. Unfolded Iterative Phase Reconstruction

We further unfold the iterations in the MISI algorithm as various
deterministic layers in a neural network. This can be achieved



by further growing several layers representing STFT and iSTFT
operations on top of the mask inference layer. By perform-
ing end-to-end optimization that trains through MISI, the net-
work can become aware of the later iterative phase reconstruc-
tion steps and learn to produce estimated magnitudes that are
well-suited to that subsequent processing, hence producing bet-
ter phase estimates for separation. The model trained this way
is denoted as WA-MISI-K, where K ≥ 1 is the number of un-
folded MISI iterations. The objective function is

LWA-MISI-K = min
π∈P

∑
c

∥∥∥ŝ(K)

π(c) − sc
∥∥∥
1
, (6)

where ŝ(K)
c denotes the c-th time-domain signal obtained after

K MISI iterations as described in Algorithm 1. The whole sep-
aration network, including unfolded phase reconstruction steps
at the output of the mask inference head of the Chimera++ net-
work, is illustrated in Fig. 1. The STFT and iSTFT can be easily
implemented using modern deep learning toolkits as determin-
istic layers efficiently computed on a GPU and through which
backpropagation can be performed.

A recent study by Williamson et al. [27, 28] proposed a
complex ratio masking approach for phase reconstruction and
speech enhancement, where a feed-forward DNN is trained
to predict the real and imaginary components of the ideal
complex filter in the STFT domain, i.e., Mc = Sc/X =

|Sc|ej(∠Sc−∠X)/|X| for source c for example. The real com-
ponent is equivalent to the earlier proposed phase-sensitive
mask [21], which contains patterns clearly predictable from
energy-based features [21, 25]. However, recent studies along
this line suggest that the patterns in the imaginary component
are too random to predict [29], possibly because it is difficult
for a learning machine to determine the sign of sin(∠Sc−∠X)
only from energy-based features. In contrast, the cos(∠Sc −
∠X) in the real component is typically much smaller than one
for T-F units dominated by other sources and close to one other-
wise, making itself predictable from energy-based features. The
proposed method thus only focuses on estimating a mask in the
magnitude domain and uses the estimated magnitude to elicit
better phase through iterative phase reconstruction.

Another recent trend is to avoid the phase inconsistency
problem altogether by operating in the time domain, using con-
volutional neural networks [30, 31], WaveNet [32], genera-
tive adversarial networks [33], or encoder-decoder architectures
[34]. Although they are promising approaches, the current state-
of-the-art approach for supervised speech separation is via T-F
masking [35, 3]. The proposed approach is expected to produce
even better separation if the phase can be reconstructed.

3.4. Activation Functions with Values Beyond One

Sigmoidal units are dominantly used in the output layer of deep
learning based T-F masking [36, 35], partly because they can
model well data with bi-modal distribution [37], such as the
IRM [38] and its variants [36]. Restricting the possible val-
ues of the T-F mask to lie in [0, 1] is also reasonable when
using the mixture phase for reconstruction: indeed, T-F mask
values larger than one would in theory be needed in regions
where interferences between sources result in a mixture magni-
tude smaller than that of a source; but the mixture phase is also
likely to be different from the phase of that source in such re-
gions, in which case it is more rewarding in terms of objective
measure to oversuppress than to go even further in a wrong di-
rection. This is no longer valid if we consider phase reconstruc-
tion in the optimization. Moreover, capping the mask values to

Figure 1: Training through K MISI iterations.

be between zero and one is more likely to take the enhanced
magnitude further away from the consistent STFT domain, pos-
ing potential difficulties for later phase reconstruction.

To obtain clean magnitudes, the oracle mask should be
|Sc|/|X| (also known as the FFT mask in [38] or the ideal am-
plitude mask in [21]). Clearly, this mask can go beyond one,
because the underlying sources, although statistically indepen-
dent, may have opposite phase at a particular T-F unit, therefore
cancelling with each other and producing a mixture magnitude
that is smaller than the magnitude of a given source. It is likely
much harder to predict the mask values of such T-F units, but we
believe that it is still possible based on contextual information.

In our study, we truncate the values in PSM to the range
[0, 2] (i.e., γ = 2 in Eq. (3)), as only a small percentage of mask
values goes beyond this range. Multiple activation functions can
be utilized in the output layer. We here consider:
• doubled sigmoid: sigmoid non-linearity multiplied by 2;
• clipped ReLU: ReLU non-linearity clipped to [0, 2];
• convex softmax: the output non-linearity is a three-

dimensional softmax for each source at each T-F unit. It is
used to compute a convex sum between the values 0, 1, and
2: y = [x0, x1, x2][0, 1, 2]

T where [x0, x1, x2] is the output
of the softmax. This activation function is designed to model
the three modes concentrated at 0, 1 and 2 in the histogram
of the PSM.

4. Experimental Setup
We validate the proposed algorithms on the publicly-available
wsj0-2mix corpus [1], which is widely used in many speaker-
independent speech separation tasks. It contains 20,000, 5,000
and 3,000 two-speaker mixtures in its 30 h training, 10 h valida-
tion, and 5 h test sets, respectively. The speakers in the valida-
tion set (closed speaker condition, CSC) are seen during train-
ing, while the speakers in the test set (open speaker condition,
OSC) are completely unseen. The sampling rate is 8 kHz.

Our neural network contains four BLSTM layers, each with
600 units in each direction. A dropout of 0.3 is applied on the
output of each BLSTM layer except the last one. The network is
trained on 400-frame segments using the Adam algorithm. The



Table 1: SI-SDR (dB) performance on wsj0-2mix.
Approaches CSC OSC
LDC,W 10.4 10.4
LtPSA 10.1 10.0
Lchi++

α
(sigmoid) 11.1 11.2

+ Griffin-Lim-5 11.2 11.3
+ MISI-5 11.4 11.5
+ LWA 11.6 11.6

+MISI-5 11.6 11.6
+LWA-MISI-5 12.4 12.2

Lchi++
α

(doubled sigmoid) 10.0 10.0
+LWA 11.5 11.4

+LWA-MISI-5 12.5 12.3
Lchi++

α
(clipped RelU) 10.4 10.4

+LWA 11.7 11.7
+LWA-MISI-5 12.6 12.4

Lchi++
α

(convex softmax) 11.0 11.1
+LWA 11.8 11.8

+LWA-MISI-5 12.8 12.6

0 1 2 3 4 5
Number of MISI iterations at test time

11.00

11.25
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Figure 2: SI-SDR vs number of MISI iterations at test time

window length is 32 ms and the hop size is 8 ms. The square
root Hann window is employed as the analysis window and the
synthesis window is designed accordingly to achieve perfect re-
construction after overlap-add. A 256-point DFT is performed
to extract 129-dimensional log magnitude input features. We
first train the chimera++ network with α set to 0.975. Next, we
discard the deep clustering branch (i.e., we set α to 0) and train
the network with LWA. Subsequently, the network is trained us-
ing LWA-MISI-1, then LWA-MISI-2, and all the way to LWA-MISI-K,
where here K = 5, as performance saturated after five itera-
tions in our experiments. We found this curriculum learning
strategy to be helpful. At run time, for the models trained us-
ing LWA-MISI-5, we run MISI with 5 iterations, while results for
other models are obtained without phase reconstruction unless
specified.

We report the performance using scale-invariant SDR (SI-
SDR) [1, 2, 5, 39], as well as the SDR metric computed using
the bss eval sources software [40] because it is used by other
groups. We believe SI-SDR is a more proper measure for single-
channel instantaneous mixtures [39].

5. Evaluation Results
Table 1 reports the SI-SDR results on the wsj0-2mix dataset.
We first present the results using sigmoidal activation. The
chimera++ network obtains significantly better results than the
individual models (11.2 dB vs. 10.4 dB and 10.0 dB SI-SDR).
With the mixture phase and estimated magnitudes, performing
five iterations of MISI pushes the performance to 11.5 dB, while
11.3 dB is obtained when applying five iterations of Griffin-Lim

Table 2: Comparison with other systems on wsj0-2mix.
SI-SDR (dB) SDR (dB)

Approaches CSC OSC CSC OSC
Deep Clustering [1, 2] - 10.8 - -
Deep Attractor Networks [4, 5] - 10.4 - 10.8
PIT [6, 7] - - 10.0 10.0
TasNet [34] - 10.2 - 10.5
Chimera++ Networks [3] 11.1 11.2 11.6 11.7

+ MISI-5 [3] 11.4 11.5 12.0 12.0
WA (proposed) 11.8 11.8 12.3 12.3
WA-MISI-5 (proposed) 12.8 12.6 13.2 13.1
Oracle Masks:

Magnitude Ratio Mask 12.5 12.7 13.0 13.2
+ MISI-5 13.5 13.7 14.1 14.3

Ideal Binary Mask 13.2 13.5 13.7 14.0
+ MISI-5 13.1 13.4 13.6 13.8

PSM 16.2 16.4 16.7 16.9
+ MISI-5 18.1 18.3 18.5 18.8

Ideal Amplitude Mask 12.6 12.8 12.9 13.2
+ MISI-5 26.3 26.6 26.8 27.1

on each source independently, as is reported in [3]. Performing
end-to-end optimization using LWA improves the results to 11.6
dB from 11.2 dB, without requiring phase reconstruction post-
processing. Further applying MISI post-processing for five it-
erations (MISI-5) on this model however does not lead to any
improvements, likely because the mixture phase is used during
training and the model compensates for it without expecting fur-
ther processing. In contrast, training the network through MISI
using LWA-MISI-5 pushes the performance to 12.2 dB.

Among the three proposed activation functions, the convex
softmax performs the best, reaching 12.6 dB SI-SDR. It thus
seems effective to model the multiple peaks in the histogram of
the truncated PSM, and important to produce estimated mag-
nitudes that are closer to the consistent STFT domain. As
expected, activations going beyond 1 only become beneficial
when training through phase reconstruction.

In Fig. 2, we show the evolution of the SI-SDR performance
of the convex softmax models trained with different objective
functions against the number of MISI iterations at test time (0
to 5). Training with LWA leads to a magnitude that is very well
suited to iSTFT, but not to further MISI iterations. As we train
for more MISI iterations, performance starts lower, but reaches
higher values with more test-time iterations.

Table 2 lists the performance of competitive approaches on
the same corpus, along with the performance of various oracle
masks with or without applying MISI for five iterations. The
first three algorithms use mixture phase directly for separation.
The fourth one, time-domain audio separation network (Tas-
Net), operates directly in the time domain. Our result is 1.1
dB better than the previous state-of-the-art by [3] in terms of
both SI-SDR and SDR.

6. Concluding Remarks
We have proposed a novel end-to-end approach for single-
channel speech separation. Significant improvements are ob-
tained by training the T-F masking network through an iterative
phase reconstruction procedure. Future work includes applying
the proposed methods to speech enhancement, considering the
joint estimation of magnitude and an initial phase that improves
upon the mixture phase, and improving the estimation of the
ideal amplitude mask. We shall also consider alternatives to the
waveform-level loss, such as errors computed on the magnitude
spectrograms of the reconstructed signals.
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